Electrospun Antibacterial Nanomaterials for Wound Dressings Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
SGS-2021-3027
Technical University of Liberec
FV30148
Ministry of Industry and Trade
PubMed
34940410
PubMed Central
PMC8707140
DOI
10.3390/membranes11120908
PII: membranes11120908
Knihovny.cz E-resources
- Keywords
- antibacterial, biomedical, electrospinning, nanofiber, nanomaterial, tissue engineering, wound dressing,
- Publication type
- Journal Article MeSH
- Review MeSH
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
See more in PubMed
Boer M., Duchnik E., Maleszka R., Marchlewicz M. Structural and Biophysical Characteristics of Human Skin in Maintaining Proper Epidermal Barrier Function. Postepy Dermatol. Alergol. 2016;33:1–5. doi: 10.5114/pdia.2015.48037. PubMed DOI PMC
Wysocki A.B. Skin Anatomy, Physiology, and Pathophysiology. Nurs. Clin. N. Am. 1999;34:777–797. PubMed
Kolarsick P.A.J., Kolarsick M.A., Goodwin C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses’ Assoc. 2011;3:203–213. doi: 10.1097/JDN.0b013e3182274a98. DOI
Chrintz H., Vibits H., Cordtz T.O., Harreby J.S., Waaddegaard P., Larsen S.O. Need for Surgical Wound Dressing. Br. J. Surg. 1989;76:204–205. doi: 10.1002/bjs.1800760232. PubMed DOI
Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. Recent Advances on Antimicrobial Wound Dressing: A Review. Eur. J. Pharm. Biopharm. 2018;127:130–141. doi: 10.1016/j.ejpb.2018.02.022. PubMed DOI
Chen K., Wang F., Liu S., Wu X., Xu L., Zhang D. In Situ Reduction of Silver Nanoparticles by Sodium Alginate to Obtain Silver-Loaded Composite Wound Dressing with Enhanced Mechanical and Antimicrobial Property. Int. J. Biol. Macromol. 2020;148:501–509. doi: 10.1016/j.ijbiomac.2020.01.156. PubMed DOI
Wang S., Wang Z., Xu C., Cui L., Meng G., Yang S., Wu J., Liu Z., Guo X. PEG-α-CD/AM/Liposome @amoxicillin Double Network Hydrogel Wound Dressing—Multiple Barriers for Long-Term Drug Release. J. Biomater. Appl. 2021;35:1085–1095. doi: 10.1177/0885328221991948. PubMed DOI
Li H., Wei X., Yi X., Tang S., He J., Huang Y., Cheng F. Antibacterial, Hemostasis, Adhesive, Self-Healing Polysaccharides-Based Composite Hydrogel Wound Dressing for the Prevention and Treatment of Postoperative Adhesion. Mater. Sci. Eng. C. 2021;123:111978. doi: 10.1016/j.msec.2021.111978. PubMed DOI
Zhang J., Fang W., Zhang F., Gao S., Guo Y., Li J., Zhu Y., Zhang Y., Jin J. Ultrathin Microporous Membrane with High Oil Intrusion Pressure for Effective Oil/Water Separation. J. Membr. Sci. 2020;608:118201. doi: 10.1016/j.memsci.2020.118201. DOI
Li D., Fei X., Wang K., Xu L., Wang Y., Tian J., Li Y. A Novel Self-Healing Triple Physical Cross-Linked Hydrogel for Antibacterial Dressing. J. Mater. Chem. B. 2021;9:6844–6855. doi: 10.1039/D1TB01257F. PubMed DOI
Shalumon K.T., Sheu C., Chen C.-H., Chen S.-H., Jose G., Kuo C.-Y., Chen J.-P. Multi-Functional Electrospun Antibacterial Core-Shell Nanofibrous Membranes for Prolonged Prevention of Post-Surgical Tendon Adhesion and Inflammation. Acta Biomater. 2018;72:121–136. doi: 10.1016/j.actbio.2018.03.044. PubMed DOI
Pan H., Fan D., Duan Z., Zhu C., Fu R., Li X. Non-Stick Hemostasis Hydrogels as Dressings with Bacterial Barrier Activity for Cutaneous Wound Healing. Mater. Sci. Eng. C. 2019;105:110118. doi: 10.1016/j.msec.2019.110118. PubMed DOI
Alberti T., Coelho D.S., Voytena A., Pitz H., de Pra M., Mazzarino L., Kuhnen S., Ribeiro-do-Valle R.M., Maraschin M., Veleirinho B. Nanotechnology: A Promising Tool towards Wound Healing. Curr. Pharm. Des. 2017;23:3515–3528. doi: 10.2174/1381612823666170503152550. PubMed DOI
Newman M.D., Stotland M., Ellis J.I. The Safety of Nanosized Particles in Titanium Dioxide–and Zinc Oxide–Based Sunscreens. J. Am. Acad. Dermatol. 2009;61:685–692. doi: 10.1016/j.jaad.2009.02.051. PubMed DOI
Kalashnikova I., Das S., Seal S. Nanomaterials for Wound Healing: Scope and Advancement. Nanomedicine. 2015;10:2593–2612. doi: 10.2217/nnm.15.82. PubMed DOI
Hubbell J.A. Chapter 21—Matrix Effects. In: Lanza R., Langer R., Vacanti J., editors. Principles of Tissue Engineering. 4th ed. Academic Press; Boston, MA, USA: 2014. pp. 407–421.
Rosenberg M.D. Cell Guidance by Alterations in Monomolecular Films. Science. 1963;139:411–412. doi: 10.1126/science.139.3553.411. PubMed DOI
Laurencin C.T., Ambrosio A.M.A., Borden M.D., Cooper J.A., Jr. Tissue Engineering: Orthopedic Applications. Annu. Rev. Biomed. Eng. 1999;1:19–46. doi: 10.1146/annurev.bioeng.1.1.19. PubMed DOI
Tanzli E., Ehrmann A. Electrospun Nanofibrous Membranes for Tissue Engineering and Cell Growth. Appl. Sci. 2021;11:6929. doi: 10.3390/app11156929. DOI
Younes P.-S., Mehdi D., Abbas M., Amir F., Roghayeh S., Nosratollah Z. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings. Mini-Rev. Med. Chem. 2018;18:414–427. PubMed
Tiyek I., Gunduz A., Yalcinkaya F., Chaloupek J. Influence of Electrospinning Parameters on the Hydrophilicity of Electrospun Polycaprolactone Nanofibres. J. Nanosci. Nanotechnol. 2019;19:7251–7260. doi: 10.1166/jnn.2019.16605. PubMed DOI
Abrigo M., McArthur S.L., Kingshott P. Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects. Macromol. Biosci. 2014;14:772–792. doi: 10.1002/mabi.201300561. PubMed DOI
Liu Y., Li T., Han Y., Li F., Liu Y. Recent Development of Electrospun Wound Dressing. Curr. Opin. Biomed. Eng. 2021;17:100247. doi: 10.1016/j.cobme.2020.100247. DOI
Dodero A., Brunengo E., Alloisio M., Sionkowska A., Vicini S., Castellano M. Chitosan-Based Electrospun Membranes: Effects of Solution Viscosity, Coagulant and Crosslinker. Carbohydr. Polym. 2020;235:115976. doi: 10.1016/j.carbpol.2020.115976. PubMed DOI
Olkhov A.A., Staroverova O.V., Kuherenko E.L., Iordanskii A.L. Effect of Electrospinning Solution Parameters on the Properties of Nonvolven Fibrous Material Based on Polyhydroxibutyrate. J. Phys. Conf. Ser. 2020;1431:012029. doi: 10.1088/1742-6596/1431/1/012029. DOI
Fallahi D., Rafizadeh M., Mohammadi N., Vahidi B. Effects of Feed Rate and Solution Conductivity on Jet Current and Fiber Diameter in Electrospinning of Polyacrylonitrile Solutions. E-Polymers. 2009;9 doi: 10.1515/epoly.2009.9.1.1250. DOI
Angammana C., Jayaram S. Analysis of the Effects of Solution Conductivity on Electrospinning Process and Fiber Morphology. IEEE Trans. Ind. Appl. 2011;47:1109–1117. doi: 10.1109/TIA.2011.2127431. DOI
Afifi A.M., Yamane H., Kimura Y. Effect of Polymer Molecular Weight on the Electrospinning of Polylactides in Entangled and Aligned Fiber Forms. Sen’i Gakkaishi. 2010;66:35–42. doi: 10.2115/fiber.66.35. DOI
Park B.K., Um I.C. Effect of Molecular Weight on Electro-Spinning Performance of Regenerated Silk. Int. J. Biol. Macromol. 2018;106:1166–1172. doi: 10.1016/j.ijbiomac.2017.08.115. PubMed DOI
Liu Y., Dong L., Fan J., Wang R., Yu J.-Y. Effect of Applied Voltage on Diameter and Morphology of Ultrafine Fibers in Bubble Electrospinning. J. Appl. Polym. Sci. 2011;120:592–598. doi: 10.1002/app.33203. DOI
Yang G.Z., Li H.P., Yang J.H., Wan J., Yu D.G. Influence of Working Temperature on the Formation of Electrospun Polymer Nanofibers. Nanoscale Res. Lett. 2017;12:1–10. doi: 10.1186/s11671-016-1824-8. PubMed DOI PMC
Levitt A., Vallett R., Dion G., Schauer C. Effect of Electrospinning Processing Variables on Polyacrylonitrile Nanoyarns. J. Appl. Polym. Sci. 2018;135:46404. doi: 10.1002/app.46404. DOI
Nezarati R.M., Eifert M.B., Cosgriff-Hernandez E. Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology. Tissue Eng. Part C Methods. 2013;19:810–819. doi: 10.1089/ten.tec.2012.0671. PubMed DOI PMC
Baykara T., Taylan G. Coaxial Electrospinning of PVA/Nigella Seed Oil Nanofibers: Processing and Morphological Characterization. Mater. Sci. Eng. B. 2021;265:115012. doi: 10.1016/j.mseb.2020.115012. DOI
Daenicke J., Lämmlein M., Steinhübl F., Schubert D.W. Revealing Key Parameters to Minimize the Diameter of Polypropylene Fibers Produced in the Melt Electrospinning Process. E-Polymers. 2019;19:330–340. doi: 10.1515/epoly-2019-0034. DOI
Deitzel J.M., Kleinmeyer J., Harris D., Beck Tan N.C. The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer. 2001;42:261–272. doi: 10.1016/S0032-3861(00)00250-0. DOI
Geng X., Kwon O.-H., Jang J. Electrospinning of Chitosan Dissolved in Concentrated Acetic Acid Solution. Biomaterials. 2005;26:5427–5432. doi: 10.1016/j.biomaterials.2005.01.066. PubMed DOI
Thompson C.J., Chase G.G., Yarin A.L., Reneker D.H. Effects of Parameters on Nanofiber Diameter Determined from Electrospinning Model. Polymer. 2007;48:6913–6922. doi: 10.1016/j.polymer.2007.09.017. DOI
Beachley V., Wen X. Effect of Electrospinning Parameters on the Nanofiber Diameter and Length. Mater. Sci. Eng. C Mater. Biol. Appl. 2009;29:663–668. doi: 10.1016/j.msec.2008.10.037. PubMed DOI PMC
Jabur A.R., Aldain S.M.M. Effects of Ambient Temperature and Needle to Collector Distance on PVA Nanofibers Diameter Obtained from Electrospinning Technique. [(accessed on 18 October 2021)]. Available online: https://www.semanticscholar.org/paper/Effects-of-Ambient-Temperature-and-Needle-to-on-PVA-Jabur-Aldain/0104988ab6c79c6e95c15d1b3ea589858caa1ed7.
Zhang S., Liu H., Tang N., Yu J., Ding B. Chapter 8—Electronetting. In: Ding B., Wang X., Yu J., editors. Electrospinning: Nanofabrication and Applications. William Andrew Publishing; Norwich, NY, USA: 2019. pp. 249–282. Micro and Nano Technologies.
De Vrieze S., Van Camp T., Nelvig A., Hagström B., Westbroek P., De Clerck K. The Effect of Temperature and Humidity on Electrospinning. J. Mater. Sci. 2009;44:1357–1362. doi: 10.1007/s10853-008-3010-6. DOI
Karaman O., Şen M., Demirci E.A. 11—Electrospun scaffolds for vascular tissue engineering. In: Uyar T., Kny E., editors. Electrospun Materials for Tissue Engineering and Biomedical Applications. Woodhead Publishing; Sawston, UK: 2017. pp. 261–287.
Torres-Martínez E.J., Bravo J.M.C., Medina A.S., González G.L.P., Gómez L.J.V. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018;15:1360–1374. doi: 10.2174/1567201815666180723114326. PubMed DOI PMC
Eren Boncu T., Ozdemir N., Uskudar Guclu A. Electrospinning of Linezolid Loaded PLGA Nanofibers: Effect of Solvents on Its Spinnability, Drug Delivery, Mechanical Properties, and Antibacterial Activities. Drug Dev. Ind. Pharm. 2020;46:109–121. doi: 10.1080/03639045.2019.1706550. PubMed DOI
Khalf A., Madihally S.V. Recent Advances in Multiaxial Electrospinning for Drug Delivery. Eur. J. Pharm. Biopharm. 2017;112:1–17. doi: 10.1016/j.ejpb.2016.11.010. PubMed DOI
Akhmetova A., Heinz A. Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics. 2021;13:4. doi: 10.3390/pharmaceutics13010004. PubMed DOI PMC
Bjarnsholt T. The role of bacterial biofilms in chronic infections. Apmis. 2013;121:1–58. doi: 10.1111/apm.12099. PubMed DOI
Wang L., Hu C., Shao L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A. Biomaterials Approaches to Treating Implant-Associated Osteomyelitis. Biomaterials. 2016;81:58–71. doi: 10.1016/j.biomaterials.2015.12.012. PubMed DOI PMC
Tan X.W., Goh T.W., Saraswathi P., Nyein C.L., Setiawan M., Riau A., Lakshminarayanan R., Liu S., Tan D., Beuerman R.W., et al. Effectiveness of Antimicrobial Peptide Immobilization for Preventing Perioperative Cornea Implant-Associated Bacterial Infection. Antimicrob. Agents Chemother. 2014;58:5229–5238. doi: 10.1128/AAC.02859-14. PubMed DOI PMC
Wei Z., Wang L., Zhang S., Chen T., Yang J., Long S., Wang X. Electrospun Antibacterial Nanofibers for Wound Dressings and Tissue Medicinal Fields: A Review. J. Innov. Opt. Health Sci. 2020;13:2030012. doi: 10.1142/S1793545820300128. DOI
Ragelle H., Danhier F., Préat V., Langer R., Anderson D.G. Nanoparticle-Based Drug Delivery Systems: A Commercial and Regulatory Outlook as the Field Matures. Expert Opin. Drug Deliv. 2017;14:851–864. doi: 10.1080/17425247.2016.1244187. PubMed DOI
Huang Z.-M., Zhang Y.-Z., Kotaki M., Ramakrishna S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI
Jones J.R. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater. 2013;9:4457–4486. doi: 10.1016/j.actbio.2012.08.023. PubMed DOI
Reneker D.H., Yarin A.L., Zussman E., Xu H. Advances in Applied Mechanics. Volume 41. Elsevier; Amsterdam, The Netherlands: 2007. Electrospinning of Nanofibers from Polymer Solutions and Melts; pp. 43–346.
Liu Z.-Y., Wei Z.-M., Wang X.-J., Zhang G., Long S.-R., Yang J. Preparation and Characterization of Multi-Layer Poly (Arylene Sulfide Sulfone) Nanofibers Membranes for Liquid Filtration. Chin. J. Polym. Sci. 2019;37:1248–1256. doi: 10.1007/s10118-019-2280-6. DOI
Wehlage D., Blattner H., Sabantina L., Böttjer R., Grothe T., Rattenholl A., Gudermann F., Lütkemeyer D., Ehrmann A. Sterilization of PAN/Gelatin Nanofibrous Mats for Cell Growth. Tekstilec. 2019;62:78–88. doi: 10.14502/Tekstilec2019.62.78-88. DOI
Percival N.J. Classification of Wounds and Their Management. Surgery. 2002;20:114–117. doi: 10.1383/surg.20.5.114.14626. DOI
Chen S., Zhang M., Shao X., Wang X., Zhang L., Xu P., Zhong W., Zhang L., Xing M., Zhang L. A Laminin Mimetic Peptide SIKVAV-Conjugated Chitosan Hydrogel Promoting Wound Healing by Enhancing Angiogenesis, Re-Epithelialization and Collagen Deposition. J. Mater. Chem. B. 2015;3:6798–6804. doi: 10.1039/C5TB00842E. PubMed DOI
Kuna V.K., Padma A.M., Håkansson J., Nygren J., Sjöback R., Petronis S., Sumitran-Holgersson S. Significantly Accelerated Wound Healing of Full-Thickness Skin Using a Novel Composite Gel of Porcine Acellular Dermal Matrix and Human Peripheral Blood Cells. Cell Transplant. 2017;26:293–307. doi: 10.3727/096368916X692690. PubMed DOI PMC
Murali R., Thanikaivelan P. Bionic, Porous, Functionalized Hybrid Scaffolds with Vascular Endothelial Growth Factor Promote Rapid Wound Healing in Wistar Albino Rats. RSC Adv. 2016;6:19252–19264. doi: 10.1039/C5RA27571G. DOI
Meyer U., Handschel J., Wiesmann H.P., Meyer T., editors. Fundamentals of Tissue Engineering and Regenerative Medicine. Springer; Berlin/Heidelberg, Germany: 2009.
Greiner A., Wendorff J.H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007;46:5670–5703. doi: 10.1002/anie.200604646. PubMed DOI
Schultz G., Ladwig G., Wysocki A. Extracellular Matrix: Review of Its Roles in Acute and Chronic Wounds. World Wide Wounds. 2005;2005:1–18.
Matthews J.A., Wnek G.E., Simpson D.G., Bowlin G.L. Electrospinning of Collagen Nanofibers. Biomacromolecules. 2002;3:232–238. doi: 10.1021/bm015533u. PubMed DOI
Rho K.S., Jeong L., Lee G., Seo B.-M., Park Y.J., Hong S.-D., Roh S., Cho J.J., Park W.H., Min B.-M. Electrospinning of Collagen Nanofibers: Effects on the Behavior of Normal Human Keratinocytes and Early-Stage Wound Healing. Biomaterials. 2006;27:1452–1461. doi: 10.1016/j.biomaterials.2005.08.004. PubMed DOI
Chen J.-P., Chang G.-Y., Chen J.-K. Electrospun Collagen/Chitosan Nanofibrous Membrane as Wound Dressing. Colloids Surf. A Physicochem. Eng. Asp. 2008;313–314:183–188. doi: 10.1016/j.colsurfa.2007.04.129. DOI
Venugopal J.R., Zhang Y., Ramakrishna S. In Vitro Culture of Human Dermal Fibroblasts on Electrospun Polycaprolactone Collagen Nanofibrous Membrane. Artif. Organs. 2006;30:440–446. doi: 10.1111/j.1525-1594.2006.00239.x. PubMed DOI
Lin J., Li C., Zhao Y., Hu J., Zhang L.-M. Co-Electrospun Nanofibrous Membranes of Collagen and Zein for Wound Healing. ACS Appl. Mater. Interfaces. 2012;4:1050–1057. doi: 10.1021/am201669z. PubMed DOI
Buttafoco L., Kolkman N.G., Engbers-Buijtenhuijs P., Poot A.A., Dijkstra P.J., Vermes I., Feijen J. Electrospinning of Collagen and Elastin for Tissue Engineering Applications. Biomaterials. 2006;27:724–734. doi: 10.1016/j.biomaterials.2005.06.024. PubMed DOI
Neal R.A., McClugage S.G., Link M.C., Sefcik L.S., Ogle R.C., Botchwey E.A. Laminin Nanofiber Meshes that Mimic Morphological Properties and Bioactivity of Basement Membranes. Tissue Eng. Part C Methods. 2009;15:11–21. doi: 10.1089/ten.tec.2007.0366. PubMed DOI PMC
Chong E.J., Phan T.T., Lim I.J., Zhang Y.Z., Bay B.H., Ramakrishna S., Lim C.T. Evaluation of Electrospun PCL/Gelatin Nanofibrous Scaffold for Wound Healing and Layered Dermal Reconstitution. Acta Biomater. 2007;3:321–330. doi: 10.1016/j.actbio.2007.01.002. PubMed DOI
Duan H., Feng B., Guo X., Wang J., Zhao L., Zhou G., Liu W., Cao Y., Zhang W.J. Engineering of Epidermis Skin Grafts Using Electrospun Nanofibrous Gelatin/Polycaprolactone Membranes. Int. J. Nanomed. 2013;8:2077. doi: 10.2147/IJN.S42384. PubMed DOI PMC
Powell H.M., Boyce S.T. Fiber Density of Electrospun Gelatin Scaffolds Regulates Morphogenesis of Dermal–Epidermal Skin Substitutes. J. Biomed. Mater. Res. 2008;84:1078–1086. doi: 10.1002/jbm.a.31498. PubMed DOI
Kim S.E., Heo D.N., Lee J.B., Kim J.R., Park S.H., Jeon S.H., Kwon I.K. Electrospun Gelatin/Polyurethane Blended Nanofibers for Wound Healing. Biomed. Mater. 2009;4:044106. doi: 10.1088/1748-6041/4/4/044106. PubMed DOI
Heo D.N., Yang D.H., Lee J.B., Bae M.S., Kim J.H., Moon S.H., Chun H.J., Kim C.H., Lim H.-N., Kwon I.K. Burn-Wound Healing Effect of Gelatin/Polyurethane Nanofiber Scaffold Containing Silver-Sulfadiazine. J. Biomed. Nanotechnol. 2013;9:511–515. doi: 10.1166/jbn.2013.1509. PubMed DOI
Ji Y., Ghosh K., Shu X.Z., Li B., Sokolov J.C., Prestwich G.D., Clark R.A.F., Rafailovich M.H. Electrospun Three-Dimensional Hyaluronic Acid Nanofibrous Scaffolds. Biomaterials. 2006;27:3782–3792. doi: 10.1016/j.biomaterials.2006.02.037. PubMed DOI
Chutipakdeevong J., Ruktanonchai U.R., Supaphol P. Process Optimization of Electrospun Silk Fibroin Fiber Mat for Accelerated Wound Healing. J. Appl. Polym. Sci. 2013;130:3634–3644. doi: 10.1002/app.39611. DOI
Schneider A., Wang X.Y., Kaplan D.L., Garlick J.A., Egles C. Biofunctionalized Electrospun Silk Mats as a Topical Bioactive Dressing for Accelerated Wound Healing. Acta Biomater. 2009;5:2570–2578. doi: 10.1016/j.actbio.2008.12.013. PubMed DOI PMC
Noh H.K., Lee S.W., Kim J.-M., Oh J.-E., Kim K.-H., Chung C.-P., Choi S.-C., Park W.H., Min B.-M. Electrospinning of Chitin Nanofibers: Degradation Behavior and Cellular Response to Normal Human Keratinocytes and Fibroblasts. Biomaterials. 2006;27:3934–3944. doi: 10.1016/j.biomaterials.2006.03.016. PubMed DOI
Zhou Y., Yang D., Chen X., Xu Q., Lu F., Nie J. Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(Vinyl Alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration. Biomacromolecules. 2008;9:349–354. doi: 10.1021/bm7009015. PubMed DOI
Dhandayuthapani B., Krishnan U.M., Sethuraman S. Fabrication and Characterization of Chitosan-Gelatin Blend Nanofibers for Skin Tissue Engineering. J. Biomed. Mater. Res. 2010;94:264–272. doi: 10.1002/jbm.b.31651. PubMed DOI
Kumbar S.G., Nukavarapu S.P., James R., Nair L.S., Laurencin C.T. Electrospun Poly (Lactic Acid-Co-Glycolic Acid) Scaffolds for Skin Tissue Engineering. Biomaterials. 2008;29:4100–4107. doi: 10.1016/j.biomaterials.2008.06.028. PubMed DOI PMC
Liu S.-J., Kau Y.-C., Chou C.-Y., Chen J.-K., Wu R.-C., Yeh W.-L. Electrospun PLGA/Collagen Nanofibrous Membrane as Early-Stage Wound Dressing. J. Membr. Sci. 2010;355:53–59. doi: 10.1016/j.memsci.2010.03.012. DOI
Xie Z., Paras C.B., Weng H., Punnakitikashem P., Su L.-C., Vu K., Tang L., Yang J., Nguyen K.T. Dual Growth Factor Releasing Multi-Functional Nanofibers for Wound Healing. Acta Biomater. 2013;9:9351–9359. doi: 10.1016/j.actbio.2013.07.030. PubMed DOI PMC
Vargas E.A.T., do Vale Baracho N.C., de Brito J., de Queiroz A.A.A. Hyperbranched Polyglycerol Electrospun Nanofibers for Wound Dressing Applications. Acta Biomater. 2010;6:1069–1078. doi: 10.1016/j.actbio.2009.09.018. PubMed DOI
Carr K.E. Scanning Electron Microscope Studies of Human Skin. Br. J. Plast. Surg. 1970;23:66–72. doi: 10.1016/S0007-1226(70)80013-3. PubMed DOI
Van Zuijlen P.P.M., Ruurda J.J.B., van Veen H.A., van Marle J., van Trier A.J.M., Groenevelt F., Kreis R.W., Middelkoop E. Collagen Morphology in Human Skin and Scar Tissue: No Adaptations in Response to Mechanical Loading at Joints. Burns. 2003;29:423–431. doi: 10.1016/S0305-4179(03)00052-4. PubMed DOI
Rawlins J.M., Lam W.L., Karoo R.O., Naylor I.L., Sharpe D.T. Quantifying Collagen Type in Mature Burn Scars: A Novel Approach Using Histology and Digital Image Analysis. J. Burn. Care Res. 2006;27:60–65. doi: 10.1097/01.bcr.0000192266.14329.7b. PubMed DOI
Osman O.S., Selway J.L., Harikumar P.E., Stocker C.J., Wargent E.T., Cawthorne M.A., Jassim S., Langlands K. A Novel Method to Assess Collagen Architecture in Skin. BMC Bioinform. 2013;14:260. doi: 10.1186/1471-2105-14-260. PubMed DOI PMC
Abbasipour M., Khajavi R. Nanofiber Bundles and Yarns Production by Electrospinning: A Review. Adv. Polym. Technol. 2013;32 doi: 10.1002/adv.21363. DOI
Yousefzadeh M., Latifi M., Teo W.-E., Amani-Tehran M., Ramakrishna S. Producing Continuous Twisted Yarn from Well-Aligned Nanofibers by Water Vortex. Polym. Eng. Sci. 2011;51:323–329. doi: 10.1002/pen.21800. DOI
Ali U., Niu H., Abbas A., Shao H., Lin T. Online Stretching of Directly Electrospun Nanofiber Yarns. RSC Adv. 2016;6:30564–30569. doi: 10.1039/C6RA01856D. DOI
Khil M.-S., Bhattarai S.R., Kim H.-Y., Kim S.-Z., Lee K.-H. Novel Fabricated Matrix via Electrospinning for Tissue Engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;72:117–124. doi: 10.1002/jbm.b.30122. PubMed DOI
Ravandi S.A.H., Tork R.B., Dabirian F., Gharehaghaji A.A., Sajjadi A. Characteristics of Yarn and Fabric Made out of Nanofibers. Mater. Sci. Appl. 2015;6:103. doi: 10.4236/msa.2015.61013. DOI
Xie J., Ma B., Michael P.L. Fabrication of Novel 3D Nanofiber Scaffolds with Anisotropic Property and Regular Pores and Their Potential Applications. Adv. Healthc. Mater. 2012;1:674–678. doi: 10.1002/adhm.201200100. PubMed DOI
Chakraborty S., Liao I.-C., Adler A., Leong K.W. Electrohydrodynamics: A Facile Technique to Fabricate Drug Delivery Systems. Adv. Drug Deliv. Rev. 2009;61:1043–1054. doi: 10.1016/j.addr.2009.07.013. PubMed DOI PMC
Weng L., Xie J. Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives. Curr. Pharm. Des. 2015;21:1944–1959. doi: 10.2174/1381612821666150302151959. PubMed DOI PMC
Said S.S., El-Halfawy O.M., El-Gowelli H.M., Aloufy A.K., Boraei N.A., El-Khordagui L.K. Bioburden-Responsive Antimicrobial PLGA Ultrafine Fibers for Wound Healing. Eur. J. Pharm. Biopharm. 2012;80:85–94. doi: 10.1016/j.ejpb.2011.08.007. PubMed DOI
Chou S.-F., Carson D., Woodrow K.A. Current Strategies for Sustaining Drug Release from Electrospun Nanofibers. J. Control. Release. 2015;220:584–591. doi: 10.1016/j.jconrel.2015.09.008. PubMed DOI PMC
Kim K., Luu Y.K., Chang C., Fang D., Hsiao B.S., Chu B., Hadjiargyrou M. Incorporation and Controlled Release of a Hydrophilic Antibiotic Using Poly(Lactide-Co-Glycolide)-Based Electrospun Nanofibrous Scaffolds. J. Control. Release. 2004;98:47–56. doi: 10.1016/j.jconrel.2004.04.009. PubMed DOI
Ayodeji O., Graham E., Kniss D., Lannutti J., Tomasko D. Carbon Dioxide Impregnation of Electrospun Polycaprolactone Fibers. J. Supercrit. Fluids. 2007;41:173–178. doi: 10.1016/j.supflu.2006.09.011. DOI
Geiger B.C., Nelson M.T., Munj H.R., Tomasko D.L., Lannutti J.J. Dual Drug Release from CO2-Infused Nanofibers via Hydrophobic and Hydrophilic Interactions. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42571. DOI
Brandl F., Sommer F., Goepferich A. Rational Design of Hydrogels for Tissue Engineering: Impact of Physical Factors on Cell Behavior. Biomaterials. 2007;28:134–146. doi: 10.1016/j.biomaterials.2006.09.017. PubMed DOI
Discher D.E., Janmey P., Wang Y. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science. 2005;310:1139–1143. doi: 10.1126/science.1116995. PubMed DOI
Yao J., Bastiaansen C.W.M., Peijs T. High Strength and High Modulus Electrospun Nanofibers. Fibers. 2014;2:158–186. doi: 10.3390/fib2020158. DOI
Mohammadzadehmoghadam S., Dong Y., Davies I.J. Recent Progress in Electrospun Nanofibers: Reinforcement Effect and Mechanical Performance. J. Polym. Sci. Part B Polym. Phys. 2015;53:1171–1212. doi: 10.1002/polb.23762. DOI
Ravandi S.A.H., Sadrjahani M. Mechanical and Structural Characterizations of Simultaneously Aligned and Heat Treated PAN Nanofibers. J. Appl. Polym. Sci. 2012;124:3529–3537. doi: 10.1002/app.35510. DOI
Xie J., Michael P.L., Zhong S., Ma B., MacEwan M.R., Lim C.T. Mussel Inspired Protein-Mediated Surface Modification to Electrospun Fibers and Their Potential Biomedical Applications. J. Biomed. Mater. Res. Part A. 2012;100:929–938. doi: 10.1002/jbm.a.34030. PubMed DOI
Xie J., Zhong S., Ma B., Shuler F.D., Lim C.T. Controlled Biomineralization of Electrospun Poly (ε-Caprolactone) Fibers to Enhance Their Mechanical Properties. Acta Biomater. 2013;9:5698–5707. doi: 10.1016/j.actbio.2012.10.042. PubMed DOI
Ma K., Chan C.K., Liao S., Hwang W.Y.K., Feng Q., Ramakrishna S. Electrospun Nanofiber Scaffolds for Rapid and Rich Capture of Bone Marrow-Derived Hematopoietic Stem Cells. Biomaterials. 2008;29:2096–2103. doi: 10.1016/j.biomaterials.2008.01.024. PubMed DOI
Gümüşderelioğlu M., Dalkıranoğlu S., Aydın R.S.T., Çakmak S. A Novel Dermal Substitute Based on Biofunctionalized Electrospun PCL Nanofibrous Matrix. J. Biomed. Mater. Res. Part A. 2011;98:461–472. doi: 10.1002/jbm.a.33143. PubMed DOI
Lee E.J., Lee J.H., Jin L., Jin O.S., Shin Y.C., Oh S.J., Lee J., Hyon S.-H., Han D.-W. Hyaluronic Acid/Poly (Lactic-Co-Glycolic Acid) Core/Shell Fiber Meshes Loaded with Epigallocatechin-3-O-Gallate as Skin Tissue Engineering Scaffolds. J. Nanosci. Nanotechnol. 2014;14:8458–8463. doi: 10.1166/jnn.2014.9922. PubMed DOI
Choi J.S., Leong K.W., Yoo H.S. In Vivo Wound Healing of Diabetic Ulcers Using Electrospun Nanofibers Immobilized with Human Epidermal Growth Factor (EGF) Biomaterials. 2008;29:587–596. doi: 10.1016/j.biomaterials.2007.10.012. PubMed DOI
Pelipenko J., Kocbek P., Govedarica B., Rošic R., Baumgartner S., Kristl J. The Topography of Electrospun Nanofibers and Its Impact on the Growth and Mobility of Keratinocytes. Eur. J. Pharm. Biopharm. 2013;84:401–411. doi: 10.1016/j.ejpb.2012.09.009. PubMed DOI
Ehrmann A. Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine—A Review. Polymers. 2021;13:1973. doi: 10.3390/polym13121973. PubMed DOI PMC
Homaeigohar S., Boccaccini A.R. Antibacterial Biohybrid Nanofibers for Wound Dressings. Acta Biomater. 2020;107:25–49. doi: 10.1016/j.actbio.2020.02.022. PubMed DOI
Hakkarainen T., Koivuniemi R., Kosonen M., Escobedo-Lucea C., Sanz-Garcia A., Vuola J., Valtonen J., Tammela P., Mäkitie A., Luukko K., et al. Nanofibrillar Cellulose Wound Dressing in Skin Graft Donor Site Treatment. J. Control. Release. 2016;244:292–301. doi: 10.1016/j.jconrel.2016.07.053. PubMed DOI
Czaja W., Krystynowicz A., Bielecki S., Brown R.M. Microbial Cellulose—the Natural Power to Heal Wounds. Biomaterials. 2006;27:145–151. doi: 10.1016/j.biomaterials.2005.07.035. PubMed DOI
Czaja W.K., Young D.J., Kawecki M., Brown R.M. The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules. 2007;8:1–12. doi: 10.1021/bm060620d. PubMed DOI
Mogoşanu G.D., Grumezescu A.M. Natural and Synthetic Polymers for Wounds and Burns Dressing. Int. J. Pharm. 2014;463:127–136. doi: 10.1016/j.ijpharm.2013.12.015. PubMed DOI
Wutticharoenmongkol P., Hannirojram P., Nuthong P. Gallic Acid-Loaded Electrospun Cellulose Acetate Nanofibers as Potential Wound Dressing Materials. Polym. Adv. Technol. 2019;30:1135–1147. doi: 10.1002/pat.4547. DOI
Liu Y., Ma G., Fang D., Xu J., Zhang H., Nie J. Effects of Solution Properties and Electric Field on the Electrospinning of Hyaluronic Acid. Carbohydr. Polym. 2011;83:1011–1015. doi: 10.1016/j.carbpol.2010.08.061. DOI
Eng D., Caplan M., Preul M., Panitch A. Hyaluronan Scaffolds: A Balance between Backbone Functionalization and Bioactivity. Acta Biomater. 2010;6:2407–2414. doi: 10.1016/j.actbio.2009.12.049. PubMed DOI
Leach J.B., Bivens K.A., Patrick C.W., Jr., Schmidt C.E. Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds. Biotechnol. Bioeng. 2003;82:578–589. doi: 10.1002/bit.10605. PubMed DOI
Chen W. Preparation of Hyaluronan-DNA Matrices and Films. Cold Spring Harb. Protoc. 2012;2012:pdb.prot071522. doi: 10.1101/pdb.prot071522. PubMed DOI
Uppal R., Ramaswamy G.N., Arnold C., Goodband R., Wang Y. Hyaluronic Acid Nanofiber Wound Dressing—Production, Characterization, and in Vivo Behavior. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011;97:20–29. doi: 10.1002/jbm.b.31776. PubMed DOI
Séon-Lutz M., Couffin A.-C., Vignoud S., Schlatter G., Hébraud A. Electrospinning in Water and in Situ Crosslinking of Hyaluronic Acid/Cyclodextrin Nanofibers: Towards Wound Dressing with Controlled Drug Release. Carbohydr. Polym. 2019;207:276–287. doi: 10.1016/j.carbpol.2018.11.085. PubMed DOI
Alavarse A.C., de Oliveira Silva F.W., Colque J.T., da Silva V.M., Prieto T., Venancio E.C., Bonvent J.-J. Tetracycline Hydrochloride-Loaded Electrospun Nanofibers Mats Based on PVA and Chitosan for Wound Dressing. Mater. Sci. Eng. C. 2017;77:271–281. doi: 10.1016/j.msec.2017.03.199. PubMed DOI
Sarhan W.A., Azzazy H.M.E., El-Sherbiny I.M. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium Sativum and Cleome Droserifolia: Enhanced Antimicrobial and Wound Healing Activity. ACS Appl. Mater. Interfaces. 2016;8:6379–6390. doi: 10.1021/acsami.6b00739. PubMed DOI
Homaeigohar S., Tsai T.-Y., Young T.-H., Yang H.J., Ji Y.-R. An Electroactive Alginate Hydrogel Nanocomposite Reinforced by Functionalized Graphite Nanofilaments for Neural Tissue Engineering. Carbohydr. Polym. 2019;224:115112. doi: 10.1016/j.carbpol.2019.115112. PubMed DOI
Lee K.Y., Mooney D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC
Tang Y., Lan X., Liang C., Zhong Z., Xie R., Zhou Y., Miao X., Wang H., Wang W. Honey Loaded Alginate/PVA Nanofibrous Membrane as Potential Bioactive Wound Dressing. Carbohydr. Polym. 2019;219:113–120. doi: 10.1016/j.carbpol.2019.05.004. PubMed DOI
Zhou T., Wang N., Xue Y., Ding T., Liu X., Mo X., Sun J. Electrospun Tilapia Collagen Nanofibers Accelerating Wound Healing via Inducing Keratinocytes Proliferation and Differentiation. Colloids Surf. B Biointerfaces. 2016;143:415–422. doi: 10.1016/j.colsurfb.2016.03.052. PubMed DOI
Wen X., Zheng Y., Wu J., Wang L.-N., Yuan Z., Peng J., Meng H. Immobilization of Collagen Peptide on Dialdehyde Bacterial Cellulose Nanofibers via Covalent Bonds for Tissue Engineering and Regeneration. Int. J. Nanomed. 2015;10:4623–4637. doi: 10.2147/IJN.S84452. PubMed DOI PMC
Yao C.-H., Lee C.-Y., Huang C.-H., Chen Y.-S., Chen K.-Y. Novel Bilayer Wound Dressing Based on Electrospun Gelatin/Keratin Nanofibrous Mats for Skin Wound Repair. Mater. Sci. Eng. C. 2017;79:533–540. doi: 10.1016/j.msec.2017.05.076. PubMed DOI
Melke J., Midha S., Ghosh S., Ito K., Hofmann S. Silk Fibroin as Biomaterial for Bone Tissue Engineering. Acta Biomater. 2016;31:1–16. doi: 10.1016/j.actbio.2015.09.005. PubMed DOI
Fan L., Cai Z., Zhang K., Han F., Li J., He C., Mo X., Wang X., Wang H. Green Electrospun Pantothenic Acid/Silk Fibroin Composite Nanofibers: Fabrication, Characterization and Biological Activity. Colloids Surf. B Biointerfaces. 2014;117:14–20. doi: 10.1016/j.colsurfb.2013.12.030. PubMed DOI
Song D.W., Kim S.H., Kim H.H., Lee K.H., Ki C.S., Park Y.H. Multi-Biofunction of Antimicrobial Peptide-Immobilized Silk Fibroin Nanofiber Membrane: Implications for Wound Healing. Acta Biomater. 2016;39:146–155. doi: 10.1016/j.actbio.2016.05.008. PubMed DOI
Selvaraj S., Fathima N.N. Fenugreek Incorporated Silk Fibroin Nanofibers-A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Appl. Mater. Interfaces. 2017;9:5916–5926. doi: 10.1021/acsami.6b16306. PubMed DOI
GhavamiNejad A., Rajan Unnithan A., Kurup Sasikala A.R., Samarikhalaj M., Thomas R.G., Jeong Y.Y., Nasseri S., Murugesan P., Wu D., Hee Park C., et al. Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl. Mater. Interfaces. 2015;7:12176–12183. doi: 10.1021/acsami.5b02542. PubMed DOI
Wang J., Windbergs M. Functional Electrospun Fibers for the Treatment of Human Skin Wounds. Eur. J. Pharm. Biopharm. 2017;119:283–299. doi: 10.1016/j.ejpb.2017.07.001. PubMed DOI
Kalantari K., Mostafavi E., Afifi A.M., Izadiyan Z., Jahangirian H., Rafiee-Moghaddam R., Webster T.J. Wound Dressings Functionalized with Silver Nanoparticles: Promises and Pitfalls. Nanoscale. 2020;12:2268–2291. doi: 10.1039/C9NR08234D. PubMed DOI
Shankar P.D., Shobana S., Karuppusamy I., Pugazhendhi A., Ramkumar V.S., Arvindnarayan S., Kumar G. A Review on the Biosynthesis of Metallic Nanoparticles (Gold and Silver) Using Bio-Components of Microalgae: Formation Mechanism and Applications. Enzym. Microb. Technol. 2016;95:28–44. doi: 10.1016/j.enzmictec.2016.10.015. PubMed DOI
Kumar P.T.S., Lakshmanan V.-K., Biswas R., Nair S.V., Jayakumar R. Synthesis and Biological Evaluation of Chitin Hydrogel/Nano ZnO Composite Bandage as Antibacterial Wound Dressing. J. Biomed. Nanotechnol. 2012;8:891–900. doi: 10.1166/jbn.2012.1461. PubMed DOI
Stoica E., Chircov C., Grumezescu A. Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules. 2020;25:2699. doi: 10.3390/molecules25112699. PubMed DOI PMC
Jatoi A.W., Jo Y.K., Lee H., Oh S.-G., Hwang D.S., Khatri Z., Cha H.J., Kim I.S. Antibacterial Efficacy of Poly (Vinyl Alcohol) Composite Nanofibers Embedded with Silver-Anchored Silica Nanoparticles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:1121–1128. doi: 10.1002/jbm.b.33925. PubMed DOI
Fouda M.M.G., El-Aassar M.R., Al-Deyab S.S. Antimicrobial Activity of Carboxymethyl Chitosan/Polyethylene Oxide Nanofibers Embedded Silver Nanoparticles. Carbohydr. Polym. 2013;92:1012–1017. doi: 10.1016/j.carbpol.2012.10.047. PubMed DOI
Hebeish A.A., Ramadan M.A., Montaser A.S., Farag A.M. Preparation, Characterization and Antibacterial Activity of Chitosan-g-Poly Acrylonitrile/Silver Nanocomposite. Int. J. Biol. Macromol. 2014;68:178–184. doi: 10.1016/j.ijbiomac.2014.04.028. PubMed DOI
Maharjan B., Joshi M.K., Tiwari A.P., Park C.H., Kim C.S. In-Situ Synthesis of AgNPs in the Natural/Synthetic Hybrid Nanofibrous Scaffolds: Fabrication, Characterization and Antimicrobial Activities. J. Mech. Behav. Biomed. Mater. 2017;65:66–76. doi: 10.1016/j.jmbbm.2016.07.034. PubMed DOI
Hashmi M., Ullah S., Ullah A., Akmal M., Saito Y., Hussain N., Ren X., Kim I.S. Optimized Loading of Carboxymethyl Cellulose (CMC) in Tri-Component Electrospun Nanofibers Having Uniform Morphology. Polymers. 2020;12:2524. doi: 10.3390/polym12112524. PubMed DOI PMC
Eghbalifam N., Shojaosadati S.A., Hashemi-Najafabadi S., Khorasani A.C. Synthesis and Characterization of Antimicrobial Wound Dressing Material Based on Silver Nanoparticles Loaded Gum Arabic Nanofibers. Int. J. Biol. Macromol. 2020;155:119–130. doi: 10.1016/j.ijbiomac.2020.03.194. PubMed DOI
Alven S., Buyana B., Feketshane Z., Aderibigbe B.A. Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics. 2021;13:964. doi: 10.3390/pharmaceutics13070964. PubMed DOI PMC
Bharathi B.S., Stalin T. Cerium Oxide and Peppermint Oil Loaded Polyethylene Oxide/Graphene Oxide Electrospun Nanofibrous Mats as Antibacterial Wound Dressings. Mater. Today Commun. 2019;21:100664. doi: 10.1016/j.mtcomm.2019.100664. DOI
One-Pot Synthesis of ZnO Nanobelt-like Structures in Hyaluronan Hydrogels for Wound Dressing Applications—ScienceDirect. [(accessed on 17 October 2021)]. Available online: https://www.sciencedirect.com/science/article/pii/S014486171930791X?via%3Dihub. PubMed
Kalaycıoğlu Z., Kahya N., Adımcılar V., Kaygusuz H., Torlak E., Akın-Evingür G., Erim F.B. Antibacterial Nano Cerium Oxide/Chitosan/Cellulose Acetate Composite Films as Potential Wound Dressing. Eur. Polym. J. 2020;133:109777. doi: 10.1016/j.eurpolymj.2020.109777. DOI
In Vivo Evaluation of Chitosan–PVP–Titanium Dioxide Nanocomposite as Wound Dressing Material—ScienceDirect. [(accessed on 17 October 2021)]. Available online: https://www.sciencedirect.com/science/article/pii/S0144861713002725?via%3Dihub. PubMed
Archana D., Dutta J., Dutta P.K. Evaluation of Chitosan Nano Dressing for Wound Healing: Characterization, in Vitro and in Vivo Studies. Int. J. Biol. Macromol. 2013;57:193–203. doi: 10.1016/j.ijbiomac.2013.03.002. PubMed DOI
Cai N., Li C., Han C., Luo X., Shen L., Xue Y., Yu F. Tailoring Mechanical and Antibacterial Properties of Chitosan/Gelatin Nanofiber Membranes with Fe3O4 Nanoparticles for Potential Wound Dressing Application. Appl. Surf. Sci. 2016;369:492–500. doi: 10.1016/j.apsusc.2016.02.053. DOI
Madhumathi K., Sudheesh Kumar P.T., Abhilash S., Sreeja V., Tamura H., Manzoor K., Nair S.V., Jayakumar R. Development of Novel Chitin/Nanosilver Composite Scaffolds for Wound Dressing Applications. J. Mater. Sci. Mater. Med. 2010;21:807–813. doi: 10.1007/s10856-009-3877-z. PubMed DOI
Nguyen N., Nguyen L., Thanh N., Vo T., Quyen T., Tran P., Nguyen T.H. Stabilization of Silver Nanoparticles in Chitosan and Gelatin Hydrogel and Its Applications. Mater. Lett. 2019;248:241–245. doi: 10.1016/j.matlet.2019.03.103. DOI
Haseeb M.T., Hussain M.A., Abbas K., Youssif B.G., Bashir S., Yuk S.H., Bukhari S.N.A. Linseed Hydrogel-Mediated Green Synthesis of Silver Nanoparticles for Antimicrobial and Wound-Dressing Applications. Int. J. Nanomed. 2017;12:2845–2855. doi: 10.2147/IJN.S133971. PubMed DOI PMC
Felgueiras H.P., Amorim M.T.P. Functionalization of Electrospun Polymeric Wound Dressings with Antimicrobial Peptides. Colloids Surf. B Biointerfaces. 2017;156:133–148. doi: 10.1016/j.colsurfb.2017.05.001. PubMed DOI
Costa F., Carvalho I.F., Montelaro R.C., Gomes P., Martins M.C.L. Covalent Immobilization of Antimicrobial Peptides (AMPs) onto Biomaterial Surfaces. Acta Biomater. 2011;7:1431–1440. doi: 10.1016/j.actbio.2010.11.005. PubMed DOI
Deshmukh K., Sankaran S., Basheer Ahamed M., Khadheer Pasha S.K. Biomedical Applications of Electrospun Polymer Composite Nanofibres. In: Sadasivuni K.K., Ponnamma D., Rajan M., Ahmed B., Al-Maadeed M.A.S.A., editors. Polymer Nanocomposites in Biomedical Engineering. Springer International Publishing; Cham, Switzerland: 2019. pp. 111–165. Lecture Notes in Bioengineering.
Peschel A. How Do Bacteria Resist Human Antimicrobial Peptides? Trends Microbiol. 2002;10:179–186. doi: 10.1016/S0966-842X(02)02333-8. PubMed DOI
Goy R.C., Morais S.T.B., Assis O.B.G. Evaluation of the Antimicrobial Activity of Chitosan and Its Quaternized Derivative on E. Coli and S. Aureus Growth. Rev. Bras. Farmacogn. 2016;26:122–127. doi: 10.1016/j.bjp.2015.09.010. DOI
Saharan V., Mehrotra A., Khatik R., Rawal P., Sharma S.S., Pal A. Synthesis of Chitosan Based Nanoparticles and Their in Vitro Evaluation against Phytopathogenic Fungi. Int. J. Biol. Macromol. 2013;62:677–683. doi: 10.1016/j.ijbiomac.2013.10.012. PubMed DOI
Arkoun M., Daigle F., Heuzey M.-C., Ajji A. Mechanism of Action of Electrospun Chitosan-Based Nanofibers against Meat Spoilage and Pathogenic Bacteria. Molecules. 2017;22:585. doi: 10.3390/molecules22040585. PubMed DOI PMC
Park S.-C., Choi C., Jeong G.-W., Lee H.-S., Choi S.-J., Kim W.-S., Nah J.-W. Algicidal Effects of Free-Amine Water-Soluble Chitosan to Marine Harmful Algal Species. J. Ind. Eng. Chem. 2016;34:139–145. doi: 10.1016/j.jiec.2015.11.002. DOI
Chirkov S.N. The Antiviral Activity of Chitosan. Appl. Biochem. Microbiol. 2002;38:1–8. doi: 10.1023/A:1013206517442. PubMed DOI
Chen S., Liu B., Carlson M.A., Gombart A.F., Reilly D.A., Xie J. Recent Advances in Electrospun Nanofibers for Wound Healing. Nanomedicine. 2017;12:1335–1352. doi: 10.2217/nnm-2017-0017. PubMed DOI PMC
Jeon Y., Kim S. Effect of Antimicrobial Activity by Chitosan Oligosaccharide N-Conjugated with Asparagine. J. Microbiol. Biotechnol. 2001;11:281–286.
Xiao B., Wan Y., Zhao M., Liu Y., Zhang S. Preparation and Characterization of Antimicrobial Chitosan-N-Arginine with Different Degrees of Substitution. Carbohydr. Polym. 2011;83:144–150. doi: 10.1016/j.carbpol.2010.07.032. DOI
Antunes B.P., Moreira A.F., Gaspar V.M., Correia I.J. Chitosan/Arginine–Chitosan Polymer Blends for Assembly of Nanofibrous Membranes for Wound Regeneration. Carbohydr. Polym. 2015;130:104–112. doi: 10.1016/j.carbpol.2015.04.072. PubMed DOI
Unnithan A.R., Gnanasekaran G., Sathishkumar Y., Lee Y.S., Kim C.S. Electrospun Antibacterial Polyurethane–Cellulose Acetate–Zein Composite Mats for Wound Dressing. Carbohydr. Polym. 2014;102:884–892. doi: 10.1016/j.carbpol.2013.10.070. PubMed DOI
He M., Chen M., Dou Y., Ding J., Yue H., Yin G., Chen X., Cui Y. Electrospun Silver Nanoparticles-Embedded Feather Keratin/Poly(Vinyl Alcohol)/Poly(Ethylene Oxide) Antibacterial Composite Nanofibers. Polymers. 2020;12:305. doi: 10.3390/polym12020305. PubMed DOI PMC
Sun L., Han J., Liu Z., Wei S., Su X., Zhang G. The Facile Fabrication of Wound Compatible Anti-Microbial Nanoparticles Encapsulated Collagenous Chitosan Matrices for Effective Inhibition of Poly-Microbial Infections and Wound Repairing in Burn Injury Care: Exhaustive in Vivo Evaluations. J. Photochem. Photobiol. B Biol. 2019;197:111539. doi: 10.1016/j.jphotobiol.2019.111539. PubMed DOI
Stie M.B., Corezzi M., Juncos Bombin A.D., Ajalloueian F., Attrill E., Pagliara S., Jacobsen J., Chronakis I.S., Nielsen H.M., Fodera V. Waterborne Electrospinning of α-Lactalbumin Generates Tunable and Biocompatible Nanofibers for Drug Delivery. ACS Appl. Nano Mater. 2020;3:1910–1921. doi: 10.1021/acsanm.9b02557. DOI
Jao W.-C., Yang M.-C., Lin C.-H., Hsu C.-C. Fabrication and Characterization of Electrospun Silk Fibroin/TiO2 Nanofibrous Mats for Wound Dressings. Polym. Adv. Technol. 2012;23:1066–1076. doi: 10.1002/pat.2014. DOI
Antimicrobial Electrospun Silk Fibroin Mats with Silver Nanoparticles for Wound Dressing Application. [(accessed on 17 October 2021)]. Available online: https://www.semanticscholar.org/paper/Antimicrobial-electrospun-silk-fibroin-mats-with-Uttayarat-Jetawattana/bc673765a402c9ed556fad65274d13493864488a.
Padrão J., Machado R., Casal M., Lanceros-Méndez S., Rodrigues L.R., Dourado F., Sencadas V. Antibacterial Performance of Bovine Lactoferrin-Fish Gelatine Electrospun Membranes. [(accessed on 17 October 2021)];Int. J. Biol. Macromol. 2015 81:608–614. doi: 10.1016/j.ijbiomac.2015.08.047. Available online: https://ro.uow.edu.au/eispapers/4614/ PubMed DOI
Chen J., Liu Z., Chen M., Zhang H., Li X. Electrospun Gelatin Fibers with a Multiple Release of Antibiotics Accelerate Dermal Regeneration in Infected Deep Burns. Macromol. Biosci. 2016;16:1368–1380. doi: 10.1002/mabi.201600108. PubMed DOI
Yıldız A., Kara A.A., Acartürk F. Peptide-Protein Based Nanofibers in Pharmaceutical and Biomedical Applications. Int. J. Biol. Macromol. 2020;148:1084–1097. doi: 10.1016/j.ijbiomac.2019.12.275. PubMed DOI
Azimi B., Maleki H., Zavagna L., De la Ossa J.G., Linari S., Lazzeri A., Danti S. Bio-Based Electrospun Fibers for Wound Healing. J. Funct. Biomater. 2020;11:67. doi: 10.3390/jfb11030067. PubMed DOI PMC
Khabbaz B., Solouk A., Mirzadeh H. Polyvinyl alcohol/soy protein isolate nanofibrous patch for wound-healing applications. Prog. Biomater. 2019;8:185–186. doi: 10.1007/s40204-019-00120-4. PubMed DOI PMC
Akshaykumar K.P., Zare E.N., Torres-Mendieta R., Wacławek S., Makvandi P., Černík M., Padil V.V., Varma R.S. Electrospun fibers based on botanical, seaweed, microbial, and animal sourced biomacromolecules and their multidimensional applications. Int. J. Biol. Macromol. 2021;171:130–149. doi: 10.1016/j.ijbiomac.2020.12.205. PubMed DOI
Wilkinson L.J., White R.J., Chipman J.K. Silver and Nanoparticles of Silver in Wound Dressings: A Review of Efficacy and Safety. J. Wound Care. 2011;20:543–549. doi: 10.12968/jowc.2011.20.11.543. PubMed DOI
White R., Cooper R. Silver Sulphadiazine: A Review of the Evidence. Wounds UK. 2005;1:51.
Lansdown A.B.G. A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Devices. Adv. Pharmacol. Sci. 2010;2010:910686. doi: 10.1155/2010/910686. PubMed DOI PMC
Samberg M.E., Oldenburg S.J., Monteiro-Riviere N.A. Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro. Environ. Health Perspect. 2010;118:407–413. doi: 10.1289/ehp.0901398. PubMed DOI PMC
Wijnhoven S.W.P., Peijnenburg W.J.G.M., Herberts C.A., Hagens W.I., Oomen A.G., Heugens E.H.W., Roszek B., Bisschops J., Gosens I., Van De Meent D., et al. Nano-Silver—A Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment. Nanotoxicology. 2009;3:109–138. doi: 10.1080/17435390902725914. DOI
Chen X., Schluesener H.J. Nanosilver: A Nanoproduct in Medical Application. Toxicol. Lett. 2008;176:1–12. doi: 10.1016/j.toxlet.2007.10.004. PubMed DOI
Drake P.L., Hazelwood K.J. Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Ann. Occup. Hyg. 2005;49:575–585. doi: 10.1093/annhyg/mei019. PubMed DOI
Liu X., Lin T., Gao Y., Xu Z., Huang C., Yao G., Jiang L., Tang Y., Wang X. Antimicrobial Electrospun Nanofibers of Cellulose Acetate and Polyester Urethane Composite for Wound Dressing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100:1556–1565. doi: 10.1002/jbm.b.32724. PubMed DOI
Tang Y., Wong C., Wang H., Sutti A., Kirkland M., Wang X., Lin T. Three-Dimensional Tissue Scaffolds from Interbonded Poly (ε-Caprolactone) Fibrous Matrices with Controlled Porosity. Tissue Eng. Part C Methods. 2011;17:209–218. doi: 10.1089/ten.tec.2010.0223. PubMed DOI
Balusamy B., Senthamizhan A., Uyar T. In Vivo Safety Evaluations of Electrospun Nanofibers for Biomedical Applications. In: Uyar T., Kny E., editors. Electrospun Materials for Tissue Engineering and Biomedical Applications. Woodhead Publishing; Sawston, UK: 2017. pp. 101–113.
Home—ClinicalTrials.Gov. [(accessed on 15 November 2021)]; Available online: https://clinicaltrials.gov/
Advances in Nanostructures for Antimicrobial Therapy