WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34919802
PubMed Central
PMC8751638
DOI
10.1016/j.devcel.2021.11.024
PII: S1534-5807(21)00949-7
Knihovny.cz E-zdroje
- Klíčová slova
- T cells, Wiskott-Aldrich syndrome protein, actin cytoskeleton, ameboid motility, cell migration, confinement, dendritic cells, leukocytes, mechanical load, mechanosensing,
- MeSH
- aktiny metabolismus fyziologie MeSH
- biomechanika fyziologie MeSH
- buněčné linie MeSH
- cytoskeletální proteiny metabolismus MeSH
- komplex proteinů 2-3 souvisejících s aktinem metabolismus fyziologie MeSH
- leukocyty fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- pohyb buněk fyziologie MeSH
- protein 3 související s aktinem metabolismus MeSH
- protein Wiskottova-Aldrichova syndromu genetika metabolismus MeSH
- vazba proteinů fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- cytoskeletální proteiny MeSH
- komplex proteinů 2-3 souvisejících s aktinem MeSH
- protein 3 související s aktinem MeSH
- protein Wiskottova-Aldrichova syndromu MeSH
When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
Institute of Science and Technology Austria 3400 Klosterneuburg Austria
Zobrazit více v PubMed
Akamatsu M., Vasan R., Serwas D., Ferrin M.A., Rangamani P., Drubin D.G. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife. 2020;9:e49840. doi: 10.7554/eLife.4984. PubMed DOI PMC
Almeida-Souza L., Frank R.A.W., García-Nafría J., Colussi A., Gunawardana N., Johnson C.M., Yu M., Howard G., Andrews B., Vallis Y., McMahon H.T. A flat BAR protein promotes actin polymerization at the base of Clathrin-coated pits. Cell. 2018;174:325–337. doi: 10.1016/j.cell.2018.05.020. e314. PubMed DOI PMC
Barr V.A., Bunnell S.C. Interference reflection microscopy. Curr Protoc Cell Biol. 2009;45:4.23.1–4.23.19. doi: 10.1002/0471143030.cb0423s45. PubMed DOI PMC
Barry N.P., Bretscher M.S. Dictyostelium amoebae and neutrophils can swim. Proc. Natl. Acad. Sci. USA. 2010;107:11376–11380. doi: 10.1073/pnas.1006327107. PubMed DOI PMC
Benesch S., Lommel S., Steffen A., Stradal T.E., Scaplehorn N., Way M., Wehland J., Rottner K. Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J. Biol. Chem. 2002;277:37771–37776. doi: 10.1074/jbc.M204145200. PubMed DOI
Berg S., Kutra D., Kroeger T., Straehle C.N., Kausler B.X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods. 2019;16:1226–1232. doi: 10.1038/s41592-019-0582-9. PubMed DOI
Blumenthal D., Chandra V., Avery L., Burkhardt J.K. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. Elife. 2020;9:e55995. doi: 10.7554/eLife.55995. PubMed DOI PMC
Bouma G., Burns S., Thrasher A.J. Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood. 2007;110:4278–4284. doi: 10.1182/blood-2007-06-096875. PubMed DOI
Bouma G., Burns S.O., Thrasher A.J. Wiskott-Aldrich syndrome: immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology. 2009;214:778–790. doi: 10.1016/j.imbio.2009.06.009. PubMed DOI PMC
Bovellan M., Romeo Y., Biro M., Boden A., Chugh P., Yonis A., Vaghela M., Fritzsche M., Moulding D., Thorogate R., et al. Cellular control of cortical actin nucleation. Curr. Biol. 2014;24:1628–1635. doi: 10.1016/j.cub.2014.05.069. PubMed DOI PMC
Brunetti R.M., Kockelkoren G., Raghavan P., Bell G.R.R., Britain D., Puri N., Collins S.R., Leonetti M.D., Stamou D., Weiner O.D. WASP links substrate topology and cell polarity to guide neutrophil migration. bioRxiv. 2021 doi: 10.1101/2021.05.12.443722. PubMed DOI PMC
Cáceres R., Bojanala N., Kelley L.C., Dreier J., Manzi J., Di Federico F., Chi Q., Risler T., Testa I., Sherwood D.R., Plastino J. Forces drive basement membrane invasion in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 2018;115:11537–11542. doi: 10.1073/pnas.1808760115. PubMed DOI PMC
Carman C.V., Sage P.T., Sciuto T.E., de la Fuente M.A., Geha R.S., Ochs H.D., Dvorak H.F., Dvorak A.M., Springer T.A. Transcellular diapedesis is initiated by invasive podosomes. Immunity. 2007;26:784–797. doi: 10.1016/j.immuni.2007.04.015. PubMed DOI PMC
Collins A., Warrington A., Taylor K.A., Svitkina T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 2011;21:1167–1175. doi: 10.1016/j.cub.2011.05.048. PubMed DOI PMC
Croft D.R., Coleman M.L., Li S., Robertson D., Sullivan T., Stewart C.L., Olson M.F. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J. Cell Biol. 2005;168:245–255. doi: 10.1083/jcb.200409049. PubMed DOI PMC
de Noronha S., Hardy S., Sinclair J., Blundell M.P., Strid J., Schulz O., Zwirner J., Jones G.E., Katz D.R., Kinnon C., Thrasher A.J. Impaired dendritic-cell homing in vivo in the absence of Wiskott-Aldrich syndrome protein. Blood. 2005;105:1590–1597. doi: 10.1182/blood-2004-06-2332. PubMed DOI
Ferguson J.P., Huber S.D., Willy N.M., Aygün E., Goker S., Atabey T., Kural C. Mechanoregulation of clathrin-mediated endocytosis. J. Cell Sci. 2017;130:3631–3636. doi: 10.1242/jcs.205930. PubMed DOI PMC
Friedl P., Wolf K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 2010;188:11–19. doi: 10.1083/jcb.200909003. PubMed DOI PMC
Fritz-Laylin L.K., Lord S.J., Kakley M., Mullins R.D. Concise language promotes clear thinking about cell shape and locomotion. BioEssays. 2018;40:e1700225. doi: 10.1002/bies.201700225. PubMed DOI PMC
Fritz-Laylin L.K., Lord S.J., Mullins R.D. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J. Cell Biol. 2017;216:1673–1688. doi: 10.1083/jcb.201701074. PubMed DOI PMC
Fritz-Laylin L.K., Riel-Mehan M., Chen B.C., Lord S.J., Goddard T.D., Ferrin T.E., Nicholson-Dykstra S.M., Higgs H., Johnson G.T., Betzig E., Mullins R.D. Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes. Elife. 2017;6:e26990. doi: 10.7554/eLife.26990. PubMed DOI PMC
Gérard A., Patino-Lopez G., Beemiller P., Nambiar R., Ben-Aissa K., Liu Y., Totah F.J., Tyska M.J., Shaw S., Krummel M.F. Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g. Cell. 2014;158:492–505. doi: 10.1016/j.cell.2014.05.044. PubMed DOI PMC
Graham D.M., Andersen T., Sharek L., Uzer G., Rothenberg K., Hoffman B.D., Rubin J., Balland M., Bear J.E., Burridge K. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J. Cell Biol. 2018;217:895–914. doi: 10.1083/jcb.201706097. PubMed DOI PMC
Graziano B.R., Weiner O.D. Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr. Opin. Cell Biol. 2014;30:60–67. doi: 10.1016/j.ceb.2014.06.007. PubMed DOI PMC
Guimarães C.F., Gasperini L., Marques A.P., Reis R.L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 2020;5:351–370. doi: 10.1038/s41578-019-0169-1. DOI
Heinemann F., Doschke H., Radmacher M. Keratocyte lamellipodial protrusion is characterized by a concave force-velocity relation. Biophys. J. 2011;100:1420–1427. doi: 10.1016/j.bpj.2011.01.063. PubMed DOI PMC
Hons M., Kopf A., Hauschild R., Leithner A., Gaertner F., Abe J., Renkawitz J., Stein J.V., Sixt M. Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nat. Immunol. 2018;19:606–616. doi: 10.1038/s41590-018-0109-z. PubMed DOI
Hu J., Chen S., Hu W., Lü S., Long M. Mechanical point loading induces cortex stiffening and actin reorganization. Biophys. J. 2019;117:1405–1418. doi: 10.1016/j.bpj.2019.09.012. PubMed DOI PMC
Kelley L.C., Chi Q., Cáceres R., Hastie E., Schindler A.J., Jiang Y., Matus D.Q., Plastino J., Sherwood D.R. Adaptive F-actin polymerization and localized ATP production drive basement membrane invasion in the absence of MMPs. Dev. Cell. 2019;48:313–328. doi: 10.1016/j.devcel.2018.12.018. e318. PubMed DOI PMC
Koduru S., Kumar L., Massaad M.J., Ramesh N., Le Bras S., Ozcan E., Oyoshi M.K., Kaku M., Fujiwara Y., Kremer L., et al. Cdc42 interacting protein 4 (CIP4) is essential for integrin-dependent T-cell trafficking. Proc. Natl. Acad. Sci. USA. 2010;107:16252–16256. doi: 10.1073/pnas.1002747107. PubMed DOI PMC
Krause M., Gautreau A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 2014;15:577–590. doi: 10.1038/nrm3861. PubMed DOI
Kremer J.R., Mastronarde D.N., McIntosh J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI
Krummel M.F., Bartumeus F., Gérard A. T cell migration, search strategies and mechanisms. Nat. Rev. Immunol. 2016;16:193–201. doi: 10.1038/nri.2015.16. PubMed DOI PMC
Kumari S., Depoil D., Martinelli R., Judokusumo E., Carmona G., Gertler F.B., Kam L.C., Carman C.V., Burkhardt J.K., Irvine D.J., Dustin M.L. Actin foci facilitate activation of the phospholipase C-gamma in primary T lymphocytes via the WASP pathway. Elife. 2015;4:e04953. doi: 10.7554/eLife.04953. PubMed DOI PMC
Laevsky G., Knecht D.A. Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J. Cell Sci. 2003;116:3761–3770. doi: 10.1242/jcs.00684. PubMed DOI
Lai F.P., Szczodrak M., Block J., Faix J., Breitsprecher D., Mannherz H.G., Stradal T.E., Dunn G.A., Small J.V., Rottner K. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 2008;27:982–992. doi: 10.1038/emboj.2008.34. PubMed DOI PMC
Lämmermann T., Bader B.L., Monkley S.J., Worbs T., Wedlich-Söldner R., Hirsch K., Keller M., Förster R., Critchley D.R., Fässler R., Sixt M. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008;453:51–55. doi: 10.1038/nature06887. PubMed DOI
Lang N.R., Skodzek K., Hurst S., Mainka A., Steinwachs J., Schneider J., Aifantis K.E., Fabry B. Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomater. 2015;13:61–67. doi: 10.1016/j.actbio.2014.11.003. PubMed DOI PMC
Laplaud V., Levernier N., Pineau J., Roman M.S., Barbier L., Sáez P.J., Lennon-Duménil A.-M., Vargas P., Kruse K., du Roure O., et al. Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. Sci. Adv. 2021;7:eabe3640. doi: 10.1126/sciadv.abe3640. PubMed DOI PMC
Leithner A., Eichner A., Müller J., Reversat A., Brown M., Schwarz J., Merrin J., de Gorter D.J., Schur F., Bayerl J., et al. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nat. Cell Biol. 2016;18:1253–1259. doi: 10.1038/ncb3426. PubMed DOI
Leithner A., Renkawitz J., De Vries I., Hauschild R., Häcker H., Sixt M. Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration. Eur. J. Immunol. 2018;48:1074–1077. doi: 10.1002/eji.201747358. PubMed DOI
Linder S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 2007;17:107–117. doi: 10.1016/j.tcb.2007.01.002. PubMed DOI
Lomakin A.J., Cattin C.J., Cuvelier D., Alraies Z., Molina M., Nader G.P.F., Srivastava N., Sáez P.J., Garcia-Arcos J.M., Zhitnyak I.Y., et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science. 2020;370:eaba2894. doi: 10.1126/science.aba2894. PubMed DOI PMC
Lou H.Y., Zhao W., Li X., Duan L., Powers A., Akamatsu M., Santoro F., McGuire A.F., Cui Y., Drubin D.G., Cui B. Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc. Natl. Acad. Sci. USA. 2019;116:23143–23151. doi: 10.1073/pnas.1910166116. PubMed DOI PMC
Machesky L.M., Insall R.H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 1998;8:1347–1356. doi: 10.1016/s0960-9822(98)00015-3. PubMed DOI
Maiuri P., Rupprecht J.F., Wieser S., Ruprecht V., Bénichou O., Carpi N., Coppey M., De Beco S., Gov N., Heisenberg C.-P., et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 2015;161:374–386. doi: 10.1016/j.cell.2015.01.056. PubMed DOI
Mastronarde D.N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 2003;9:1182–1183. doi: 10.1017/s1431927603445911. DOI
Mogilner A. On the edge: modeling protrusion. Curr. Opin. Cell Biol. 2006;18:32–39. doi: 10.1016/j.ceb.2005.11.001. PubMed DOI
Mueller J., Szep G., Nemethova M., de Vries I., Lieber A.D., Winkler C., Kruse K., Small J.V., Schmeiser C., Keren K., et al. Load adaptation of lamellipodial actin networks. Cell. 2017;171:188–200. doi: 10.1016/j.cell.2017.07.051. e116. PubMed DOI
Murphy D.A., Courtneidge S.A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 2011;12:413–426. doi: 10.1038/nrm3141. PubMed DOI PMC
Ochs H.D. The Wiskott-Aldrich syndrome. Clin. Rev. Allergy Immunol. 2001;20:61–86. doi: 10.1385/CRIAI:20:1:61. PubMed DOI
Paluch E.K., Aspalter I.M., Sixt M. Focal adhesion-independent cell migration. Annu. Rev. Cell Dev. Biol. 2016;32:469–490. doi: 10.1146/annurev-cellbio-111315-125341. PubMed DOI
Pewsey A., Neuhauser M., Ruxton G.D. Oxford University Press; 2013. Circular Statistics in R.
Pflicke H., Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 2009;206:2925–2935. doi: 10.1084/jem.20091739. PubMed DOI PMC
Picco A., Mund M., Ries J., Nédélec F., Kaksonen M. Visualizing the functional architecture of the endocytic machinery. Elife. 2015;4:e04535. doi: 10.7554/eLife.04535. PubMed DOI PMC
Pincus Z., Theriot J.A. Comparison of quantitative methods for cell-shape analysis. J. Microsc. 2007;227:140–156. doi: 10.1111/j.1365-2818.2007.01799.x. PubMed DOI
Plotnikov S.V., Waterman C.M. Guiding cell migration by tugging. Curr. Opin. Cell Biol. 2013;25:619–626. doi: 10.1016/j.ceb.2013.06.003. PubMed DOI PMC
Poulter N.S., Pollitt A.Y., Davies A., Malinova D., Nash G.B., Hannon M.J., Pikramenou Z., Rappoport J.Z., Hartwig J.H., Owen D.M., et al. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and Arp2/3 complex. Nat. Commun. 2015;6:7254. doi: 10.1038/ncomms8254. PubMed DOI PMC
Pulecio J., Tagliani E., Scholer A., Prete F., Fetler L., Burrone O.R., Benvenuti F. Expression of Wiskott-Aldrich syndrome protein in dendritic cells regulates synapse formation and activation of naive CD8+ T cells. J. Immunol. 2008;181:1135–1142. doi: 10.4049/jimmunol.181.2.1135. PubMed DOI
Redecke V., Wu R., Zhou J., Finkelstein D., Chaturvedi V., High A.A., Häcker H. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat. Methods. 2013;10:795–803. doi: 10.1038/nmeth.2510. PubMed DOI PMC
Renkawitz J., Kopf A., Stopp J., de Vries I., Driscoll M.K., Merrin J., Hauschild R., Welf E.S., Danuser G., Fiolka R., Sixt M. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature. 2019;568:546–550. doi: 10.1038/s41586-019-1087-5. PubMed DOI PMC
Renkawitz J., Schumann K., Weber M., Lämmermann T., Pflicke H., Piel M., Polleux J., Spatz J.P., Sixt M. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 2009;11:1438–1443. doi: 10.1038/ncb1992. PubMed DOI
Revach O.Y., Weiner A., Rechav K., Sabanay I., Livne A., Geiger B. Mechanical interplay between invadopodia and the nucleus in cultured cancer cells. Sci. Rep. 2015;5:9466. doi: 10.1038/srep09466. PubMed DOI PMC
Reversat A., Gaertner F., Merrin J., Stopp J., Tasciyan S., Aguilera J., de Vries I., Hauschild R., Hons M., Piel M., et al. Cellular locomotion using environmental topography. Nature. 2020;582:582–585. doi: 10.1038/s41586-020-2283-z. PubMed DOI
Riedl J., Crevenna A.H., Kessenbrock K., Yu J.H., Neukirchen D., Bista M., Bradke F., Jenne D., Holak T.A., Werb Z., et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods. 2008;5:605–607. doi: 10.1038/nmeth.1220. PubMed DOI PMC
Riedl J., Flynn K.C., Raducanu A., Gärtner F., Beck G., Bösl M., Bradke F., Massberg S., Aszodi A., Sixt M., Wedlich-Soldner R. Lifeact mice for studying F-actin dynamics. Nat. Methods. 2010;7:168–169. doi: 10.1038/nmeth0310-168. PubMed DOI
Rotty J.D., Wu C., Bear J.E. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat. Rev. Mol. Cell Biol. 2013;14:7–12. doi: 10.1038/nrm3492. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Sens K.L., Zhang S., Jin P., Duan R., Zhang G., Luo F., Parachini L., Chen E.H. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 2010;191:1013–1027. doi: 10.1083/jcb.201006006. PubMed DOI PMC
Sixt M., Lämmermann T. In vitro analysis of chemotactic leukocyte migration in 3D environments. Methods Mol. Biol. 2011;769:149–165. doi: 10.1007/978-1-61779-207-6_11. PubMed DOI
Snapper S.B., Meelu P., Nguyen D., Stockton B.M., Bozza P., Alt F.W., Rosen F.S., von Andrian U.H., Klein C. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol. 2005;77:993–998. doi: 10.1189/jlb.0804444. PubMed DOI
Stewart S.A., Dykxhoorn D.M., Palliser D., Mizuno H., Yu E.Y., An D.S., Sabatini D.M., Chen I.S., Hahn W.C., Sharp P.A., et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 2003;9:493–501. doi: 10.1261/rna.2192803. PubMed DOI PMC
Suetsugu S., Gautreau A. Synergistic BAR-NPF interactions in actin-driven membrane remodeling. Trends Cell Biol. 2012;22:141–150. doi: 10.1016/j.tcb.2012.01.001. PubMed DOI
Svitkina T.M. Ultrastructure of the actin cytoskeleton. Curr. Opin. Cell Biol. 2018;54:1–8. doi: 10.1016/j.ceb.2018.02.007. PubMed DOI PMC
Taylor M.J., Perrais D., Merrifield C.J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 2011;9:e1000604. doi: 10.1371/journal.pbio.1000604. PubMed DOI PMC
Thiam H.R., Vargas P., Carpi N., Crespo C.L., Raab M., Terriac E., King M.C., Jacobelli J., Alberts A.S., Stradal T., et al. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 2016;7:10997. doi: 10.1038/ncomms10997. PubMed DOI PMC
Thrasher A.J., Burns S.O. WASP: a key immunological multitasker. Nat. Rev. Immunol. 2010;10:182–192. doi: 10.1038/nri2724. PubMed DOI
Tinevez J.Y., Perry N., Schindelin J., Hoopes G.M., Reynolds G.D., Laplantine E., Bednarek S.Y., Shorte S.L., Eliceiri K.W. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90. doi: 10.1016/j.ymeth.2016.09.016. PubMed DOI
Tsai T.Y., Collins S.R., Chan C.K., Hadjitheodorou A., Lam P.Y., Lou S.S., Yang H.W., Jorgensen J., Ellett F., Irimia D., et al. Efficient front-rear coupling in neutrophil chemotaxis by dynamic myosin II localization. Dev. Cell. 2019;49:189–205. doi: 10.1016/j.devcel.2019.03.025. e186. PubMed DOI PMC
van den Berg M.C.W., MacCarthy-Morrogh L., Carter D., Morris J., Ribeiro Bravo I., Feng Y., Martin P. Proteolytic and opportunistic breaching of the basement membrane zone by immune cells during tumor initiation. Cell Rep. 2019;27:2837–2846. doi: 10.1016/j.celrep.2019.05.029. e2834. PubMed DOI PMC
van den Dries K., Linder S., Maridonneau-Parini I., Poincloux R. Probing the mechanical landscape – new insights into podosome architecture and mechanics. J. Cell Sci. 2019;132:jcs236828. doi: 10.1242/jcs.236828. PubMed DOI
Veltman D.M., King J.S., Machesky L.M., Insall R.H. SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods. J. Cell Biol. 2012;198:501–508. doi: 10.1083/jcb.201205058. PubMed DOI PMC
Venturini V., Pezzano F., Català Castro F., Häkkinen H.M., Jiménez-Delgado S., Colomer-Rosell M., Marro M., Tolosa-Ramon Q., Paz-López S., Valverde M.A., et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science. 2020;370 doi: 10.1126/science.aba2644. PubMed DOI
Walton J. Lead aspartate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem. 1979;27:1337–1342. doi: 10.1177/27.10.512319. PubMed DOI
Weigelin B., Bakker G.J., Friedl P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 2016;129:245–255. doi: 10.1242/jcs.152272. PubMed DOI
Weiner O.D., Marganski W.A., Wu L.F., Altschuler S.J., Kirschner M.W. An actin-based wave generator organizes cell motility. PLoS Biol. 2007;5:e221. doi: 10.1371/journal.pbio.0050221. PubMed DOI PMC
Wolf K., Te Lindert M., Krause M., Alexander S., Te Riet J., Willis A.L., Hoffman R.M., Figdor C.G., Weiss S.J., Friedl P. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 2013;201:1069–1084. doi: 10.1083/jcb.201210152. PubMed DOI PMC
Worbs T., Hammerschmidt S.I., Förster R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 2017;17:30–48. doi: 10.1038/nri.2016.116. PubMed DOI
Yu C.H., Rafiq N.B., Krishnasamy A., Hartman K.L., Jones G.E., Bershadsky A.D., Sheetz M.P. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep. 2013;5:1456–1468. doi: 10.1016/j.celrep.2013.10.040. PubMed DOI PMC
Zhang H., Schaff U.Y., Green C.E., Chen H., Sarantos M.R., Hu Y., Wara D., Simon S.I., Lowell C.A. Impaired integrin-dependent function in Wiskott-Aldrich syndrome protein-deficient murine and human neutrophils. Immunity. 2006;25:285–295. doi: 10.1016/j.immuni.2006.06.014. PubMed DOI PMC
Zhu Z., Chai Y., Jiang Y., Li W., Hu H., Li W., Wu J.W., Wang Z.X., Huang S., Ou G. Functional coordination of WAVE and WASP in C. elegans neuroblast migration. Dev. Cell. 2016;39:224–238. doi: 10.1016/j.devcel.2016.09.029. PubMed DOI