The evaluation of oxidative damage of DNA after poisoning with nerve agents
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34907721
DOI
10.32725/jab.2019.017
Knihovny.cz E-zdroje
- Klíčová slova
- Comet assay, DNA, Oxidative damage, Rats, Sarin, Soman, Tabun,
- Publikační typ
- časopisecké články MeSH
The potency of three nerve agents (sarin, soman, tabun) to induce oxidative damage of DNA in lymphocytes, liver and brain during lethal or sublethal poisoning was investigated. The single strand breaks or oxidative base DNA damage was evaluated with the help of Comet assay and a specific enzyme able to detect oxidative bases of DNA (endonuclease III). While sarin and soman administered at sublethal doses corresponding to 50% of their LD50 values were not able to induce oxidative damage of DNA, their lethal dose (LD50) induced the significant increase of the number of oxidative bases in DNA of hepatocytes. In addition, tabun administered at lethal dose (LD50) induced significant increase of the number of single strand breaks and oxidative bases of DNA in glial cells isolated from pontomedullar brain region. Thus, some nerve agents were able to induce oxidative damage in the peripheral as well as central compartment but only in the case of severe poisoning caused by lethal doses of nerve agents. This non-cholinergic effect of nerve agents has probably consequences with nerve agents-induced hypoxic status during acute cholinergic crisis and it can contribute to their long-term toxic effects.
Zobrazit více v PubMed
Bajgar J (2004). Organophosphate/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem 38: 151-216. DOI: 10.1016/S0065-2423(04)38006-6. PubMed DOI
Binukumar BK, Bal A, Kandimalla R, Sunkaria A, Gill KD (2010). Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Toxicology 270(2-3): 77-84. DOI: 10.1016/j.tox.2010.01.017. PubMed DOI
Brocardo PS, Pandolfo P, Takahashi RN, Rodrigues AL, Dafre AL (2005). Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride. Toxicology 207(2): 283-291. DOI: 10.1016/j.tox.2004.09.012. PubMed DOI
Choi DW (1988). Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11(10): 465-469. DOI: 10.1016/0166-2236(88)90200-7. PubMed DOI
Collins AR (2004). The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3): 249-261. DOI: 10.1385/MB:26:3:249. PubMed DOI
Collins AR, Dusinska M, Gedik CM, Stetina R (1996). Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104(Suppl. 3): 465-469. DOI: 10.1289/ehp.96104s3465. PubMed DOI
Collombet JM, Baubichon D, Four E, Sentenac-Masqueliez C, Lallement G (2009). Effects of soman poisoning on mitochondrial respiratory enzymes activity in the mouse hippocampus and cerebral cortex. Drug Chem Toxicol 32(4): 405-410. DOI: 10.1080/01480540903019182. PubMed DOI
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3): 315-335. DOI: 10.2174/1570159X11311030006. PubMed DOI
Dave JR, Connors RA, Genovese RE, Whipple RA, Chen RW, DeFord SM, et al. (2007). DNA fragmentation in leucocytes following repeated low dose sarin exposure in guinea pigs. Cell Mol Life Sci 64(21): 2823-2828. DOI: 10.1007/s00018-007-7339-9. PubMed DOI
Delfino RT, Ribeiro TS, Figueroa-Villar JD (2009). Organophosphorus compounds as chemical warfare agents: a review. J Braz Chem Soc 20(3): 407-428. DOI: 10.1590/S0103-50532009000300003. DOI
Delgado EH, Streck EL, Quevedo J, Dal-Pizzol F (2006). Mitochondrial respiratory dysfunction and oxidative stress alter chronic malathion exposure. Neurochem Res 31(8): 1021-1025. DOI: 10.1007/s11064-006-9111-1. PubMed DOI
Elsharkawy EE, Yahia D, El-Nisr NA (2013). Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: attenuation by glutathione. Environ Toxicol Pharmacol 35(2): 218-227. DOI: 10.1016/j.etap.2012.12.009. PubMed DOI
Folbergova J, Kunz WS (2012). Mitochondrial dysfunction in epilepsy. Mitochondrion 12(1): 35-40. DOI: 10.1016/j.mito.2011.04.004. PubMed DOI
Glutekin F, Ozturk M, Akdogan M (2000). The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch Toxicol 74(9): 533-538. DOI: 10.1007/s002040000167. PubMed DOI
Gross CL, Nealley EW, Miller AL, Nipwoda MT, Smith WJ (2010). Lack of genotoxicity in VX and soman-treated cultured human cells by comet assay analysis. J Med CBR Def 8: 1-12.
Gupta RC, Milatovic D, Dettbarn WD (2001). Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants. Neurotoxicology 22(2): 271-282. DOI: 10.1016/S0161-813X(01)00013-4. PubMed DOI
Halliwell B (1999). Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and effects of nutrition. Mutat Res 443(1-2): 37-52. DOI: 10.1016/s1383-5742(99)00009-5. PubMed DOI
Ischiropoulos H, Beckman SM (2003). Oxidative stress and nitration in neurodegeneration: Cause, effect, or association? J Clin Invest 111(2): 163-169. DOI: 10.1172/JCI200317638. DOI
Karami-Mohajeri S, Abdollahi M (2013). Mitochondrial dysfunction and organophosphate compounds. Toxicol Appl Pharmacol 270(1): 39-44. DOI: 10.1016/j.taap.2013.04.001. PubMed DOI
Kassa J, Krocova Z, Vachek J (2000a). Long term alteration of immune functions following low level exposure to sarin in rats. Acta Med (Hradec Kralove) 43(3): 91-94. DOI: 10.14712/18059694.2019.119. DOI
Kassa J, Skopec F, Vachek J (2000b). The long term changes in liver DNA and total protein contents following low level sarin exposure in rats. Acta Med (Hradec Kralove) 43(1): 19-22. DOI: 10.14712/18059694.2019.112. DOI
Kaur P, Radotra B, Minz RW, Gill KD (2007). Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos exposure in rat brain. Neurotoxicology 28(6): 1208-1219. DOI: 10.1016/j.neuro.2007.08.001. PubMed DOI
Kazi AI, Oommen A (2012). Monocrotophos induced oxidative damage associated with severe acetylcholinesterase inhibition in rat brain. Neurotoxicology 33(2): 145-161. DOI: 10.1016/j.neuro.2012.01.008. PubMed DOI
Kokkinakis DM, Liu X, Chada S, Ahmed MM, Shareef MM, Singha UK, et al. (2004). Modulation of gene expression in human central nervous system tumors under methionine deprivation-induced stress. Cancer Res 64(20): 7513-7525. DOI: 10.1158/0008-5472.CAN-04-0592. PubMed DOI
Kucharova M, Hronek M, Rybakova K, Zadak Z, Stetina R, Joskova V, Patkova A (2019). Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol Res 68(1): 1-15. DOI: 10.33549/physiolres.933901. PubMed DOI
Lee JE, Lim MS, Park JH, Park CH, Koh HC (2014). Nuclear NF-κB contributes to chlorpyrifos-induced apoptosis through p53 signaling in human neural precursor cells. Neurotoxicology 42: 58-70. DOI: 10.1016/j.neuro.2014.04.001. PubMed DOI
Marrs TC (2007). Toxicology of organophosphate nerve agents. In: Marrs TC, Maynard RL, Sidell FR (Eds). Chemical warfare agents: toxicology and treatment. Chichester, West Sussex: John Wiley & Sons, Ltd, pp. 191-221. DOI
Mehta A, Verma RS, Srivastava N (2008). Chlorpyrifos-induced DNA damage in rat liver and brain. Environ Mol Mutagen 49(6): 426-433. DOI: 10.1002/em.20397. PubMed DOI
Middlemore-Risher ML, Adam BL, Lambert NA, Terry AV (2011). Effects of chlorpyrifos and chlorpyrifos-oxon on the dynamics and movement of mitchondria in rat cortical neurons. J Pharmacol Exp Ther 339(2): 341-349. DOI: 10.1124/jpet.111.184762. PubMed DOI
Muniz JF, McCauley L, Scherer J, Lasarev M, Koshy M, Kow YW, et al. (2008). Biomarkers of oxidative stress and DNA damage in agricultural workers: a pilot study. Toxicol Appl Pharmacol 227(1): 97-107. DOI: 10.1016/j.taap.2007.10.027. PubMed DOI
O'Donnell JC, McDonough JH, Shih TM (2011). In vivo microdialysis and electroencephalographic activity in freely moving guinea pigsexposed to organophosphorus nerve agents sarin and VX: analysis of acetylcholine and glutamate. Arch Toxicol 85(12): 1607-1616. DOI: 10.1007/s00204-011-0724-z. PubMed DOI
Ojha A, Yaduvanshi SK, Pant SC, Lomash V, Srivastava N (2013). Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environ Toxicol 28(10): 543-552. DOI: 10.1002/tox.20748. PubMed DOI
Pearson JN, Patel M (2016). The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci 1378(1): 17-24. DOI: 10.1111/nyas.13115. PubMed DOI
Pejchal J, Österreicher J, Kassa J, Tichy A, Micuda S, Sinkorova Z, Zarybnicka L (2009). Soman poisoning alters p53 MAPK pathway in rat cerebellar Purkinje cells. J Appl Toxicol 29(4): 338-345. DOI: 10.1002/jat.1415. PubMed DOI
Pejchal J, Österreicher J, Kassa J, Tichy A, Mokry J (2008). Activation of mitogen activated protein kinase (MAPK) pathways after soman poisoning in rat cerebellar granule neurons. J Appl Toxicol 28(5): 689-693. DOI: 10.1002/jat.1323. PubMed DOI
Possamai FP, Fortunato JJ, Feier G, Agostinho FR, Quevedo J, Wilhelm D, Dal-Pizzol F (2007). Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environ Toxicol Pharmacol 23(2): 198-204. DOI: 10.1016/j.etap.2006.09.003. PubMed DOI
RamaRao G, Bhattacharya BK (2012). Multiple signal transduction pathways alteration during nerve agent toxicity. Toxicol Lett 208(1): 263-272. DOI: 10.1016/j.toxlet.2011.09.022. PubMed DOI
Ranjbar A, Pasalar P, Abdollahi M (2002). Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum Exp Toxicol 21(4): 179-182. DOI: 10.1191/0960327102ht238oa. PubMed DOI
Ranjbar A, Solhim H, Mashayekhim FJ, Susanabdi A, Rezaie A, Abdollahi M (2005). Oxidative stress in acute human poisoning with organophosphorus insecticides: a case control study. Environ Toxicol Pharmacol 20(1): 88-91. DOI: 10.1016/j.etap.2004.10.007. PubMed DOI
Richterova M, Stetina R, Jost P, Svobodova H, Rehacek V, Kassa J (2018). Inter strand crosslinks in DNA induced in vivo by percutaneous application of sulphur mustard to rats and mice. Mutat Res Genet Toxicol Environ Mutagen 832-833: 35-40. DOI: 10.1016/j.mrgentox.2018.06.014. PubMed DOI
Shadnia S, Azizi E, Hosseini R, Khoei S, Fouladdel S, Pajoumand A, et al. (2005). Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Hum Exp Toxicol 24(9): 439-445. DOI: 10.1191/0960327105ht549oa. PubMed DOI
Singh NP, McCoy MT, Tice RR, Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage individual cells. Exp Cell Res 175(1): 184-191. DOI: 10.1016/0014-4827(88)90265-0. PubMed DOI
Soltaninejad K, Abdollahi M (2009). Current opinion on the science of organophosphate pesticides and toxic stress: a systematic review. Med Sci Monit 15(3): RA75-90.
Zeljezic D, Mladinic M, Zunec S, Vrdoljak AL, Kusuba V, Tariba B, et al. (2016). Cytotoxic, genotoxic and biochemical markers of insecticide toxicity evaluated in human peripheral blood lymphocytes and an HepG2 cell line. Food Chem Toxicol 96: 90-106. PubMed DOI