Calculation and Interpretation of Substrate Assimilation Rates in Microbial Cells Based on Isotopic Composition Data Obtained by nanoSIMS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34917040
PubMed Central
PMC8670600
DOI
10.3389/fmicb.2021.621634
Knihovny.cz E-zdroje
- Klíčová slova
- assimilation rates, cell growth model, nanoSIMS, stable isotope probing, storage inclusions,
- Publikační typ
- časopisecké články MeSH
Stable isotope probing (SIP) combined with nano-scale secondary ion mass spectrometry (nanoSIMS) is a powerful approach to quantify assimilation rates of elements such as C and N into individual microbial cells. Here, we use mathematical modeling to investigate how the derived rate estimates depend on the model used to describe substrate assimilation by a cell during a SIP incubation. We show that the most commonly used model, which is based on the simplifying assumptions of linearly increasing biomass of individual cells over time and no cell division, can yield underestimated assimilation rates when compared to rates derived from a model that accounts for cell division. This difference occurs because the isotopic labeling of a dividing cell increases more rapidly over time compared to a non-dividing cell and becomes more pronounced as the labeling increases above a threshold value that depends on the cell cycle stage of the measured cell. Based on the modeling results, we present formulae for estimating assimilation rates in cells and discuss their underlying assumptions, conditions of applicability, and implications for the interpretation of intercellular variability in assimilation rates derived from nanoSIMS data, including the impacts of storage inclusion metabolism. We offer the formulae as a Matlab script to facilitate rapid data evaluation by nanoSIMS users.
Department of Biology Mount Allison University Sackville NB Canada
Department of Earth Sciences Utrecht University Utrecht Netherlands
Department of Microbiology Oregon State University Corvallis OR United States
Global Change Research Institute Czech Academy of Sciences Brno Czechia
Institute of Microbiology Czech Academy of Sciences Centre Algatech Třeboň Czechia
Sorbonne Université CNRS Laboratoire d'Océanographie de Villefranche LOV Villefranche sur mer France
Sorbonne Université CNRS Laboratoire d'Océanographie Microbienne LOMIC Banyuls sur mer France
Zobrazit více v PubMed
Ackermann M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13 497–508. 10.1038/nrmicro3491 PubMed DOI
Arandia-Gorostidi N., Weber P. K., Alonso-Sáez L., Morán X. A. G., Mayali X. (2017). Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 11 641–650. 10.1038/ismej.2016.156 PubMed DOI PMC
Berthelot H., Duhamel S., L’Helguen S., Maguer J.-F., Wang S., Cetinić I., et al. (2019). NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13 651–662. 10.1038/s41396-018-0285-8 PubMed DOI PMC
Bonnet S., Berthelot H., Turk-Kubo K., Cornet-Barthaux V., Fawcett S., Berman-Frank I., et al. (2016). Diazotroph derived nitrogen supports diatom growth in the South West Pacific: a quantitative study using nanoSIMS. Limnol. Oceanogr. 61 1549–1562. 10.1002/lno.10300 DOI
Boschker H. T. S., Middelburg J. J. (2002). Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol. Ecol. 40 85–95. 10.1111/j.1574-6941.2002.tb00940.x PubMed DOI
Calabrese F., Voloshynovska I., Musat F., Thullner M., Schlömann M., Richnow H. H., et al. (2019). Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front. Microbiol. 10:2814. 10.3389/fmicb.2019.02814 PubMed DOI PMC
Collins J. F., Richmond M. H. (1962). Rate of growth of Bacillus cereus between divisions. J. Gen. Microbiol. 28 15–33. PubMed
Coplen T. B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25 2538–2560. 10.1002/rcm.5129 PubMed DOI
Dekas A. E., Parada A. E., Mayali X., Fuhrman J. A., Wollard J., Weber P. K., et al. (2019). Characterizing chemoautotrophy and heterotrophy in marine Archaea and bacteria with single-cell multi-isotope NanoSIP. Front. Microbiol. 10:2682. 10.3389/fmicb.2019.02682 PubMed DOI PMC
Dumont M. G., Murrell J. C. (2005). Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3 499–504. 10.1038/nrmicro1162 PubMed DOI
Eichner M. J., Klawonn I., Wilson S. T., Littmann S., Whitehouse M. J., Church M. J., et al. (2017). Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2. ISME J. 11 1305–1317. 10.1038/ismej.2017.15 PubMed DOI PMC
Finzi-Hart J. A., Pett-Ridge J., Weber P. K., Popa R., Fallon S. J., Gunderson T., et al. (2009). Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 106 6345–6350. 10.1073/pnas.0810547106 PubMed DOI PMC
Foster R. A., Kuypers M. M. M., Vagner T., Paerl R. W., Musat N., Zehr J. P. (2011). Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 5 1484–1493. 10.1038/ismej.2011.26 PubMed DOI PMC
Foster R. A., Sztejrenszus S., Kuypers M. M. M. (2013). Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J. Phycol. 49 502–516. 10.1111/jpy.12057 PubMed DOI
Geerlings N. M. J., Geelhoed J. S., Vasquez-Cardenas D., Kienhuis M. V. M., Hidalgo-Martinez S., Boschker H. T. S., et al. (2021). Cell cycle, filament growth and synchronized cell division in multicellular cable bacteria. Front. Microbiol. 12:620807. 10.3389/fmicb.2021.620807 PubMed DOI PMC
Geerlings N. M. J., Karman C., Trashin S., As K. S., Kienhuis M. V. M., Hidalgo-Martinez S., et al. (2020). Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc. Natl. Acad. Sci. U.S.A. 117:5478. 10.1073/pnas.1916244117 PubMed DOI PMC
Harding K., Turk-Kubo K. A., Sipler R. E., Mills M. M., Bronk D. A., Zehr J. P. (2018). Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc. Natl. Acad. Sci. U.S.A. 115:13371. 10.1073/pnas.1813658115 PubMed DOI PMC
Hoppe P., Cohen S., Meibom A. (2013). NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostand. Geoanal. Res. 37 111–154. 10.1111/j.1751-908X.2013.00239.x DOI
Hungate B. A., Mau R. L., Schwartz E., Caporaso J. G., Dijkstra P., van Gestel N., et al. (2015). Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81 7570–7581. 10.1128/AEM.02280-15 PubMed DOI PMC
Jehmlich N., Vogt C., Lünsmann V., Richnow H. H., von Bergen M. (2016). Protein-SIP in environmental studies. Curr. Opin. Biotechnol. 41 26–33. 10.1016/j.copbio.2016.04.010 PubMed DOI
Khachikyan A., Milucka J., Littmann S., Ahmerkamp S., Meador T., Könneke M., et al. (2019). Direct cell mass measurements expand the role of small microorganisms in nature. Appl. Environ. Microbiol. 85:e00493-19. 10.1128/AEM.00493-19 PubMed DOI PMC
Klawonn I., Nahar N., Walve J., Andersson B., Olofsson M., Svedén J. B., et al. (2016). Cell-specific nitrogen- and carbon-fixation of cyanobacteria in a temperate marine system (Baltic Sea). Environ. Microbiol. 18 4596–4609. 10.1111/1462-2920.13557 PubMed DOI
Koch A. L. (1966). Distribution of cell size in growing cultures of bacteria and the applicability of the collins-richmond principle. J. Gen. Microbiol. 45 409–417. 10.1099/00221287-45-3-409 DOI
Koch A. L., Schaechter M. (1962). A model for statistics of the cell division process. J. Gen. Microbiol. 29 435–454. 10.1099/00221287-29-3-435 PubMed DOI
Krupke A., Mohr W., LaRoche J., Fuchs B. M., Amann R. I., Kuypers M. M. M. (2015). The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis. ISME J. 9 1635–1647. 10.1038/ismej.2014.253 PubMed DOI PMC
Loussert-Fonta C., Toullec G., Paraecattil A. A., Jeangros Q., Krueger T., Escrig S., et al. (2020). Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section. Commun. Biol. 3:362. 10.1038/s42003-020-1095-x PubMed DOI PMC
Martínez-Pérez C., Mohr W., Löscher C. R., Dekaezemacker J., Littmann S., Yilmaz P., et al. (2016). The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 1:16163. 10.1038/nmicrobiol.2016.163 PubMed DOI
Matantseva O., Skarlato S., Vogts A., Pozdnyakov I., Liskow I., Schubert H., et al. (2016). Superposition of individual activities: urea-mediated suppression of nitrate uptake in the dinoflagellate prorocentrum minimum revealed at the population and single-cell levels. Front. Microbiol. 7:1310. 10.3389/fmicb.2016.01310 PubMed DOI PMC
Mayali X. (2020). NanoSIMS: microscale quantification of biogeochemical activity with large-scale impacts. Ann. Rev. Mar. Sci. 12 449–467. 10.1146/annurev-marine-010419-010714 PubMed DOI
Mills M. M., Turk-Kubo K. A., van Dijken G. L., Henke B. A., Harding K., Wilson S. T., et al. (2020). Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 14 2395–2406. 10.1038/s41396-020-0691-6 PubMed DOI PMC
Milucka J., Ferdelman T. G., Polerecky L., Franzke D., Wegener G., Schmid M., et al. (2012). Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491 541–546. 10.1038/nature11656 PubMed DOI
Musat N., Foster R., Vagner T., Adam B., Kuypers M. M. M. (2012). Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36 486–511. 10.1111/j.1574-6976.2011.00303.x PubMed DOI
Musat N., Halm H., Winterholler B., Hoppe P., Peduzzi S., Hillion F., et al. (2008). A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. U.S.A. 105 17861–17866. 10.1073/pnas.0809329105 PubMed DOI PMC
Neufeld J. D., Dumont M. G., Vohra J., Murrell J. C. (2007). Methodological considerations for the use of stable isotope probing in microbial ecology. Microb. Ecol. 53 435–442. PubMed
Nuñez J., Renslow R., Cliff J. B., Anderton C. R. (2017). NanoSIMS for biological applications: current practices and analyses. Biointerphases 13:03B301. 10.1116/1.4993628 PubMed DOI
Olofsson M., Kourtchenko O., Zetsche E. M., Marchant H. K., Whitehouse M. J., Godhe A., et al. (2019a). High single-cell diversity in carbon and nitrogen assimilations by a chain-forming diatom across a century. Environ. Microbiol. 21 142–151. 10.1111/1462-2920.14434 PubMed DOI PMC
Olofsson M., Robertson E. K., Edler L., Arneborg L., Whitehouse M. J., Ploug H. (2019b). Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea. Sci. Rep. 9:1424. 10.1038/s41598-018-38059-4 PubMed DOI PMC
Pett-Ridge J., Weber P. K. (2012). “NanoSIP: NanoSIMS applications for microbial biology,” in Microbial Systems Biology: Methods and Protocols, ed. Navid A. (Totowa, NJ: Humana Press; ), 375–408. 10.1007/978-1-61779-827-6_13 PubMed DOI
Ploug H. (2021). “SIMS and NanoSIMS techniques applied to studies of plankton productivity,” in Research Methods of Environmental Physiology in Aquatic Sciences, eds Gao K., Hutchins D. A., Beardall J. (Singapore: Springer; ), 193–206. 10.1007/978-981-15-5354-7_23 DOI
Polerecky L., Masuda T., Eichner M., Rabouille S., Vancová M., Kienhuis M. V. M., et al. (2021). Temporal patterns and intra- and inter-cellular variability in carbon and nitrogen assimilation by the unicellular cyanobacterium Cyanothece sp. ATCC 51142. Front. Microbiol. 12:620915. 10.3389/fmicb.2021.620915 PubMed DOI PMC
Popa R., Weber P. K., Pett-Ridge J., Finzi J. A., Fallon S. J., Hutcheon I. D., et al. (2007). Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1 354–360. 10.1038/ismej.2007.44 PubMed DOI
Schoffelen N. J., Mohr W., Ferdelman T. G., Duerschlag J., Littmann S., Ploug H., et al. (2019). Phosphate availability affects fixed nitrogen transfer from diazotrophs to their epibionts. ISME J. 13 2701–2713. 10.1038/s41396-019-0453-5 PubMed DOI PMC
Schoffelen N. J., Mohr W., Ferdelman T. G., Littmann S., Duerschlag J., Zubkov M. V., et al. (2018). Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth. Sci. Rep. 8:17182. 10.1038/s41598-018-35310-w PubMed DOI PMC
Schreiber F., Littmann S., Lavik G., Escrig S., Meibom A., Kuypers M. M. M., et al. (2016). Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat. Microbiol. 1:16055. 10.1038/nmicrobiol.2016.55 PubMed DOI
Stryhanyuk H., Calabrese F., Kümmel S., Musat F., Richnow H. H., Musat N. (2018). Calculation of single cell assimilation rates from SIP-NanoSIMS-derived isotope ratios: a comprehensive approach. Front. Microbiol. 9:2342. 10.3389/fmicb.2018.02342 PubMed DOI PMC
Svedén J. B., Adam B., Walve J., Nahar N., Musat N., Lavik G., et al. (2015). High cell-specific rates of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon sp. at low temperatures in the Baltic Sea. FEMS Microbiol. Ecol. 91:fiv131. 10.1093/femsec/fiv131 PubMed DOI
Trembath-Reichert E., Shah Walter S. R., Ortiz M. A. F., Carter P. D., Girguis P. R., Huber J. A. (2021). Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Sci. Adv. 7:eabg0153. 10.1126/sciadv.abg0153 PubMed DOI PMC
Verity P. G., Robertson C. Y., Tronzo C. R., Andrews M. G., Nelson J. R., Sieracki M. E. (1992). Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37 1434–1446. 10.4319/lo.1992.37.7.1434 DOI
Westfall C. S., Levin P. A. (2017). Bacterial cell size: multifactorial and multifaceted. Annu. Rev. Microbiol. 71 499–517. PubMed PMC
Zimmermann M., Escrig S., Hübschmann T., Kirf M. K., Brand A., Inglis R. F., et al. (2015). Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front. Microbiol. 6:243. 10.3389/fmicb.2015.00243 PubMed DOI PMC