Differences in the Effects of Broad-Band UVA and Narrow-Band UVB on Epidermal Keratinocytes
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34886205
PubMed Central
PMC8656598
DOI
10.3390/ijerph182312480
PII: ijerph182312480
Knihovny.cz E-resources
- Keywords
- DNA damage, UV radiation, photoageing, reactive oxygen species,
- MeSH
- HaCaT Cells MeSH
- Keratinocytes * radiation effects MeSH
- Skin MeSH
- Humans MeSH
- DNA Damage MeSH
- Ultraviolet Rays * adverse effects classification MeSH
- Cell Survival MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The sun is a natural source of UV radiation. It can be divided into three bands, UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm), where the radiation up to 290 nm is very effectively eliminated by the stratospheric ozone. Although UV radiation can have a beneficial effect on our organism and can be used in the treatment of several skin diseases, it must primarily be considered harmful. METHODS: In the presented work, we focused on the study of the longer-wavelength UV components (UVA and UVB) on the human epidermal keratinocyte line HaCaT. As UVA and UVB radiation sources, we used commercially available UVA and UVB tubes from Philips (Philips, Amsterdam, The Netherlands), which are commonly employed in photochemotherapy. We compared their effects on cell viability and proliferation, changes in ROS production, mitochondrial function and the degree of DNA damage. RESULTS: Our results revealed that UVB irradiation, even with significantly lower irradiance, caused greater ROS production, depolarization of mitochondrial membrane potential and greater DNA fragmentation, along with significantly lowering cell viability and proliferative capacity. CONCLUSIONS: These results confirm that UV radiation causes severe damages in skin cells, and they need to be protected from it, or it needs to be applied more cautiously, especially if the component used is UVB.
See more in PubMed
Kollias N., Ruvolo E., Jr., Sayre R.M. The value of the ratio of UVA to UVB in sunlight. Photochem. Photobiol. 2011;87:1474–1475. doi: 10.1111/j.1751-1097.2011.00980.x. PubMed DOI
Parisi A.V., Turner J. Variations in the short wavelength cut-off of the solar UV spectra. Photochem. Photobiol. Sci. 2006;5:331–335. doi: 10.1039/b512029b. PubMed DOI
Tobin D.J. Introduction to skin aging. J. Tissue Viability. 2017;26:37–46. doi: 10.1016/j.jtv.2016.03.002. PubMed DOI
Svobodová A., Zdarilová A., Walterová D., Vostálová J. Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. J. Dermatol. Sci. 2007;48:213–224. doi: 10.1016/j.jdermsci.2007.06.008. PubMed DOI
Elwood J.M., Jopson J. Melanoma and sun exposure: An overview of published studies. Int. J. Cancer. 1997;73:198–203. doi: 10.1002/(SICI)1097-0215(19971009)73:2<198::AID-IJC6>3.0.CO;2-R. PubMed DOI
Lazovich D., Vogel R.I., Berwick M., Weinstock M.A., Anderson K.E., Warshaw E.M. Indoor tanning and risk of melanoma: A case-control study in a highly exposed population. Cancer Epidemiol. Biomark. Prev. 2010;19:1557–1568. doi: 10.1158/1055-9965.EPI-09-1249. PubMed DOI PMC
IARC . IARC Working Group Report. Exposure to Artificial UV Radiation and Skin Cancer. International Agency for Research on Cancer; Lyon, France: 2006.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . Review of Human Carcinogens. International Agency for Research on Cancer; Lyon, France: 2012.
Snellman E., Rantanen T., Sundell J. Cumulative UV radiation dose and outcome in clinical practice: Effectiveness of trioxsalen bath PUVA with minimal UVA exposure. Photodermatol. Photoimmunol. Photomed. 2000;16:207–210. doi: 10.1034/j.1600-0781.2000.160503.x. PubMed DOI
Miller S.A., Hamilton S.L., Wester U.G., Cyr W.H. An analysis of UVA emissions from sunlamps and the potential importance for melanoma. Photochem. Photobiol. 1998;68:63–70. doi: 10.1111/j.1751-1097.1998.tb03253.x. PubMed DOI
Tierney P., Ferguson J., Ibbotson S., Dawe R., Eadie E., Moseley H. Nine out of 10 sunbeds in England emit ultraviolet radiation levels that exceed current safety limits. Br. J. Dermatol. 2013;168:602–608. doi: 10.1111/bjd.12181. PubMed DOI
Gerber B., Mathys P., Moser M., Bressoud D., Braun-Fahrländer C. Ultraviolet emission spectra of sunbeds. Photochem. Photobiol. 2002;76:664–668. doi: 10.1562/0031-8655(2002)076<0664:UESOS>2.0.CO;2. PubMed DOI
Vieyra-Garcia P.A., Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol. Ther. 2020;222:107784. doi: 10.1016/j.pharmthera.2020.107784. PubMed DOI
Novák Z., Bónis B., Baltás E., Ocsovszki I., Ignácz F., Dobozy A., Kemény L. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in inducing T cell apoptosis than narrow-band ultraviolet B. J. Photochem. Photobiol. B. 2002;67:32–38. doi: 10.1016/S1011-1344(02)00280-4. PubMed DOI
Bónis B., Kemény L., Dobozy A., Bor Z., Szabó G., Ignácz F. 308 nm UVB excimer laser for psoriasis. Lancet. 1997;22:1522. doi: 10.1016/S0140-6736(05)63945-1. PubMed DOI
Ly K., Smith M.P., Thibodeaux Q.G., Beck K.M., Liao W., Bhutani T. Beyond the Booth: Excimer Laser for Cutaneous Conditions. Dermatol. Clin. 2020;38:157–163. doi: 10.1016/j.det.2019.08.009. PubMed DOI
McKinlay A.F., Diffey B.L. A Reference Action Spectrum for Ultra-Violet Induced Erythema in Human Skin. In: Passchier W.F., Bosnjakovich B.F.M., editors. Human Exposure to Ultraviolet Radiation: Risks and Regulations. Elsevier; Amsterdam, The Netherlands: 1987. pp. 83–87.
McKinlay A.F., Diffey B.L. A reference action spectrum for ultraviolet induced erythema in human skin. CIE J. 1987;6:17–22.
Manisova B., Binder S., Malina L., Jiravova J., Langova K., Kolarova H. Phthalocyanine-mediated Photodynamic Treatment of Tumoural and Non-tumoural cell lines. Anticancer Res. 2015;35:3943–3951. PubMed
Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988;175:184–191. doi: 10.1016/0014-4827(88)90265-0. PubMed DOI
Kerr J.B., Fioletov V.E. Surface Ultraviolet Radiation. Atmos.-Ocean. 2008;46:159–184. doi: 10.3137/ao.460108. DOI
Tarasick D.W., Fioletov V.E., Wardle D.I., Kerr J.B., McArthur L.J.B., McLinden C.A. Climatology and trends of surface UV radiation: Survey article. Atmos.-Ocean. 2003;41:121–138. doi: 10.3137/ao.410202. DOI
Diffey B.L. Human exposure to ultraviolet radiation. Semin. Dermatol. 1990;9:2–10. doi: 10.1046/j.1473-2165.2002.00060.x. PubMed DOI
McKenzie R., Smale D., Kotkamp M. Relationship between UVB and erythemally weighted radiation. Photochem. Photobiol. Sci. 2004;3:252–256. Erratum in Photochem. Photobiol. Sci. 2009, 8, 1755. PubMed
Rajpara A.N., O’Neill J.L., Nolan B.V., Yentzer B.A., Feldman S.R. Review of home phototherapy. Dermatol. Online J. 2010;16:2. doi: 10.5070/D32TS6S057. PubMed DOI
Walters I.B., Burack L.H., Coven T.R., Gilleaudeau P., Krueger J.G. Suberythemogenic narrow-band UVB is markedly more effective than conventional UVB in treatment of psoriasis vulgaris. J. Am. Acad. Dermatol. 1999;40:893–900. doi: 10.1016/S0190-9622(99)70076-9. PubMed DOI
Schneider L.A., Hinrichs R., Scharffetter-Kochanek K. Phototherapy and photochemotherapy. Clin. Dermatol. 2008;26:464–476. doi: 10.1016/j.clindermatol.2007.11.004. PubMed DOI
Diffey B.L. Solar ultraviolet radiation effects on biological systems. Phys. Med. Biol. 1991;36:299–328. doi: 10.1088/0031-9155/36/3/001. PubMed DOI
Forbes P.D., Davies R.E., Urbach F. Experimental ultraviolet photocarcinogenesis: Wavelength interactions and time-dose relationships. Natl. Cancer Inst. Monogr. 1978;50:31–38. PubMed
Young A.R., Sheehan J.M. UV-Induced Pigmentation in Human Skin. In: Giacomoni P.U., editor. Sun Protection in Man, Comprehensive Series in Photosciences. Elsevier; Amsterdam, The Netherlands: 2001. pp. 359–375.
Dalmau N., Andrieu-Abadie N., Tauler R., Bedia C. Phenotypic and lipidomic characterization of primary human epidermal keratinocytes exposed to simulated solar UV radiation. J. Dermatol. Sci. 2018;92:97–105. doi: 10.1016/j.jdermsci.2018.07.002. PubMed DOI
Jaisin Y., Ratanachamnong P., Wongsawatkul O., Watthammawut A., Malaniyom K., Natewong S. Antioxidant and anti-inflammatory effects of piperine on UV-B-irradiated human HaCaT keratinocyte cells. Life Sci. 2020;263:118607. doi: 10.1016/j.lfs.2020.118607. PubMed DOI
Rodger A. UV Absorbance Spectroscopy of Biological Macromolecules. In: Roberts G.C.K., editor. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2013.
Kammeyer A., Luiten R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015;21:16–29. doi: 10.1016/j.arr.2015.01.001. PubMed DOI
Marabini L., Melzi G., Lolli F., Dell’Agli M., Piazza S., Sangiovanni E., Marinovich M. Effects of Vitis vinifera L. leaves extract on UV radiation damage in human keratinocytes (HaCaT) J. Photochem. Photobiol. B. 2020;204:111810. doi: 10.1016/j.jphotobiol.2020.111810. PubMed DOI
Hegedűs C., Juhász T., Fidrus E., Janka E.A., Juhász G., Boros G., Paragh G., Uray K., Emri G., Remenyik É., et al. Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biol. 2021;38:101808. doi: 10.1016/j.redox.2020.101808. PubMed DOI PMC
Meinhardt M., Krebs R., Anders A., Heinrich U., Tronnier H. Wavelength-dependent penetration depths of ultraviolet radiation in human skin. J. Biomed. Opt. 2008;13:044030. doi: 10.1117/1.2957970. PubMed DOI