Socioeconomic and cognitive roots of trait anxiety in young adults
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34915569
PubMed Central
PMC9340106
DOI
10.1093/scan/nsab135
PII: 6463579
Knihovny.cz E-zdroje
- Klíčová slova
- birth cohort, cognition, epidemiology, trait anxiety,
- MeSH
- dítě MeSH
- dospělí MeSH
- kognice MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek * MeSH
- socioekonomické faktory MeSH
- úzkost MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In 54 participants (41% women) from the Czech arm of the European Longitudinal Study of Pregnancy and Childhood, a national birth cohort with prospectively collected data from their birth until young adulthood, we aimed to study the association between early-life socioeconomic deprivation (ELSD), cognitive ability in adolescence, trait anxiety and resting state functional connectivity of the lateral prefrontal cortex (LPFC) in young adulthood. We found that ELSD was associated with lower cognitive ability in adolescence (at age 13) as well as higher trait anxiety in young adulthood (at age 23/24). Higher cognitive ability in adolescence predicted lower trait anxiety in young adulthood. Resting state functional connectivity between the right LPFC and a cluster of voxels including left precentral gyrus, left postcentral gyrus and superior frontal gyrus mediated the relationship between lower cognitive ability in adolescence and higher trait anxiety in young adulthood. These findings indicate that lower cognitive ability and higher trait anxiety may be both consequences of socioeconomic deprivation in early life. The recruitment of the right LPFC may be the underlying mechanism, through which higher cognitive ability may ameliorate trait anxiety.
2nd Faculty of Medicine Charles University Prague Prague 5 150 06 Czech Republic
3rd Faculty of Medicine Charles University Prague Prague 10 100 00 Czech Republic
National Institute of Mental Health Klecany 250 67 Czech Republlic
RECETOX Faculty of Science Masaryk University Brno 625 00 Czech Republic
Zobrazit více v PubMed
Alfonso S.V., Lonigan C.J. (2021). Trait anxiety and adolescent’s academic achievement: the role of executive function. Learning and Individual Differences, 85, 101941.
Alves A.F., Martins A., Almeida L.S. (2016). Interactions between sex, socioeconomic level, and children’s cognitive performance. Psychological Reports, 118(2), 471–86. PubMed
Bartels M., van Weegen F.I., van Beijsterveldt C.E.M., et al. (2012). The five factor model of personality and intelligence: a twin study on the relationship between the two constructs. Personality and Individual Differences, 53(4), 368–73.
Behzadi Y., Restom K., Liau J., Liu T.T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. PubMed PMC
Bishop S.J. (2009). Trait anxiety and impoverished prefrontal control of attention. Nature Neuroscience, 12(1), 92–8. PubMed
Bracke P., Pattyn E., von dem Knesebeck O. (2013). Overeducation and depressive symptoms: diminishing mental health returns to education. Sociology ofHealthand Illness, 35(8), 1242–59. PubMed
Brancucci A. (2012). Neural correlates of cognitive ability. Journal of Neuroscience Research, 90(7), 1299–309. PubMed
Bressler S.L., Menon V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–90. PubMed
Cermakova P., Formanek T., Kagstrom A., Winkler P. (2018). Socioeconomic position in childhood and cognitive aging in Europe. Neurology, 91(17), e1602–10. PubMed PMC
Cermakova P., Pikhart H., Ruiz M., Kubinova R., Bobak M. (2020). Socioeconomic position in childhood and depressive symptoms in later adulthood in the Czech Republic. Journal of Affective Disorders, 272, 17–23. PubMed
Čermaková P., Andrýsková L., Brázdil M., Marečková K. (2020). Socioeconomic deprivation in early life and symptoms of depression and anxiety in young adulthood: mediating role of hippocampal connectivity. Psychological Medicine, 1–10. PubMed PMC
Chambers J.A., Power K.G., Durham R.C. (2004). The relationship between trait vulnerability and anxiety and depressive diagnoses at long-term follow-up of Generalized Anxiety Disorder. Journal of Anxiety Disorders, 18(5), 587–607. PubMed
Deary I.J., Whalley L.J., Starr J.M. (2009). A Lifetime of Intelligence: Follow-up Studies of the Scottish Mental Surveys of 1932 and 1947. Washington DC, USA: American Psychological Association.
Erikson R., Goldthorpe J.H., Portocarero L. (1979). Intergenerational class mobility in three Western European societies: England, France and Sweden. The British Journal of Sociology, 30(4), 415–41. PubMed
Eysenck M.W. (2000). A cognitive approach to trait anxiety. European Journal of Personality, 14(5), 463–76.
Eysenck M.W., Derakshan N., Santos R., Calvo M.G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7(2), 336–53. PubMed
Flensborg-Madsen T., Falgreen Eriksen H.L., Mortensen E.L. (2020). Early life predictors of intelligence in young adulthood and middle age. PLoS One, 15(1), e0228144. PubMed PMC
Formann A.K., Piswanger K. (1979). Wiener Matrizen-Test (WMT). Weinheim: Beltz Test.
Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–8. PubMed PMC
Frank D., Dewitt M., Hudgens-Haney M., et al. (2014). Emotion regulation: quantitative meta-analysis of functional activation and deactivation. Neuroscience and Biobehavioral Reviews, 45, 202–11. PubMed
Garmezy N. (1993). Children in poverty: resilience despite risk. Psychiatry, 56(1), 127–36. PubMed
Goldin P.R., Manber T., Hakimi S., Canli T., Gross J.J. (2009). Neural bases of social anxiety disorder: emotional reactivity and cognitive regulation during social and physical threat. Archives of General Psychiatry, 66(2), 170–80. PubMed PMC
Gray J.R., Thompson P.M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5(6), 471–82. PubMed
Hart S.A., Petrill S.A., Deckard K.D., Thompson L.A. (2007). SES and CHAOS as environmental mediators of cognitive ability: a longitudinal genetic analysis. Intelligence, 35(3), 233–42. PubMed PMC
Huisman M., Araya R., Lawlor D.A., Ormel J., Verhulst F.C., Oldehinkel A.J. (2010). Cognitive ability, parental socioeconomic position and internalising and externalising problems in adolescence: findings from two European cohort studies. European Journal of Epidemiology, 25(8), 569–80. PubMed PMC
Humphreys M.S., Revelle W. (1984). Personality, motivation, and performance: a theory of the relationship between individual differences and information processing. Psychological Review, 91(2), 153–84. PubMed
Ježek S., Lacinová L., Širůček J., Michalčáková R. (2008). The psychological branch of the ELSPAC study: a survey of 15-year-old respondents. In: Ježek, S., Lacinová, L. (eds). Fifteen-Year-Olds in Brno: A Slice of Longitudinal Self-Reports, Brno, Czechia: Masarykova univerzita, pp. 7–11.
Jung R.E., Haier R.J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135–54. PubMed
Li G., Ma X., Bian H., et al. (2016). A pilot fMRI study of the effect of stressful factors on the onset of depression in female patients. Brain Imaging and Behavior, 10(1), 195–202. PubMed PMC
Li X., Zhang M., Li K., et al. (2019). The altered somatic brain network in state anxiety. Frontiers in Psychiatry, 10. PubMed PMC
Liao W., Chen H., Feng Y., et al. (2010). Selective aberrant functional connectivity of resting state networks in social anxiety disorder. NeuroImage, 52(4), 1549–58. PubMed
Mareckova K., Marecek R., Bencurova P., Klanova J., Dusek L., Brazdil M. (2018). Perinatal stress and human hippocampal volume: findings from typically developing young adults. Scientific Reports, 8(1), 4696. PubMed PMC
Mareckova K., Klasnja A., Andryskova L., Brazdil M., Paus T. (2019a). Developmental origins of depression-related white matter properties: findings from a prenatal birth cohort. HumanBrainMapping, 40(4), 1155–63. PubMed PMC
Mareckova K., Klasnja A., Bencurova P., Andryskova L., Brazdil M., Paus T. (2019b). Prenatal stress, mood, and gray matter volume in young adulthood. CerebralCortex, 29(3), 1244–50. PubMed PMC
Mareckova K., Marecek R., Andryskova L., Brazdil M., Nikolova Y.S. (2020a). Maternal depressive symptoms during pregnancy and brain age in young adult offspring: findings from a prenatal birth cohort. Cerebral Cortex, 30(7), 3991–9. PubMed
Mareckova K., Marecek R., Andryskova L., Brazdil M., Nikolova Y.S. (2020b). Maternal depressive symptoms during pregnancy and brain age in young adult offspring: findings from a prenatal birth cohort. Cerebral Cortex, 30, 3991–9. PubMed
Monk C.S., Nelson E.E., McClure E.B., et al. (2006). Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. American Journal of Psychiatry, 163(6), 1091–7. PubMed
Moutafi J., Furnham A., Tsaousis I. (2006). Is the relationship between intelligence and trait neuroticism mediated by test anxiety? Personality and Individual Differences, 40(3), 587–97.
Niendam T.A., Laird A.R., Ray K.L., Dean Y.M., Glahn D.C., Carter C.S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, AffectiveandBehavioral Neuroscience, 12(2), 241–68. PubMed PMC
Piler P., Kandrnal V., Kukla L., et al. (2017). Cohort profile: the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. International Journal of Epidemiology, 46(5), 1379–f. PubMed PMC
Preacher K.J., Hayes A.F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments and Computers, 36(4), 717–31. PubMed
Pruessner J.C., Dedovic K., Khalili-Mahani N., et al. (2008). Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies. Biological Psychiatry, 63(2), 234–40. PubMed
Qiu C., Liao W., Ding J., et al. (2011). Regional homogeneity changes in social anxiety disorder: a resting-state fMRI study. Psychiatry Research: Neuroimaging, 194(1), 47–53. PubMed
Raven J. (2000). The Raven’s progressive matrices: change and stability over culture and time. Cognitive Psychology, 41(1), 1–48. PubMed
Rypma B., Berger J.S., Prabhakaran V., et al. (2006). Neural correlates of cognitive efficiency. NeuroImage, 33(3), 969–79. PubMed
Sandi C., Richter-Levin G. (2009). From high anxiety trait to depression: a neurocognitive hypothesis. Trends in Neurosciences, 32(6), 312–20. PubMed
Song M., Zhou Y., Li J., et al. (2008). Brain spontaneous functional connectivity and intelligence. NeuroImage, 41(3), 1168–76. PubMed
Sorberg Wallin A., Koupil I., Gustafsson J.E., Zammit S., Allebeck P., Falkstedt D. (2019). Academic performance, externalizing disorders and depression: 26,000 adolescents followed into adulthood. Social Psychiatry and Psychiatric Epidemiology, 54(8), 977–86. PubMed
Spearman C. (1961). “General intelligence” objectively determined and measured. In: J. J. Jenkins and D. G. Paterson (eds). Studies in individual differences: The search for intelligence, New York, USA: Appleton-Century-Crofts, pp. 59–73.
Spielberger C.D., Gorsuch R.L. (1983). State-trait Anxiety Inventory for Adults: Manual and Sample: Manual, Instrument and Scoring Guide. Consulting Psychologists Press.
Starr J.M., Taylor M.D., Hart C.L., et al. (2004). Childhood mental ability and blood pressure at midlife: linking the Scottish Mental Survey 1932 and the Midspan studies. Journal of Hypertension, 22(5), 893–7. PubMed
Strawn J.R., Hamm L., Fitzgerald D.A., Fitzgerald K.D., Monk C.S., Phan K.L. (2015). Neurostructural abnormalities in pediatric anxiety disorders. Journal ofAnxietyDisorders, 32, 81–8. PubMed PMC
Telzer E.H., Mogg K., Bradley B.P., et al. (2008). Relationship between trait anxiety, prefrontal cortex, and attention bias to angry faces in children and adolescents. Biological Psychology, 79(2), 216–22. PubMed PMC
Tong S., Baghurst P., Vimpani G., McMichael A. (2007). Socioeconomic position, maternal IQ, home environment, and cognitive development. The Journal of Pediatrics, 151(3), 284–8, 288.e1. PubMed
Von Stumm S., Plomin R. (2015). Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence, 48, 30–6. PubMed PMC
Warwick J., Carey P., Jordaan G., Dupont P., Stein D. (2008). Resting brain perfusion in social anxiety disorder: a voxel-wise whole brain comparison with healthy control subjects. Progress in Neuro-PsychopharmacologyandBiological Psychiatry, 32(5), 1251–6. PubMed
Whitfield-Gabrieli S., Nieto-Castanon A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–41. PubMed
Wolbers M. (2013). Job mismatches and their labour-market effects among school-leavers in Europe. European Sociological Review, 19, 249–66.
Yokoyama C., Kaiya H., Kumano H., et al. (2015). Dysfunction of ventrolateral prefrontal cortex underlying social anxiety disorder: a multi-channel NIRS study. NeuroImage: Clinical, 8, 455–61. PubMed PMC
Young A.F., Powers J.R., Bell S.L. (2006). Attrition in longitudinal studies: who do you lose? Australian and New Zealand Journal of Public Health, 30(4), 353–61. PubMed
Zhang Z., Liu H., Choi S.W. (2020). Early-life socioeconomic status, adolescent cognitive ability, and cognition in late midlife: evidence from the Wisconsin Longitudinal Study. Social Science and Medicine, 244, 112575. PubMed PMC