Alpha-diversity and microbial community structure of the male urinary microbiota depend on urine sampling method
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34887510
PubMed Central
PMC8660768
DOI
10.1038/s41598-021-03292-x
PII: 10.1038/s41598-021-03292-x
Knihovny.cz E-zdroje
- MeSH
- analýza moči MeSH
- biodiverzita * MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- metagenomika metody MeSH
- mikrobiota * MeSH
- močové ústrojí mikrobiologie MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Considerable variation exists in the methodology of urinary microbiota studies published so far including the cornerstone of any biomedical analysis: sample collection. The aim of this study was to compare the urinary microbiota of first-catch voided urine (FCU), mid-stream voided urine (MSU) and aseptically catheterised urine in men and define the most suitable urine sampling method. Forty-nine men (mean age 71.3 years) undergoing endoscopic urological procedures were enrolled in the study. Each of them contributed three samples: first-catch urine (FCU), mid-stream urine (MSU) and a catheterised urine sample. The samples were subjected to next-generation sequencing (NGS, n = 35) and expanded quantitative urine culture (EQUC, n = 31). Using NGS, Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla in our population. The most abundant genera (in order of relative abundance) included: Prevotella, Veillonella, Streptococcus, Porphyromonas, Campylobacter, Pseudomonas, Staphylococcus, Ezakiella, Escherichia and Dialister. Eighty-two of 105 samples were dominated by a single genus. FCU, MSU and catheterised urine samples differed significantly in three of five alpha-diversity measures (ANOVA, p < 0.05): estimated number of operational taxonomic units, Chao1 and abundance-based coverage estimators. Beta-diversity comparisons using the PIME method (Prevalence Interval for Microbiome Evaluation) resulted in clustering of urine samples according to the mode of sampling. EQUC detected cultivable bacteria in 30/31 (97%) FCU and 27/31 (87%) MSU samples. Only 4/31 (13%) of catheterised urine samples showed bacterial growth. Urine samples obtained by transurethral catheterisation under aseptic conditions seem to differ from spontaneously voided urine samples. Whether the added value of a more exact reflection of the bladder microbiota free from urethral contamination outweighs the invasiveness of urethral catheterisation remains to be determined.
Zobrazit více v PubMed
Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC
Siddiqui H, Nederbragt AJ, Lagesen K, Jeansson SL, Jakobsen KS. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 2011 doi: 10.1186/1471-2180-11-244. PubMed DOI PMC
Price TK, et al. The clinical urine culture: Enhanced techniques improve detection of clinically relevant microorganisms. J. Clin. Microbiol. 2016;54:1216–1222. doi: 10.1128/JCM.00044-16. PubMed DOI PMC
Dong Q, et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE. 2011;6:1–5. PubMed PMC
Nelson DE, et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE. 2010;5:1–7. PubMed PMC
Hilt EE, et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 2014;52:871–876. doi: 10.1128/JCM.02876-13. PubMed DOI PMC
Bajic P, et al. Male bladder microbiome relates to lower urinary tract symptoms. Eur. Urol. Focus. 2020;15:376–382. doi: 10.1016/j.euf.2018.08.001. PubMed DOI
Sathiananthamoorthy S, et al. Reassessment of routine midstream culture in diagnosis of urinary tract infection. J. Clin. Microbiol. 2019;57:1–47. doi: 10.1128/JCM.01452-18. PubMed DOI PMC
Thomas-White K, et al. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat. Commun. 2018 doi: 10.1038/s41467-018-03968-5. PubMed DOI PMC
Hourigan SK, et al. Studying the urine microbiome in superficial bladder cancer: Samples obtained by midstream voiding versus cystoscopy. BMC Urol. 2020;20:1–8. doi: 10.1186/s12894-020-0576-z. PubMed DOI PMC
Pohl HG, et al. The urine microbiome of healthy men and women differs by urine collection method. Int. Neurourol. J. 2020;24:41–51. doi: 10.5213/inj.1938244.122. PubMed DOI PMC
Thomas-White KJ, Hilt EE, Fok C. Incontinence medication response relates to the female urinary microbiota. Int. Urogynecol. J. 2016;27:723–733. doi: 10.1007/s00192-015-2847-x. PubMed DOI PMC
Kramer H, et al. Diversity of the midstream urine microbiome in adults with chronic kidney disease. Int. Urol. Nephrol. 2018;50:1123–1130. doi: 10.1007/s11255-018-1860-7. PubMed DOI PMC
Fouts D, Pieper R, Szpakowski S. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 2012;10:1–17. doi: 10.1186/1479-5876-10-174. PubMed DOI PMC
Wu P, et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front. Cell. Infect. Microbiol. 2018;8:167. doi: 10.3389/fcimb.2018.00167. PubMed DOI PMC
Pederzoli F, et al. Sex-specific alterations in the urinary and tissue microbiome in therapy-naïve urothelial bladder cancer patients. Eur. Urol. Oncol. 2020;3:784–788. doi: 10.1016/j.euo.2020.04.002. PubMed DOI
Shoskes DA, Altemus J, Polackwich AS, Tucky B, Wang H. The urinary microbiome differs significantly between patients with chronic prostatitis/chronic pelvic pain syndrome and controls as well as between patients with different clinical phenotypes. Urology. 2016;92:26–32. doi: 10.1016/j.urology.2016.02.043. PubMed DOI
Shoskes DA, et al. Analysis of gut microbiome reveals significant differences between men with chronic prostatitis/chronic pelvic pain syndrome and controls. J. Urol. 2016;196:435–441. doi: 10.1016/j.juro.2016.02.2959. PubMed DOI
Siddiqui H, Lagesen K, Nederbragt AJ, Jeansson SL, Jakobsen KS. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol. 2012;12:205. doi: 10.1186/1471-2180-12-205. PubMed DOI PMC
Chao A, Chazdon RL, Colwell RK, Shen T-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 2005;8:148–159. doi: 10.1111/j.1461-0248.2004.00707.x. DOI
Roesch LFW, et al. pime: A package for discovery of novel differences among microbial communities. Mol. Ecol. Resour. 2020;20:415–428. doi: 10.1111/1755-0998.13116. PubMed DOI
Stevens BR, et al. Depression phenotype identified by using single nucleotide exact amplicon sequence variants of the human gut microbiome. Mol. Psychiatry. 2020 doi: 10.1038/s41380-020-0652-5. PubMed DOI PMC
Thomas-White KJ, Kliethermes S, Rickey L. Evaluation of the urinary microbiota of women with uncomplicated stress urinary incontinence. Am. J. Obs. Gynecol. 2017;216:55. doi: 10.1016/j.ajog.2016.07.049. PubMed DOI PMC
Frolund M, et al. The bacterial microbiota in first-void urine from men with and without idiopathic urethritis. PLoS One. 2018;13:e0201380. doi: 10.1371/journal.pone.0201380. PubMed DOI PMC
Popović VB, Šitum M, Chow CT, Chan LS. The urinary microbiome associated with bladder cancer. Sci. Rep. 2018;8:12157. doi: 10.1038/s41598-018-29054-w. PubMed DOI PMC
Hafenbradl, D. et al. Ferroglobus placidus gen. nov., sp. nov., A novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol.166, 308–314 (1996). PubMed
Wolfe AJ, Brubaker L. Urobiome updates: advances in urinary microbiome research. Nat. Rev. Urol. 2019;16:73–74. doi: 10.1038/s41585-018-0127-5. PubMed DOI PMC
Lewis DA, et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell. Infect. Microbiol. 2013;3:1–14. doi: 10.3389/fcimb.2013.00041. PubMed DOI PMC
Abelson B, et al. Sex differences in lower urinary tract biology and physiology. Biol. Sex Differ. 2018;9:1–13. doi: 10.1186/s13293-018-0204-8. PubMed DOI PMC
Price LB, et al. The effects of circumcision on the penis microbiome. PLoS ONE. 2010;5:1–12. PubMed PMC
Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One. 2012;7:e33865. doi: 10.1371/journal.pone.0033865. PubMed DOI PMC
Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108(Suppl):4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Vetrovsky T, Baldrian P, Morais D. SEED 2: A user-friendly platfomr for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Aronesty E. Comparison of sequencing utility programs. Open Bioinforma. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Větrovský T, Baldrian P. Analysis of soil fungal communities by amplicon pyrosequencing: Current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fertil. Soils. 2013;49:1027–1037. doi: 10.1007/s00374-013-0801-y. DOI
Cole JR, et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:633–642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC
Oksanen, A. J. et al. Package ‘vegan’. Community Ecol. Packag.5 (2017).
McMurdie PJ, Holmes S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Ihaka R, Gentleman R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996;5:299–314.