• This record comes from PubMed

Differences in the Effects of Broad-Band UVA and Narrow-Band UVB on Epidermal Keratinocytes

. 2021 Nov 26 ; 18 (23) : . [epub] 20211126

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: The sun is a natural source of UV radiation. It can be divided into three bands, UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm), where the radiation up to 290 nm is very effectively eliminated by the stratospheric ozone. Although UV radiation can have a beneficial effect on our organism and can be used in the treatment of several skin diseases, it must primarily be considered harmful. METHODS: In the presented work, we focused on the study of the longer-wavelength UV components (UVA and UVB) on the human epidermal keratinocyte line HaCaT. As UVA and UVB radiation sources, we used commercially available UVA and UVB tubes from Philips (Philips, Amsterdam, The Netherlands), which are commonly employed in photochemotherapy. We compared their effects on cell viability and proliferation, changes in ROS production, mitochondrial function and the degree of DNA damage. RESULTS: Our results revealed that UVB irradiation, even with significantly lower irradiance, caused greater ROS production, depolarization of mitochondrial membrane potential and greater DNA fragmentation, along with significantly lowering cell viability and proliferative capacity. CONCLUSIONS: These results confirm that UV radiation causes severe damages in skin cells, and they need to be protected from it, or it needs to be applied more cautiously, especially if the component used is UVB.

See more in PubMed

Kollias N., Ruvolo E., Jr., Sayre R.M. The value of the ratio of UVA to UVB in sunlight. Photochem. Photobiol. 2011;87:1474–1475. doi: 10.1111/j.1751-1097.2011.00980.x. PubMed DOI

Parisi A.V., Turner J. Variations in the short wavelength cut-off of the solar UV spectra. Photochem. Photobiol. Sci. 2006;5:331–335. doi: 10.1039/b512029b. PubMed DOI

Tobin D.J. Introduction to skin aging. J. Tissue Viability. 2017;26:37–46. doi: 10.1016/j.jtv.2016.03.002. PubMed DOI

Svobodová A., Zdarilová A., Walterová D., Vostálová J. Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. J. Dermatol. Sci. 2007;48:213–224. doi: 10.1016/j.jdermsci.2007.06.008. PubMed DOI

Elwood J.M., Jopson J. Melanoma and sun exposure: An overview of published studies. Int. J. Cancer. 1997;73:198–203. doi: 10.1002/(SICI)1097-0215(19971009)73:2<198::AID-IJC6>3.0.CO;2-R. PubMed DOI

Lazovich D., Vogel R.I., Berwick M., Weinstock M.A., Anderson K.E., Warshaw E.M. Indoor tanning and risk of melanoma: A case-control study in a highly exposed population. Cancer Epidemiol. Biomark. Prev. 2010;19:1557–1568. doi: 10.1158/1055-9965.EPI-09-1249. PubMed DOI PMC

IARC . IARC Working Group Report. Exposure to Artificial UV Radiation and Skin Cancer. International Agency for Research on Cancer; Lyon, France: 2006.

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . Review of Human Carcinogens. International Agency for Research on Cancer; Lyon, France: 2012.

Snellman E., Rantanen T., Sundell J. Cumulative UV radiation dose and outcome in clinical practice: Effectiveness of trioxsalen bath PUVA with minimal UVA exposure. Photodermatol. Photoimmunol. Photomed. 2000;16:207–210. doi: 10.1034/j.1600-0781.2000.160503.x. PubMed DOI

Miller S.A., Hamilton S.L., Wester U.G., Cyr W.H. An analysis of UVA emissions from sunlamps and the potential importance for melanoma. Photochem. Photobiol. 1998;68:63–70. doi: 10.1111/j.1751-1097.1998.tb03253.x. PubMed DOI

Tierney P., Ferguson J., Ibbotson S., Dawe R., Eadie E., Moseley H. Nine out of 10 sunbeds in England emit ultraviolet radiation levels that exceed current safety limits. Br. J. Dermatol. 2013;168:602–608. doi: 10.1111/bjd.12181. PubMed DOI

Gerber B., Mathys P., Moser M., Bressoud D., Braun-Fahrländer C. Ultraviolet emission spectra of sunbeds. Photochem. Photobiol. 2002;76:664–668. doi: 10.1562/0031-8655(2002)076<0664:UESOS>2.0.CO;2. PubMed DOI

Vieyra-Garcia P.A., Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol. Ther. 2020;222:107784. doi: 10.1016/j.pharmthera.2020.107784. PubMed DOI

Novák Z., Bónis B., Baltás E., Ocsovszki I., Ignácz F., Dobozy A., Kemény L. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in inducing T cell apoptosis than narrow-band ultraviolet B. J. Photochem. Photobiol. B. 2002;67:32–38. doi: 10.1016/S1011-1344(02)00280-4. PubMed DOI

Bónis B., Kemény L., Dobozy A., Bor Z., Szabó G., Ignácz F. 308 nm UVB excimer laser for psoriasis. Lancet. 1997;22:1522. doi: 10.1016/S0140-6736(05)63945-1. PubMed DOI

Ly K., Smith M.P., Thibodeaux Q.G., Beck K.M., Liao W., Bhutani T. Beyond the Booth: Excimer Laser for Cutaneous Conditions. Dermatol. Clin. 2020;38:157–163. doi: 10.1016/j.det.2019.08.009. PubMed DOI

McKinlay A.F., Diffey B.L. A Reference Action Spectrum for Ultra-Violet Induced Erythema in Human Skin. In: Passchier W.F., Bosnjakovich B.F.M., editors. Human Exposure to Ultraviolet Radiation: Risks and Regulations. Elsevier; Amsterdam, The Netherlands: 1987. pp. 83–87.

McKinlay A.F., Diffey B.L. A reference action spectrum for ultraviolet induced erythema in human skin. CIE J. 1987;6:17–22.

Manisova B., Binder S., Malina L., Jiravova J., Langova K., Kolarova H. Phthalocyanine-mediated Photodynamic Treatment of Tumoural and Non-tumoural cell lines. Anticancer Res. 2015;35:3943–3951. PubMed

Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988;175:184–191. doi: 10.1016/0014-4827(88)90265-0. PubMed DOI

Kerr J.B., Fioletov V.E. Surface Ultraviolet Radiation. Atmos.-Ocean. 2008;46:159–184. doi: 10.3137/ao.460108. DOI

Tarasick D.W., Fioletov V.E., Wardle D.I., Kerr J.B., McArthur L.J.B., McLinden C.A. Climatology and trends of surface UV radiation: Survey article. Atmos.-Ocean. 2003;41:121–138. doi: 10.3137/ao.410202. DOI

Diffey B.L. Human exposure to ultraviolet radiation. Semin. Dermatol. 1990;9:2–10. doi: 10.1046/j.1473-2165.2002.00060.x. PubMed DOI

McKenzie R., Smale D., Kotkamp M. Relationship between UVB and erythemally weighted radiation. Photochem. Photobiol. Sci. 2004;3:252–256. Erratum in Photochem. Photobiol. Sci. 2009, 8, 1755. PubMed

Rajpara A.N., O’Neill J.L., Nolan B.V., Yentzer B.A., Feldman S.R. Review of home phototherapy. Dermatol. Online J. 2010;16:2. doi: 10.5070/D32TS6S057. PubMed DOI

Walters I.B., Burack L.H., Coven T.R., Gilleaudeau P., Krueger J.G. Suberythemogenic narrow-band UVB is markedly more effective than conventional UVB in treatment of psoriasis vulgaris. J. Am. Acad. Dermatol. 1999;40:893–900. doi: 10.1016/S0190-9622(99)70076-9. PubMed DOI

Schneider L.A., Hinrichs R., Scharffetter-Kochanek K. Phototherapy and photochemotherapy. Clin. Dermatol. 2008;26:464–476. doi: 10.1016/j.clindermatol.2007.11.004. PubMed DOI

Diffey B.L. Solar ultraviolet radiation effects on biological systems. Phys. Med. Biol. 1991;36:299–328. doi: 10.1088/0031-9155/36/3/001. PubMed DOI

Forbes P.D., Davies R.E., Urbach F. Experimental ultraviolet photocarcinogenesis: Wavelength interactions and time-dose relationships. Natl. Cancer Inst. Monogr. 1978;50:31–38. PubMed

Young A.R., Sheehan J.M. UV-Induced Pigmentation in Human Skin. In: Giacomoni P.U., editor. Sun Protection in Man, Comprehensive Series in Photosciences. Elsevier; Amsterdam, The Netherlands: 2001. pp. 359–375.

Dalmau N., Andrieu-Abadie N., Tauler R., Bedia C. Phenotypic and lipidomic characterization of primary human epidermal keratinocytes exposed to simulated solar UV radiation. J. Dermatol. Sci. 2018;92:97–105. doi: 10.1016/j.jdermsci.2018.07.002. PubMed DOI

Jaisin Y., Ratanachamnong P., Wongsawatkul O., Watthammawut A., Malaniyom K., Natewong S. Antioxidant and anti-inflammatory effects of piperine on UV-B-irradiated human HaCaT keratinocyte cells. Life Sci. 2020;263:118607. doi: 10.1016/j.lfs.2020.118607. PubMed DOI

Rodger A. UV Absorbance Spectroscopy of Biological Macromolecules. In: Roberts G.C.K., editor. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2013.

Kammeyer A., Luiten R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015;21:16–29. doi: 10.1016/j.arr.2015.01.001. PubMed DOI

Marabini L., Melzi G., Lolli F., Dell’Agli M., Piazza S., Sangiovanni E., Marinovich M. Effects of Vitis vinifera L. leaves extract on UV radiation damage in human keratinocytes (HaCaT) J. Photochem. Photobiol. B. 2020;204:111810. doi: 10.1016/j.jphotobiol.2020.111810. PubMed DOI

Hegedűs C., Juhász T., Fidrus E., Janka E.A., Juhász G., Boros G., Paragh G., Uray K., Emri G., Remenyik É., et al. Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biol. 2021;38:101808. doi: 10.1016/j.redox.2020.101808. PubMed DOI PMC

Meinhardt M., Krebs R., Anders A., Heinrich U., Tronnier H. Wavelength-dependent penetration depths of ultraviolet radiation in human skin. J. Biomed. Opt. 2008;13:044030. doi: 10.1117/1.2957970. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...