COVID-19 and the differences in physiological background between children and adults and their clinical consequences
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
34913353
PubMed Central
PMC8884370
DOI
10.33549/physiolres.934759
PII: 934759
Knihovny.cz E-zdroje
- MeSH
- COVID-19 imunologie patofyziologie terapie virologie MeSH
- dítě MeSH
- dospělí MeSH
- hodnocení rizik MeSH
- imunitní systém růst a vývoj patofyziologie virologie MeSH
- interakce hostitele a patogenu MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- prognóza MeSH
- rizikové faktory MeSH
- SARS-CoV-2 imunologie patogenita MeSH
- stupeň závažnosti nemoci MeSH
- věkové faktory MeSH
- vývoj dítěte * MeSH
- vývoj mladistvých * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The SARS-CoV-2 pandemic has indeed been one of the most significant problems facing the world in the last decade. It has affected (directly or indirectly) the entire population and all age groups. Children have accounted for 1.7 % to 2 % of the diagnosed cases of COVID-19. COVID-19 in children is usually associated with a mild course of the disease and a better survival rate than in adults. In this review, we investigate the different mechanisms which underlie this observation. Generally, we can say that the innate immune response of children is strong because they have a trained immunity, allowing the early control of infection at the site of entry. Suppressed adaptive immunity and a dysfunctional innate immune response is seen in adult patients with severe infections but not in children. This may relate to immunosenescence in the elderly. Another proposed factor is the different receptors for SARS-CoV-2 and their differences in expression between these age groups. In infants and toddlers, effective immune response to viral particles can be modulated by the pre-existing non-specific effect of live attenuated vaccines on innate immunity and vitamin D prophylaxis. However, all the proposed mechanisms require verification in larger cohorts of patients. Our knowledge about SARS-CoV-2 is still developing.
Zobrazit více v PubMed
AGUAIR JA, TREMBLAY BJ, MANSFIELD MJ, WOODY O, LOBB B, BANERJEE A, CHANDIRAMONAH A, TIESSEN N, CAO Q, DVORKIN-GHEVA A, REVILL S, MILLER MS, CARLSTEN C, ORGAN L, JOSEPH C, JOHN A, HANSON P, AUSTIN RC, McMANUS BM, JENKINS G, ET AL. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J. 2020;56:2001123. doi: 10.1183/13993003.01123-2020. PubMed DOI PMC
ARNSON Y, AMITAL H, SHOENFELD Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis. 2007;66:1137–1142. doi: 10.1136/ard.2007.069831. PubMed DOI PMC
BASTARD P, ROSEN LB, ZHANG Q, HOFFMANN HH, CHBIHI M, Le VOYER T, ROSAIN J, PHILIPPOT Q, SEELEUTHER Y, GERVAIS A, MATERNA M, De OLIVIERA PMN, MAIA MLS, DINIS ANO BOM AP, AZAMOR T, ARAUJO DA, CONCEICAO D, GOUDORIS E, HOMMA A, SLESAK G, SCHAFER J, ET AL. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. J Exp Med. 218:e20202486. doi: 10.1084/jem.20202486. DOI
BOBAN M. Novel coronavirus disease (COVID-19) update on epidemiology, pathogenicity, clinical course and treatments. Int J ClinPract. 2021;75:e13868. doi: 10.1111/ijcp.13868. PubMed DOI PMC
BOBCAKOVA A, PETRISKOVA J, VYSEHRADSKY R, KOCAN I, KAPUSTOVA L, BARNOVA M, DIAMANT Z, JESENAK M. Immune profile in patients with COVID-19: Lymphocytes exhaustion markers in relationship to clinical outcome. Front Cell Infect Microbiol. 2021;11:646688. doi: 10.3389/fcimb.2021.646688. PubMed DOI PMC
BOUILLON R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol. 2017;13:466–479. doi: 10.1038/nrendo.2017.31. PubMed DOI
BUNYAVANICH S, DO A, VICENCIO A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323:2427–2429. doi: 10.1001/jama.2020.8707. PubMed DOI PMC
CASTAGNOLI R, VOTTO M, LICARI A, BRAMBILLA I, BRUNO R, PERLINI S, ROVIDA F, BALDANTI F, MARSEGLIA GL. Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 2020;174:882–889. doi: 10.1001/jamapediatrics.2020.1467. PubMed DOI
CHAN JF, KOK KH, ZHU Z, CHU H, TO KK, YUAN S, YUEN K. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. PubMed DOI PMC
CHANNAPPAVANAR R, PERLAM S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x. PubMed DOI PMC
CHEN R, SANG L, JIANG M, YANG Z, JIA N, FU W, XIE J, GUAN W, LIANG W, NI Z, HU Y, LIU L, SHAN H, LEI C, PENG Y, WEI L, LIU Y, HU Y, PENG P, WANG J, LIU J, CHEN Z, LI G, ZHENG Z, QIU S, LUO J, YE C, ZHU S, ZHENG J, ZHANG N, LI Y, HE J, LI J, LI S, ZHONG N MEDICAL TREATMENT EXPERT GROUP FOR COVID-19. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020;146:89–100. doi: 10.1016/j.jaci.2020.05.003. PubMed DOI PMC
CHEN Y, GUO Y, PAN Y, ZHAO ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525:135–140. doi: 10.1016/j.bbrc.2020.02.071. PubMed DOI PMC
CHUMAKOV K, BENN CS, AABY P, KOTTILIL S, GALLO R. Can existing live vaccines prevent COVID-19? Science. 2020;368:1187–1188. doi: 10.1126/science.abc4262. PubMed DOI
De SMET D, De SMET K, HERROELEN P, GRYSPEERDT S, MARTENS GA. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics (Preprint) medRxiv. 2020;2020:20079376. doi: 10.1101/2020.05.01.20079376. DOI
DIAO B, WANG C, TAN Y, CHEN X, LIU Y, NING L, CHEN L, LIU M, LIU Y, WANG G, YUAN Z, FENG Z, ZHANG Y, WU Y, CHEN Y. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19) Front Immunol. 2020;11:827. doi: 10.3389/fimmu.2020.00827. PubMed DOI PMC
DONG Y, MO X, HU Y, QI X, JIANG F, JIANG Z, TONG S. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020 doi: 10.1542/peds.2020-0702. DOI
FRANCESCHI C, GARAGNANI P, PARINI P, GIULIANI C, SANTORO A. Inflammaging: a new immune–metabolic view point for age-related diseases. Nat Rev Endocrinol. 2018;14:576–590. doi: 10.1038/s41574-018-0059-4. PubMed DOI
FRANKLIN R, YOUNG A, NEUMANN B, REYAHI A, JOANNIDES A, MODIS Y, FRANKLIN JRM. Homologous protein domains in SARS-CoV-2 and measles, mumps and rubella viruses: preliminary evidence that MMR vaccine might provide protection against COVID-19. medRxiv. 2020 doi: 10.1101/2020.04.10.20053207. DOI
FELSENSTEIN S, HERBERT JA, McNAMARA PS, HEDRICH CM. COVID-19: Immunology and treatment options. Clin Immunol. 2020;215:108448. doi: 10.1016/j.clim.2020.108448. PubMed DOI PMC
FREEMAN T, SWARTZ T. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front Immunol. 2020;11:1518. doi: 10.3389/fimmu.2020.01518. PubMed DOI PMC
GALANTI M, SHAMAN J. Direct observation of repeated infections with endemic coronaviruses. J Infect Dis. 2021;223:409–415. doi: 10.1093/infdis/jiaa392. PubMed DOI PMC
GALLO MARIN B, AGHAGOLI G, LAVINE K, YANG L, SIFF EJ, CHIANG SS, SALAZAR-MATHER TP, DUMENCO L, SAVARIA MC, AUNG SN, FLANIGAN T, MICHELOW IC. Predictors of COVID-19 severity: A literature review. Rev Med Virol. 2021;31:1–10. doi: 10.1002/rmv.2146. PubMed DOI PMC
GATTORNO M, FEDERICI S, PELAGATTI MA, CAORSI R, BRISCA G, MALATTIA C, MARTINI A. Diagnosis and management of autoinflammatory diseases in childhood. J Clin Immunol. 2008;28(Suppl 1):73–83. doi: 10.1007/s10875-008-9178-3. PubMed DOI
GIAMARELLOS-BOURBOULIS EJ, TSILIKA M, MOORLAG S, ANTONAKOS N, KOTSAKI A, DOMINGUEZ-ANDRES J, KYRIAZOPOULOU E, GKAVOGIANNI T, ADAMI ME, DAMORAKI G, KOUFARGYRIS P, KARAGEORGOS A, BOLANOU A, KOENEN H, Van CREVEL R, DROGGITI DI, RENIERIS G, PAPADOPOULOS A, NETEA MG. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell. 2020;183:315–323. doi: 10.1016/j.cell.2020.08.051. PubMed DOI PMC
HARWEY WT, CARABELLI AM, JACKSON B, GUPTA RK, THOMSON EC, HARRISON EM, LUDDEN C, REEVE R, RAMBAUT A. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0. PubMed DOI PMC
HENRY BM, LIPPI G, PLEBANI M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin Chem Lab Med. 2020;58:1135–1138. doi: 10.1515/cclm-2020-0272. PubMed DOI
HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, KRUGER N, HERRLER T, ERICHSEN S, SCHIERGENS TS, HERRLER G, WU NH, NITSCHE A, MULLER MA, DROSTEN C, POHLMANN S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
HOLICK MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–281. doi: 10.1056/NEJMra070553. PubMed DOI
HUANG G, KOVALIC AJ, GRABER CHJ. Prognostic value of leukocytosis and lymphopenia for severe coronavirus disease. Emerg Infect Dis. 2020;26:1839–1841. doi: 10.3201/eid2608.201160. PubMed DOI PMC
IBRAHIM IM, ABDELMALEK DH, ELFIKY AA. GRP78: a cell’s response to stress. Life Sci. 2019;226:156–163. doi: 10.1016/j.lfs.2019.04.022. PubMed DOI PMC
IBRAHIM IM, ABDELMALEK DH, ELSHAHAT ME, ELFIKY AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect. 2020;80:554–562. doi: 10.1016/j.jinf.2020.02.026. PubMed DOI PMC
JESENAK M, BRNDIAROVA M, URBANCIKOVA I, RENNEROVA Z, VOJTKOVA J, BOBCAKOVA A. Immune parameters and COVID-19 infection – associations with clinical severity and disease prognosis. Front Cell Infect Microbiol. 2020;10:364. doi: 10.3389/fcimb.2020.00364. PubMed DOI PMC
JESENAK M, RENNEROVA Z, BANOVCIN P. Praktický pohl’ad na vývoj imunitného systému v detskom veku. Pediatria (Bratisl) 2012;7:141–149.
JIANG M, GUO I, LUO Q, HUANG Z, ZHAO R, LIU S, LE A, LI J, WAN L. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19. J Infect Dis. 2020;222:198–202. doi: 10.1093/infdis/jiaa252. PubMed DOI PMC
KINDLER E, THIEL V, WEBER F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 2016;96:219–243. doi: 10.1016/bs.aivir.2016.08.006. PubMed DOI PMC
KLEINNIJENHUIS J, Van CREVEL R, NETEA MG. Trained immunity: consequences for the heterologous effects of BCG vaccination. Trans R Soc Trop Med Hyg. 2015;109:29–35. doi: 10.1093/trstmh/tru168. PubMed DOI
KOPECKY-BROMBERG SA, MARTINEZ-SOBRIDO L, FRIEMAN M, BARIC RA, PALESE P. Severe acute respiratory syndrome coronavirus open readingframe (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81:548–557. doi: 10.1128/JVI.01782-06. PubMed DOI PMC
KUMAR H, KAWAI T, AKIRA S. Pathogen recognition in the innate immune response. Biochem J. 2009;420:1–16. doi: 10.1042/BJ20090272. PubMed DOI
LEUNG JM, YANG CX, TAM A, SHAIPANICH T, HACKETT TL, SINGHERA GK, DORSCHEID DR, SIN DD. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur Respir J. 2020;55:2000688. doi: 10.1183/13993003.00688-2020. PubMed DOI PMC
LOSCOCCO GG. Secondary hemophagocytic lymphohistiocytosis, HScore and COVID-19. Int J Hematol. 2020;112:125–126. doi: 10.1007/s12185-020-02895-w. PubMed DOI PMC
LU X, PAN J, TAO J, GUO D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011;42:37–45. doi: 10.1007/s11262-010-0544-x. PubMed DOI PMC
MAGHBOOLI Z, SAHRAIAN MA, EBRAHIMI M, PAZOKI M, KAFAN S, TABRIZ HM, HADADI A, MONTAZERI M, NASIRI M, SHIRVANI A, HOLICK MF. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS One. 2020;15:e023979. doi: 10.1371/journal.pone.0239799. PubMed DOI PMC
MACHHI J, HERSKOVITZ J, SENAN AM, DUTTA D, NATH B, OLEYNIKOV MD, BLOMBERG WR, MEIGS DD, HASAN M, PATEL M, KLINE P, CHANG RC, CHANG L, GENDELMAN HE, KEVADIYA BD. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol. 2020;15:359–386. doi: 10.1007/s11481-020-09944-5. PubMed DOI PMC
MEHTA P, McAULEY DF, BROWN M, SANCHEZ E, TATTERSALL RS, MANSON JJ HLH ACROSS SPECIALITY COLLABORATION, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0. PubMed DOI PMC
MERAD M, MARTIN JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20:355–362. doi: 10.1038/s41577-020-0331-4. PubMed DOI PMC
MOORLAG SJCFM, ARTS RJW, Van CREVEL R, NETEA MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25:1473–1478. doi: 10.1016/j.cmi.2019.04.020. PubMed DOI
MOSEKILDE L. Vitamin D and the elderly. Clin Endocrinol. 2005;62:265–281. doi: 10.1111/j.1365-2265.2005.02226.x. PubMed DOI
MURAMATSU T, MIYAUCHI T. Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol. 2003;18:981–987. doi: 10.14670/HH-18.981. PubMed DOI
NETEA MG, DOMINGUEZ-ANDRES J, BARREIRO LB, CHAVAKIS T, DIVANGAHI M, FUCHS E, JOOSTEN LAB, Vam der MEER JWM, MHLANGA MM, MULDER WJM, RIKSEN NP, SCHLITZER A, SCHULTZE JL, STABELL BENN C, SUN JC, XAVIER RJ, LATZ E. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20:375–388. doi: 10.1038/s41577-020-0285-6. PubMed DOI PMC
O’DRISCOLL M, RIBEIRO DOS SANTOS G, WANG L, CUMMINGS DAT, AZMAN AS, PAIREAU J, FONTANET A, CAUCHEMEZ S, SALJE H. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. 2021;590:140–145. doi: 10.1038/s41586-020-2918-0. PubMed DOI
PANAGIOTOU G, TEE SA, IHSAN Y, ATHAR W, MARCHITELLI G, KELLY D, BOOT CS, STOCK N, MacFARLANE J, MARTINEAU AR, BURNS G, QUINTON R. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID-19 are associated with greater disease severity. Clin Endocrinol. 2020;93:508511. doi: 10.1111/cen.14276. PubMed DOI PMC
PIERCE CA, PRESTON-HURLBURT P, DAI Y, ASCHNER CB, CHESHENKO N, GALEN B, GARFORTH SJ, HERRERA NG, JANGRA RK, MORANO NC, ORNER E, SY S, CHANDRAN K, DZIURA J, ALMO SC, RING A, KELLER MJ, HEROLD KC, HEROLD BC. Immune responses to SARSCoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med. 2020;12:eabd5487. doi: 10.1126/scitranslmed.abd5487. PubMed DOI PMC
PROMPETCHARA E, KETLOY C, PALAGA T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1–9. doi: 10.12932/AP-200220-0772. PubMed DOI
RABI A, AL ZOUBI MS, KASASBEH GA, SALAMEH DM, AL-NASSER AD. SARS-CoV-2 and Coronavirus disease 2019: what we know so far. Pathogens. 2020;9:231. doi: 10.3390/pathogens9030231. PubMed DOI PMC
RIBERO SAM, JOUVENET N, DREUX M, NISOLE S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020;16:e1008737. doi: 10.1371/journal.ppat.1008737. PubMed DOI PMC
RUAN Q, YANG K, WANG W, JIANG L, SONG J. Clinical predictors of mortality due to COVID-19 based on ananalysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848. doi: 10.1007/s00134-020-05991-x. PubMed DOI PMC
SALAMANNA F, MAGLIO M, LANDINI MP, FINI M. Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front Med (Lausanne) 2020;7:594495. doi: 10.3389/fmed.2020.594495. PubMed DOI PMC
SHARIFI N, RYAN CJ EDITORIAL. Androgen hazards with COVID-19. Endocr Relat Cancer. 2020;27:E1–E3. doi: 10.1530/ERC-20-0133. PubMed DOI
SHI CS, NABAR NR, HUANG NN, KEHRL JH. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019;5:101. doi: 10.1038/s41420-019-0181-7. PubMed DOI PMC
SHOKRI S, MAHMOUNDVAND S, TAHEKRANI R, FARSHADPOUR F. Modulation of the immune response by Middle East respiratory syndrome coronavirus. J Cell Physiol. 2019;234:2143–2151. doi: 10.1002/jcp.27155. PubMed DOI PMC
SCHNEIDER WM, CHEVILLOTTE M, RICE C. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–545. doi: 10.1146/annurev-immunol-032713-120231. PubMed DOI PMC
SCHULER BA, HABERMANN AC, PLOSA EJ, TAYLOR CJ, JETTER C, KAPP ME, BENJAMIN JT, GULLEMAN P, NICHOLS DS, BRAUNSTEIN LZ, HACKETT A, KOVAL M, GUTTENTAG SH, BLACKWELL TS, WEBBER SA, BANOVICH NE, KROPSKI JA, SUCRE JMS VANDERBILT COVID-19 CONSORTIUM, COHORT, HCA LUNG BIOLOGICAL NETWORK. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 infection in the lung epithelium. J Clin Invest. 2021;131 doi: 10.1101/2020.05.22.111187. PubMed DOI PMC
SIMON AK, HOLLANDER GA, MCMICHAEL A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282:20143085. doi: 10.1098/rspb.2014.3085. PubMed DOI PMC
SINAEI R, PEZESHKI S, PARVARESH S, SINAEI R. Why COVID-19 is less frequent and severe in children: a narrative review. World J Pediatr. 2021;17:10–20. doi: 10.1007/s12519-020-00392-y. PubMed DOI PMC
SONG JW, ZHANG C, FAN X, MENG FP, XU Z, XIA P, CAO WJ, YANG T, DAI XP, WANG SY, XU RN, JIANG TJ, LI WG, ZHANG DW, ZHAO P, SHI M, AGRATI C, IPPOLITO G, MAEURER M, ZUMLA A, WANG FS, ZHANG JY. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat Commun. 2020;11:3410. doi: 10.1038/s41467-020-17240-2. PubMed DOI PMC
TAFFAREL P, JORRO BARÓN F, RODRÍGUEZ AP, WIDMER J, MEREGALLIA C. Multisystem inflammatory syndrome in children related to COVID-19: An update regarding the presentation of two critically ill patients. Arch Argent Pediatr. 2021;119:e26–e35. doi: 10.5546/aap.2021.eng.e26. PubMed DOI
TAN L, WANG Q, ZHANG D, DING J, HUANG Q, TANG YQ, WANG Q, MIAO H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5:33. doi: 10.1038/s41392-020-0148-4. PubMed DOI PMC
TERPOS E, NTANASIS-STATHOPOULOS I, ELALAMY I, KASTRITIS E, SERGENTANIS TN, POLITOU M, PSALTOPOULOU T, GEROTZIAFAS G, DIMOPOULOS MA. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95:834–847. doi: 10.1002/ajh.25829. PubMed DOI PMC
TSABOURI S, MAKIS A, KOSMERI C, SIOMOU E. Risk factors for severity in children with coronavirus disease 2019: A comprehensive literature review. Pediatr Clin North Am. 2021;68:321–338. doi: 10.1016/j.pcl.2020.07.014. PubMed DOI PMC
WALLS AC, PARK YJ, TORTORICI MA, WALL A, McGUIRE AT, VEESLER A. Structure, function, and antigenicity of the SARS-CoV-2. Cell. 2020;181:281–292. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC
WAMBIER CG, GOREN A, VAÑO-GALVÁN S, RAMOS PM, OSSIMETHA A, NAU G, HERRERA S, McCOY J. Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev Res. 2020;81:771–776. doi: 10.1002/ddr.21688. PubMed DOI PMC
WANG A, CHIOU J, POIRION OB, BUCHANAN J, VALDEZ MJ, VERHEYDEN JM, HOU X, KUDTARKAR P, NARENDRA S, NEWSOME JM, GUO M, FADDAH DA, ZHANG K, YOUNG RE, BARR J, SAJTI E, MISRA R, HUYCK H, ROGERS L, POOLE C, ET AL. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. Elife. 2020;9:e62522. doi: 10.7554/eLife.62522. PubMed DOI PMC
WANG D, HU B, HU C, ZHU F, LIU X, ZHANG J, WANG B, XIANG H, CHENG Z, XIONG Y, ZHAO Y, LI Y, WANG X, PENG Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC
WANG F, HOU H, LUO Y, TANG G, WU S, HUANG M, LIU W, ZHU Y, LIN Q, MAO L, FANG M, ZHANG H, SUN Z. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5:e137799. doi: 10.1172/jci.insight.137799. PubMed DOI PMC
WANG K, CHEN W, ZHANG Z, YONGQJANG D, JIAN-QI L, PENG D, DING W, YANG Z, XIU-XUAN S, LI G, XU Y, LEI H, LEI Z, ZHIWEI Y, JIE-JIE G, RUO CH, HAI Z, BIN W, YU-MENG Z, GANG N, ET AL. CD147-spike proteinis a novel route for SARS-CoV-2 infection to host cells. Sig Transduct Target Ther. 2020;5:283. doi: 10.1038/s41392-020-00426-x. PubMed DOI PMC
WEISBERG SP, CONNORS TJ, ZHU Y, BALDWIN MR, LIN WH, WONTAKAL S, SZABO PA, WELLS SB, DOGRA P, GRAY J, IDZIKOWSKI E, STELITANO D, BOVIER FT, DAVIS-PORADA J, MATSUMOTO R, POON MML, CHAIT M, MATHIEU C, HORVAT B, DECIMO D, ET AL. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol. 2021;22:25–31. doi: 10.1038/s41590-020-00826-9. PubMed DOI PMC
XU Z, SHI L, WANG Y, ZHANG J, HUANG L, ZHANG C, LIU S, ZHAO P, LIU H, ZHU L, TAI Y, BAI C, GAO T, SONG J, XIA P, DONG J, ZHAO J, WANG FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X. PubMed DOI PMC
YANG CS, SHIN DM, JO EK. The role of NLR-related protein 3 inflammasome in host defense and inflammatory diseases. Int Neurourol. 2012;16:2–12. doi: 10.5213/inj.2012.16.1.2. PubMed DOI PMC
YGBERG S, NILSSON A. The developing immune system - from foetus to toddler. Acta Paediatr. 2012;101:120–127. doi: 10.1111/j.1651-2227.2011.02494.x. PubMed DOI
YOSHIKAWA T, HILL TE, YOSHIKAWA N, POPOV VL, GALINDO CL, GARNER HR, PETERS CJ, TSENG CT. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS One. 2010;5:e8729. doi: 10.1371/journal.pone.0008729. PubMed DOI PMC
ZHOU S, ZHOU H, WALIAN PJ, JAP BK. CD147 is a regulatory subunit of the gamma-secretase complex in Alzheimer’s disease amyloid beta-peptide production. Proc Natl Acad Sci U S A. 2005;102:7499–7504. doi: 10.1073/pnas.0502768102. PubMed DOI PMC
ZUO Y, YALAVARTHI S, SHI H, GOCKMAN K, ZUO M, MADISON JA, BLAIR C, WEBER A, BARNES BJ, EGEBLAD M, WOODS RJ, KANTHI Y, KNIGHT JS. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5:e138999. doi: 10.1172/jci.insight.138999. PubMed DOI PMC