Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
17-28518A
Ministry of Health
CZ.02.1.01/0.0/0.0/16_025/0007381
European Structural and Investment Funds
PubMed
34940756
PubMed Central
PMC8704250
DOI
10.3390/ncrna7040075
PII: ncrna7040075
Knihovny.cz E-resources
- Keywords
- exosomes, extracellular vesicles, liquid biomarkers, lncRNA, microRNA, neuroendocrine differentiation/transdifferentiation, patients’ dataset, prostate cancer,
- Publication type
- Journal Article MeSH
- Review MeSH
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients' expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
See more in PubMed
Patel G.K., Chugh N., Tripathi M. Neuroendocrine Differentiation of Prostate Cancer—An Intriguing Example of Tumor Evolution at Play. Cancers. 2019;11:1405. doi: 10.3390/cancers11101405. PubMed DOI PMC
Vanacore D., Boccellino M., Rossetti S., Cavaliere C., D’Aniello C., Di Franco R., Romano F.J., Montanari M., La Mantia E., Piscitelli R., et al. Micrornas in prostate cancer: An overview. Oncotarget. 2017;8:50240–50251. doi: 10.18632/oncotarget.16933. PubMed DOI PMC
Ding M., Lin B., Li T., Liu Y., Li Y., Zhou X., Miao M., Gu J., Pan H., Yang F., et al. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget. 2015;6:7686–7700. doi: 10.18632/oncotarget.3480. PubMed DOI PMC
Zhang M., Gao F., Yu X., Zhang Q., Sun Z., He Y., Guo W. LINC00261: A burgeoning long noncoding RNA related to cancer. Cancer Cell Int. 2021;21:274. doi: 10.1186/s12935-021-01988-8. PubMed DOI PMC
Mather R.L., Parolia A., Carson S.E., Venalainen E., Roig-Carles D., Jaber M., Chu S.C., Alborelli I., Wu R., Lin D., et al. The evolutionarily conserved long non-coding RNA LINC00261 drives neuroendocrine prostate cancer proliferation and metastasis via distinct nuclear and cytoplasmic mechanisms. Mol. Oncol. 2021;15:1921–1941. doi: 10.1002/1878-0261.12954. PubMed DOI PMC
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Parker C., Castro E., Fizazi K., Heidenreich A., Ost P., Procopio G., Tombal B., Gillessen S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020;31:1119–1134. doi: 10.1016/j.annonc.2020.06.011. PubMed DOI
Watson P.A., Arora V.K., Sawyers C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer. 2015;15:701–711. doi: 10.1038/nrc4016. PubMed DOI PMC
Nevedomskaya E., Baumgart S.J., Haendler B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int. J. Mol. Sci. 2018;19:1359. doi: 10.3390/ijms19051359. PubMed DOI PMC
Davies A.H., Beltran H., Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 2018;15:271–286. doi: 10.1038/nrurol.2018.22. PubMed DOI
Clermont P.-L., Ci X., Pandha H., Wang Y., Crea F. Treatment-emergent neuroendocrine prostate cancer: Molecularly driven clinical guidelines. Int. J. Endocr. Oncol. 2019;6:IJE20. doi: 10.2217/ije-2019-0008. DOI
Taylor R.A., Toivanen R., Risbridger G.P. Stem cells in prostate cancer: Treating the root of the problem. Endocr.-Relat. Cancer. 2010;17:R273–R285. doi: 10.1677/ERC-10-0145. PubMed DOI
Szczyrba J., Niesen A., Wagner M., Wandernoth P.M., Aumuller G., Wennemuth G. Neuroendocrine Cells of the Prostate Derive from the Neural Crest. J. Biol. Chem. 2017;292:2021–2031. doi: 10.1074/jbc.M116.755082. PubMed DOI PMC
Abrahamsson P.A., di Sant’Agnese P.A. Neuroendocrine cells in the human prostate gland. J. Androl. 1993;14:307–309. PubMed
Huang J., Yao J.L., di Sant’Agnese P.A., Yang Q., Bourne P.A., Na Y. Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate. 2006;66:1399–1406. doi: 10.1002/pros.20434. PubMed DOI
Abrahamsson P.A. Neuroendocrine cells in tumour growth of the prostate. Endocr.-Relat. Cancer. 1999;6:503–519. doi: 10.1677/erc.0.0060503. PubMed DOI
Huang Y.H., Zhang Y.Q., Huang J.T. Neuroendocrine cells of prostate cancer: Biologic functions and molecular mechanisms. Asian J. Androl. 2019;21:291–295. doi: 10.4103/aja.aja_128_18. PubMed DOI PMC
Cindolo L., Cantile M., Vacherot F., Terry S., de la Taille A. Neuroendocrine differentiation in prostate cancer: From lab to bedside. Urol. Int. 2007;79:287–296. doi: 10.1159/000109711. PubMed DOI
Li Z., Chen C.J., Wang J.K., Hsia E., Li W., Squires J., Sun Y., Huang J. Neuroendocrine differentiation of prostate cancer. Asian J. Androl. 2013;15:328–332. doi: 10.1038/aja.2013.7. PubMed DOI PMC
Ozawa H., Takata K. The granin family—Its role in sorting and secretory granule formation. Cell Struct. Funct. 1995;20:415–420. doi: 10.1247/csf.20.415. PubMed DOI
Bartolomucci A., Possenti R., Mahata S.K., Fischer-Colbrie R., Loh Y.P., Salton S.R. The extended granin family: Structure, function, and biomedical implications. Endocr. Rev. 2011;32:755–797. doi: 10.1210/er.2010-0027. PubMed DOI PMC
Abrahamsson P.A., Falkmer S., Falt K., Grimelius L. The course of neuroendocrine differentiation in prostatic carcinomas. An immunohistochemical study testing chromogranin A as an “endocrine marker”. Pathol. Res. Pr. 1989;185:373–380. doi: 10.1016/S0344-0338(89)80016-0. PubMed DOI
Berruti A., Mosca A., Tucci M., Terrone C., Torta M., Tarabuzzi R., Russo L., Cracco C., Bollito E., Scarpa R.M., et al. Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocr.-Relat. Cancer. 2005;12:109–117. doi: 10.1677/erc.1.00876. PubMed DOI
Ather M.H., Abbas F., Faruqui N., Israr M., Pervez S. Correlation of three immunohistochemically detected markers of neuroendocrine differentiation with clinical predictors of disease progression in prostate cancer. BMC Urol. 2008;8:21. doi: 10.1186/1471-2490-8-21. PubMed DOI PMC
Hong P., Guo R.Q., Song G., Yang K.W., Zhang L., Li X.S., Zhang K., Zhou L.Q. Prognostic role of chromogranin A in castration-resistant prostate cancer: A meta-analysis. Asian J. Androl. 2018;20:561–566. doi: 10.4103/aja.aja_57_18. PubMed DOI PMC
Pruneri G., Galli S., Rossi R.S., Roncalli M., Coggi G., Ferrari A., Simonato A., Siccardi A.G., Carboni N., Buffa R. Chromogranin A and B and secretogranin II in prostatic adenocarcinomas: Neuroendocrine expression in patients untreated and treated with androgen deprivation therapy. Prostate. 1998;34:113–120. doi: 10.1002/(SICI)1097-0045(19980201)34:2<113::AID-PROS5>3.0.CO;2-L. PubMed DOI
Yuan T.C., Veeramani S., Lin F.F., Kondrikou D., Zelivianski S., Igawa T., Karan D., Batra S.K., Lin M.F. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr.-Relat. Cancer. 2006;13:151–167. doi: 10.1677/erc.1.01043. PubMed DOI
Xu C.M., Luo Y.L., Li S., Li Z.X., Jiang L., Zhang G.X., Owusu L., Chen H.L. Multifunctional neuron-specific enolase: Its role in lung diseases. Biosci. Rep. 2019;39 doi: 10.1042/BSR20192732. PubMed DOI PMC
Muoio B., Pascale M., Roggero E. The role of serum neuron-specific enolase in patients with prostate cancer: A systematic review of the recent literature. Int. J. Biol. Markers. 2018;33:10–21. doi: 10.5301/ijbm.5000286. PubMed DOI
Kamiya N., Akakura K., Suzuki H., Isshiki S., Komiya A., Ueda T., Ito H. Pretreatment serum level of neuron specific enolase (NSE) as a prognostic factor in metastatic prostate cancer patients treated with endocrine therapy. Eur. Urol. 2003;44:309–314. doi: 10.1016/S0302-2838(03)00303-8. discussion 314. PubMed DOI
Szarvas T., Csizmarik A., Fazekas T., Huttl A., Nyirady P., Hadaschik B., Grunwald V., Pullen L., Juranyi Z., Kocsis Z., et al. Comprehensive analysis of serum chromogranin A and neuron-specific enolase levels in localized and castration-resistant prostate cancer. BJU Int. 2021;127:44–55. doi: 10.1111/bju.15086. PubMed DOI
El Far O., Betz H. Synaptophysins: Vesicular cation channels? J. Physiol. 2002;539:332. doi: 10.1113/jphysiol.2002.017160. PubMed DOI PMC
Sainio M., Visakorpi T., Tolonen T., Ilvesaro J., Bova G.S. Expression of neuroendocrine differentiation markers in lethal metastatic castration-resistant prostate cancer. Pathol. Res. Pr. 2018;214:848–856. doi: 10.1016/j.prp.2018.04.015. PubMed DOI
Pal S.K., He M., Chen L., Yang L., Pillai R., Twardowski P., Hsu J., Kortylewski M., Jones J.O. Synaptophysin expression on circulating tumor cells in patients with castration resistant prostate cancer undergoing treatment with abiraterone acetate or enzalutamide. Urol. Oncol. 2018;36:162.e161–162.e166. doi: 10.1016/j.urolonc.2017.12.006. PubMed DOI PMC
Van Acker H.H., Capsomidis A., Smits E.L., Van Tendeloo V.F. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front. Immunol. 2017;8:892. doi: 10.3389/fimmu.2017.00892. PubMed DOI PMC
Mlika M., Zendah I., Braham E., El Mezni F. CD56 antibody: Old-fashioned or still trendy in endocrine lung tumors. J. Immunoass. Immunochem. 2015;36:414–419. doi: 10.1080/15321819.2014.952444. PubMed DOI
Lee J.K., Bangayan N.J., Chai T., Smith B.A., Pariva T.E., Yun S., Vashisht A., Zhang Q., Park J.W., Corey E., et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc. Natl. Acad. Sci. USA. 2018;115:E4473–E4482. doi: 10.1073/pnas.1802354115. PubMed DOI PMC
Bertoldi M. Mammalian Dopa decarboxylase: Structure, catalytic activity and inhibition. Arch. Biochem. Biophys. 2014;546:1–7. doi: 10.1016/j.abb.2013.12.020. PubMed DOI
Wafa L.A., Cheng H., Rao M.A., Nelson C.C., Cox M., Hirst M., Sadowski I., Rennie P.S. Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system. Biochem. J. 2003;375:373–383. doi: 10.1042/bj20030689. PubMed DOI PMC
Wafa L.A., Palmer J., Fazli L., Hurtado-Coll A., Bell R.H., Nelson C.C., Gleave M.E., Cox M.E., Rennie P.S. Comprehensive expression analysis of L-dopa decarboxylase and established neuroendocrine markers in neoadjuvant hormone-treated versus varying Gleason grade prostate tumors. Hum. Pathol. 2007;38:161–170. doi: 10.1016/j.humpath.2006.07.003. PubMed DOI
Margiotti K., Wafa L.A., Cheng H., Novelli G., Nelson C.C., Rennie P.S. Androgen-regulated genes differentially modulated by the androgen receptor coactivator L-dopa decarboxylase in human prostate cancer cells. Mol. Cancer. 2007;6:38. doi: 10.1186/1476-4598-6-38. PubMed DOI PMC
Mariani M., Karki R., Spennato M., Pandya D., He S., Andreoli M., Fiedler P., Ferlini C. Class III beta-tubulin in normal and cancer tissues. Gene. 2015;563:109–114. doi: 10.1016/j.gene.2015.03.061. PubMed DOI PMC
Terry S., Ploussard G., Allory Y., Nicolaiew N., Boissiere-Michot F., Maille P., Kheuang L., Coppolani E., Ali A., Bibeau F., et al. Increased expression of class III beta-tubulin in castration-resistant human prostate cancer. Br. J. Cancer. 2009;101:951–956. doi: 10.1038/sj.bjc.6605245. PubMed DOI PMC
Ploussard G., Terry S., Maille P., Allory Y., Sirab N., Kheuang L., Soyeux P., Nicolaiew N., Coppolani E., Paule B., et al. Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res. 2010;70:9253–9264. doi: 10.1158/0008-5472.CAN-10-1447. PubMed DOI PMC
Thomas R.P., Hellmich M.R., Townsend C.M., Jr., Evers B.M. Role of gastrointestinal hormones in the proliferation of normal and neoplastic tissues. Endocr. Rev. 2003;24:571–599. doi: 10.1210/er.2002-0028. PubMed DOI
Ischia J., Patel O., Bolton D., Shulkes A., Baldwin G.S. Expression and function of gastrin-releasing peptide (GRP) in normal and cancerous urological tissues. BJU Int. 2014;113((Suppl. S2)):40–47. doi: 10.1111/bju.12594. PubMed DOI
Qiao J., Grabowska M.M., Forestier-Roman I.S., Mirosevich J., Case T.C., Chung D.H., Cates J.M., Matusik R.J., Manning H.C., Jin R. Activation of GRP/GRP-R signaling contributes to castration-resistant prostate cancer progression. Oncotarget. 2016;7:61955–61969. doi: 10.18632/oncotarget.11326. PubMed DOI PMC
Solorzano S.R., Imaz-Rosshandler I., Camacho-Arroyo I., Garcia-Tobilla P., Morales-Montor G., Salazar P., Arena-Ortiz M.L., Rodriguez-Dorantes M. GABA promotes gastrin-releasing peptide secretion in NE/NE-like cells: Contribution to prostate cancer progression. Sci. Rep. 2018;8:10272. doi: 10.1038/s41598-018-28538-z. PubMed DOI PMC
Li X., Cai H., Wu X., Li L., Wu H., Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front. Chem. 2020;8:583309. doi: 10.3389/fchem.2020.583309. PubMed DOI PMC
Russell F.A., King R., Smillie S.J., Kodji X., Brain S.D. Calcitonin gene-related peptide: Physiology and pathophysiology. Physiol. Rev. 2014;94:1099–1142. doi: 10.1152/physrev.00034.2013. PubMed DOI PMC
Warrington J.I., Richards G.O., Wang N. The Role of the Calcitonin Peptide Family in Prostate Cancer and Bone Metastasis. Curr. Mol. Biol. Rep. 2017;3:197–203. doi: 10.1007/s40610-017-0071-9. PubMed DOI PMC
Suzuki K., Kobayashi Y., Morita T. Significance of serum calcitonin gene-related peptide levels in prostate cancer patients receiving hormonal therapy. Urol. Int. 2009;82:291–295. doi: 10.1159/000209360. PubMed DOI
Nagakawa O., Ogasawara M., Fujii H., Murakami K., Murata J., Fuse H., Saiki I. Effect of prostatic neuropeptides on invasion and migration of PC-3 prostate cancer cells. Cancer Lett. 1998;133:27–33. doi: 10.1016/S0304-3835(98)00186-4. PubMed DOI
Martinez A., Zudaire E., Portal-Nunez S., Guedez L., Libutti S.K., Stetler-Stevenson W.G., Cuttitta F. Proadrenomedullin NH2-terminal 20 peptide is a potent angiogenic factor, and its inhibition results in reduction of tumor growth. Cancer Res. 2004;64:6489–6494. doi: 10.1158/0008-5472.CAN-04-0103. PubMed DOI
Jimenez N., Calvo A., Martinez A., Rosell D., Cuttitta F., Montuenga L.M. Expression of adrenomedullin and proadrenomedullin N-terminal 20 peptide in human and rat prostate. J. Histochem. Cytochem. 1999;47:1167–1178. doi: 10.1177/002215549904700909. PubMed DOI
Calvo A., Abasolo I., Jimenez N., Wang Z., Montuenga L. Adrenomedullin and proadrenomedullin N-terminal 20 peptide in the normal prostate and in prostate carcinoma. Microsc. Res. Tech. 2002;57:98–104. doi: 10.1002/jemt.10056. PubMed DOI
Larrayoz I.M., Martinez-Herrero S., Garcia-Sanmartin J., Ochoa-Callejero L., Martinez A. Adrenomedullin and tumour microenvironment. J. Transl. Med. 2014;12:339. doi: 10.1186/s12967-014-0339-2. PubMed DOI PMC
Rocchi P., Boudouresque F., Zamora A.J., Muracciole X., Lechevallier E., Martin P.M., Ouafik L. Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines. Cancer Res. 2001;61:1196–1206. PubMed
Berenguer C., Boudouresque F., Dussert C., Daniel L., Muracciole X., Grino M., Rossi D., Mabrouk K., Figarella-Branger D., Martin P.M., et al. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates ‘neuroendocrine phenotype’ in LNCaP prostate tumor cells. Oncogene. 2008;27:506–518. doi: 10.1038/sj.onc.1210656. PubMed DOI
Maj M., Wagner L., Tretter V. 20 Years of Secretagogin: Exocytosis and Beyond. Front. Mol. Neurosci. 2019;12:29. doi: 10.3389/fnmol.2019.00029. PubMed DOI PMC
Adolf K., Wagner L., Bergh A., Stattin P., Ottosen P., Borre M., Birkenkamp-Demtroder K., Orntoft T.F., Torring N. Secretagogin is a new neuroendocrine marker in the human prostate. Prostate. 2007;67:472–484. doi: 10.1002/pros.20523. PubMed DOI
Naafs M. Parathyroid Hormone Related Peptide (PTHrP): A Mini-Review. Endocrinol. Metab. Int. J. 2017;5:1–9. doi: 10.15406/emij.2017.05.00139. DOI
Asadi F., Farraj M., Sharifi R., Malakouti S., Antar S., Kukreja S. Enhanced expression of parathyroid hormone-related protein in prostate cancer as compared with benign prostatic hyperplasia. Hum. Pathol. 1996;27:1319–1323. doi: 10.1016/S0046-8177(96)90344-5. PubMed DOI
DaSilva J., Gioeli D., Weber M.J., Parsons S.J. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor. Cancer Res. 2009;69:7402–7411. doi: 10.1158/0008-5472.CAN-08-4687. PubMed DOI PMC
Cui Y., Sun Y., Hu S., Luo J., Li L., Li X., Yeh S., Jin J., Chang C. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals. Oncogene. 2016;35:6065–6076. doi: 10.1038/onc.2016.135. PubMed DOI PMC
Park S.I., Lee C., Sadler W.D., Koh A.J., Jones J., Seo J.W., Soki F.N., Cho S.W., Daignault S.D., McCauley L.K. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res. 2013;73:6574–6583. doi: 10.1158/0008-5472.CAN-12-4692. PubMed DOI PMC
Ongkeko W.M., Burton D., Kiang A., Abhold E., Kuo S.Z., Rahimy E., Yang M., Hoffman R.M., Wang-Rodriguez J., Deftos L.J. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PLoS ONE. 2014;9:e85803. doi: 10.1371/journal.pone.0085803. PubMed DOI PMC
Tyler-McMahon B.M., Boules M., Richelson E. Neurotensin: Peptide for the next millennium. Regul. Pept. 2000;93:125–136. doi: 10.1016/S0167-0115(00)00183-X. PubMed DOI
Sehgal I., Powers S., Huntley B., Powis G., Pittelkow M., Maihle N.J. Neurotensin is an autocrine trophic factor stimulated by androgen withdrawal in human prostate cancer. Proc. Natl. Acad. Sci. USA. 1994;91:4673–4677. doi: 10.1073/pnas.91.11.4673. PubMed DOI PMC
Vias M., Burtt G., Culig Z., Veerakumarasivam A., Neal D.E., Mills I.G. A role for neurotensin in bicalutamide resistant prostate cancer cells. Prostate. 2007;67:190–202. doi: 10.1002/pros.20518. PubMed DOI
Zhu S., Tian H., Niu X., Wang J., Li X., Jiang N., Wen S., Chen X., Ren S., Xu C., et al. Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer. Oncogene. 2019;38:4875–4884. doi: 10.1038/s41388-019-0750-5. PubMed DOI PMC
He T., Wang M., Wang H., Tan H., Tang Y., Smith E., Wu Z., Liao W., Hu S., Li Z. Evaluation of neurotensin receptor 1 as potential biomarker for prostate cancer theranostic use. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:2199–2207. doi: 10.1007/s00259-019-04355-y. PubMed DOI
Morgat C., Chastel A., Molinie V., Schollhammer R., Macgrogan G., Velasco V., Malavaud B., Fernandez P., Hindie E. Neurotensin Receptor-1 Expression in Human Prostate Cancer: A Pilot Study on Primary Tumors and Lymph Node Metastases. Int. J. Mol. Sci. 2019;20:1721. doi: 10.3390/ijms20071721. PubMed DOI PMC
Apte R.S., Chen D.S., Ferrara N. VEGF in S.Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176:1248–1264. doi: 10.1016/j.cell.2019.01.021. PubMed DOI PMC
Harper M.E., Glynne-Jones E., Goddard L., Thurston V.J., Griffiths K. Vascular endothelial growth factor (VEGF) expression in prostatic tumours and its relationship to neuroendocrine cells. Br. J. Cancer. 1996;74:910–916. doi: 10.1038/bjc.1996.456. PubMed DOI PMC
Grobholz R., Bohrer M.H., Siegsmund M., Jünemann K.-P., Bleyl U., Woenckhaus M. Correlation between neovascularisation and neuroendocrine differentiation in prostatic carcinoma. Pathol.-Res. Pract. 2000;196:277–284. doi: 10.1016/S0344-0338(00)80056-4. PubMed DOI
Shariat S.F., Anwuri V.A., Lamb D.J., Shah N.V., Wheeler T.M., Slawin K.M. Association of Preoperative Plasma Levels of Vascular Endothelial Growth Factor and Soluble Vascular Cell Adhesion Molecule-1 With Lymph Node Status and Biochemical Progression After Radical Prostatectomy. J. Clin. Oncol. 2004;22:1655–1663. doi: 10.1200/JCO.2004.09.142. PubMed DOI
Polge A., Gaspard C., Mottet N., Guitton C., Boyer J.C., Choquet A., Combettes S., Bancel E., Costa P., Bali J.P. Neurohormonal stimulation of histamine release from neuroendocrine cells of the human adenomatous prostate. Prostate. 1998;34:1–9. doi: 10.1002/(SICI)1097-0045(19980101)34:1<1::AID-PROS1>3.0.CO;2-P. PubMed DOI
Chen J., Hu X.Y. Inhibition of histamine receptor H3R suppresses prostate cancer growth, invasion and increases apoptosis via the AR pathway. Oncol. Lett. 2018;16:4921–4928. doi: 10.3892/ol.2018.9310. PubMed DOI PMC
Dizeyi N., Hedlund P., Bjartell A., Tinzl M., Austild-Tasken K., Abrahamsson P.A. Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol. Oncol. 2011;29:436–445. doi: 10.1016/j.urolonc.2009.09.013. PubMed DOI
Shinka T., Onodera D., Tanaka T., Shoji N., Miyazaki T., Moriuchi T., Fukumoto T. Serotonin synthesis and metabolism-related molecules in a human prostate cancer cell line. Oncol. Lett. 2011;2:211–215. doi: 10.3892/ol.2011.244. PubMed DOI PMC
Oikawa S., Inuzuka C., Kuroki M., Matsuoka Y., Kosaki G., Nakazato H. Cell adhesion activity of non-specific cross-reacting antigen (NCA) and carcinoembryonic antigen (CEA) expressed on CHO cell surface: Homophilic and heterophilic adhesion. Biochem. Biophys Res. Commun. 1989;164:39–45. doi: 10.1016/0006-291X(89)91679-3. PubMed DOI
Taheri M., Saragovi U., Fuks A., Makkerh J., Mort J., Stanners C.P. Self recognition in the Ig superfamily. Identification of precise subdomains in carcinoembryonic antigen required for intercellular adhesion. J. Biol. Chem. 2000;275:26935–26943. doi: 10.1016/S0021-9258(19)61463-8. PubMed DOI
Thompson J.A., Grunert F., Zimmermann W. Carcinoembryonic antigen gene family: Molecular biology and clinical perspectives. J. Clin. Lab. Anal. 1991;5:344–366. doi: 10.1002/jcla.1860050510. PubMed DOI
DeLucia D.C., Cardillo T.M., Ang L., Labrecque M.P., Zhang A., Hopkins J.E., De Sarkar N., Coleman I., da Costa R.M.G., Corey E., et al. Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer. Clin. Cancer Res. 2021;27:759–774. doi: 10.1158/1078-0432.CCR-20-3396. PubMed DOI PMC
Aloe L., Rocco M.L., Bianchi P., Manni L. Nerve growth factor: From the early discoveries to the potential clinical use. J. Transl. Med. 2012;10:239. doi: 10.1186/1479-5876-10-239. PubMed DOI PMC
Di Donato M., Cernera G., Migliaccio A., Castoria G. Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers. 2019;11:784. doi: 10.3390/cancers11060784. PubMed DOI PMC
Di Donato M., Cernera G., Auricchio F., Migliaccio A., Castoria G. Cross-talk between androgen receptor and nerve growth factor receptor in prostate cancer cells: Implications for a new therapeutic approach. Cell Death Discov. 2018;4:5. doi: 10.1038/s41420-017-0024-3. PubMed DOI PMC
Chen W.Y., Wen Y.C., Lin S.R., Yeh H.L., Jiang K.C., Chen W.H., Lin Y.S., Zhang Q., Liew P.L., Hsiao M., et al. Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance. Commun. Biol. 2021;4:22. doi: 10.1038/s42003-020-01549-1. PubMed DOI PMC
Tilan J., Kitlinska J. Neuropeptide Y (NPY) in tumor growth and progression: Lessons learned from pediatric oncology. Neuropeptides. 2016;55:55–66. doi: 10.1016/j.npep.2015.10.005. PubMed DOI PMC
Alshalalfa M., Nguyen P.L., Beltran H., Chen W.S., Davicioni E., Zhao S.G., Rebbeck T.R., Schaeffer E.M., Lotan T.L., Feng F.Y., et al. Transcriptomic and Clinical Characterization of Neuropeptide Y Expression in Localized and Metastatic Prostate Cancer: Identification of Novel Prostate Cancer Subtype with Clinical Implications. Eur. Urol. Oncol. 2019;2:405–412. doi: 10.1016/j.euo.2019.05.001. PubMed DOI PMC
Ding Y., Lee M., Gao Y., Bu P., Coarfa C., Miles B., Sreekumar A., Creighton C.J., Ayala G. Neuropeptide Y nerve paracrine regulation of prostate cancer oncogenesis and therapy resistance. Prostate. 2021;81:58–71. doi: 10.1002/pros.24081. PubMed DOI PMC
Nadal R., Schweizer M., Kryvenko O.N., Epstein J.I., Eisenberger M.A. Small cell carcinoma of the prostate. Nat. Rev. Urol. 2014;11:213–219. doi: 10.1038/nrurol.2014.21. PubMed DOI PMC
Wang W., Epstein J.I. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am. J. Surg. Pathol. 2008;32:65–71. doi: 10.1097/PAS.0b013e318058a96b. PubMed DOI
Beltran H., Tagawa S.T., Park K., MacDonald T., Milowsky M.I., Mosquera J.M., Rubin M.A., Nanus D.M. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J. Clin. Oncol. 2012;30:e386–e389. doi: 10.1200/JCO.2011.41.5166. PubMed DOI
Beltran H., Hruszkewycz A., Scher H.I., Hildesheim J., Isaacs J., Yu E.Y., Kelly K., Lin D., Dicker A., Arnold J., et al. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clin. Cancer Res. 2019;25:6916–6924. doi: 10.1158/1078-0432.CCR-19-1423. PubMed DOI PMC
Zou M., Toivanen R., Mitrofanova A., Floch N., Hayati S., Sun Y., Le Magnen C., Chester D., Mostaghel E.A., Califano A., et al. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov. 2017;7:736–749. doi: 10.1158/2159-8290.CD-16-1174. PubMed DOI PMC
Dong B., Miao J., Wang Y., Luo W., Ji Z., Lai H., Zhang M., Cheng X., Wang J., Fang Y., et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun. Biol. 2020;3:778. doi: 10.1038/s42003-020-01476-1. PubMed DOI PMC
Nouri M., Caradec J., Lubik A.A., Li N., Hollier B.G., Takhar M., Altimirano-Dimas M., Chen M., Roshan-Moniri M., Butler M., et al. Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget. 2017;8:18949–18967. doi: 10.18632/oncotarget.14850. PubMed DOI PMC
Gupta K., Gupta S. Neuroendocrine differentiation in prostate cancer: Key epigenetic players. Transl. Cancer Res. 2017;6:S104–S108. doi: 10.21037/tcr.2017.01.20. PubMed DOI PMC
Davies A., Zoubeidi A., Selth L.A. The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocr.-Relat. Cancer. 2020;27:R35–R50. doi: 10.1530/ERC-19-0420. PubMed DOI
Ge R., Wang Z., Montironi R., Jiang Z., Cheng M., Santoni M., Huang K., Massari F., Lu X., Cimadamore A., et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann. Oncol. 2020;31:470–479. doi: 10.1016/j.annonc.2020.02.002. PubMed DOI
Park J.W., Lee J.K., Sheu K.M., Wang L., Balanis N.G., Nguyen K., Smith B.A., Cheng C., Tsai B.L., Cheng D., et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91–95. doi: 10.1126/science.aat5749. PubMed DOI PMC
Yamada Y., Beltran H. Clinical and Biological Features of Neuroendocrine Prostate Cancer. Curr. Oncol. Rep. 2021;23:15. doi: 10.1007/s11912-020-01003-9. PubMed DOI PMC
Ayala G.E., Dai H., Powell M., Li R., Ding Y., Wheeler T.M., Shine D., Kadmon D., Thompson T., Miles B.J., et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 2008;14:7593–7603. doi: 10.1158/1078-0432.CCR-08-1164. PubMed DOI
Mauffrey P., Tchitchek N., Barroca V., Bemelmans A.P., Firlej V., Allory Y., Romeo P.H., Magnon C. Progenitors from the central nervous system drive neurogenesis in cancer. Nature. 2019;569:672–678. doi: 10.1038/s41586-019-1219-y. PubMed DOI
Sejda A., Sigorski D., Gulczyński J., Wesołowski W., Kitlińska J., Iżycka-Świeszewska E. Complexity of Neural Component of Tumor Microenvironment in Prostate Cancer. Pathobiology. 2020;87((Suppl. S2)):87–99. doi: 10.1159/000505437. PubMed DOI
Robinson D., Van Allen E.M., Wu Y.M., Schultz N., Lonigro R.J., Mosquera J.M., Montgomery B., Taplin M.E., Pritchard C.C., Attard G., et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–1228. doi: 10.1016/j.cell.2015.05.001. PubMed DOI PMC
Wu C.T., Altuwaijri S., Ricke W.A., Huang S.P., Yeh S., Zhang C., Niu Y., Tsai M.Y., Chang C. Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc. Natl. Acad. Sci. USA. 2007;104:12679–12684. doi: 10.1073/pnas.0704940104. PubMed DOI PMC
Schroeder A., Herrmann A., Cherryholmes G., Kowolik C., Buettner R., Pal S., Yu H., Muller-Newen G., Jove R. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 2014;74:1227–1237. doi: 10.1158/0008-5472.CAN-13-0594. PubMed DOI PMC
Zhang X., Coleman I.M., Brown L.G., True L.D., Kollath L., Lucas J.M., Lam H.M., Dumpit R., Corey E., Chery L., et al. SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2015;21:4698–4708. doi: 10.1158/1078-0432.CCR-15-0157. PubMed DOI PMC
Jernberg E., Bergh A., Wikstrom P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr. Connect. 2017;6:R146–R161. doi: 10.1530/EC-17-0118. PubMed DOI PMC
Fujita K., Nonomura N. Role of Androgen Receptor in Prostate Cancer: A Review. World J. Mens. Health. 2019;37:288–295. doi: 10.5534/wjmh.180040. PubMed DOI PMC
Formaggio N., Rubin M.A., Theurillat J.P. Loss and revival of androgen receptor signaling in advanced prostate cancer. Oncogene. 2021;40:1205–1216. doi: 10.1038/s41388-020-01598-0. PubMed DOI PMC
Jamaspishvili T., Berman D.M., Ross A.E., Scher H.I., De Marzo A.M., Squire J.A., Lotan T.L. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 2018;15:222–234. doi: 10.1038/nrurol.2018.9. PubMed DOI PMC
Soundararajan R., Aparicio A.M., Logothetis C.J., Mani S.A., Maity S.N. Function of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers. Front. Oncol. 2018;8:69. doi: 10.3389/fonc.2018.00069. PubMed DOI PMC
Kallio H.M.L., Hieta R., Latonen L., Brofeldt A., Annala M., Kivinummi K., Tammela T.L., Nykter M., Isaacs W.B., Lilja H.G., et al. Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. Br. J. Cancer. 2018;119:347–356. doi: 10.1038/s41416-018-0172-0. PubMed DOI PMC
Dehm S.M., Tindall D.J. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J. Biol. Chem. 2006;281:27882–27893. doi: 10.1074/jbc.M605002200. PubMed DOI
Zhang Y., Coillie S.V., Fang J.Y., Xu J. Gain of function of mutant p53: R282W on the peak? Oncogenesis. 2016;5:e196. doi: 10.1038/oncsis.2016.8. PubMed DOI PMC
Ma S., McGuire M.H., Mangala L.S., Lee S., Stur E., Hu W., Bayraktar E., Villar-Prados A., Ivan C., Wu S.Y., et al. Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype. Cell Rep. 2021;34:108726. doi: 10.1016/j.celrep.2021.108726. PubMed DOI PMC
Beltran H., Rickman D.S., Park K., Chae S.S., Sboner A., MacDonald T.Y., Wang Y., Sheikh K.L., Terry S., Tagawa S.T., et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1:487–495. doi: 10.1158/2159-8290.CD-11-0130. PubMed DOI PMC
Dardenne E., Beltran H., Benelli M., Gayvert K., Berger A., Puca L., Cyrta J., Sboner A., Noorzad Z., MacDonald T., et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell. 2016;30:563–577. doi: 10.1016/j.ccell.2016.09.005. PubMed DOI PMC
Wu C., Huang J. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J. Biol. Chem. 2007;282:3571–3583. doi: 10.1074/jbc.M608487200. PubMed DOI
Li B., Sun A., Youn H., Hong Y., Terranova P.F., Thrasher J.B., Xu P., Spencer D. Conditional Akt activation promotes androgen-independent progression of prostate cancer. Carcinogenesis. 2007;28:572–583. doi: 10.1093/carcin/bgl193. PubMed DOI
Cangemi R., Mensah A., Albertini V., Jain A., Mello-Grand M., Chiorino G., Catapano C.V., Carbone G.M. Reduced expression and tumor suppressor function of the ETS transcription factor ESE-3 in prostate cancer. Oncogene. 2008;27:2877–2885. doi: 10.1038/sj.onc.1210953. PubMed DOI
Albino D., Longoni N., Curti L., Mello-Grand M., Pinton S., Civenni G., Thalmann G., D’Ambrosio G., Sarti M., Sessa F., et al. ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res. 2012;72:2889–2900. doi: 10.1158/0008-5472.CAN-12-0212. PubMed DOI
Long Z., Deng L., Li C., He Q., He Y., Hu X., Cai Y., Gan Y. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021;12:46. doi: 10.1038/s41419-020-03326-8. PubMed DOI PMC
Lovnicki J., Gan Y., Feng T., Li Y., Xie N., Ho C.H., Lee A.R., Chen X., Nappi L., Han B., et al. LIN28B promotes the development of neuroendocrine prostate cancer. J. Clin. Investig. 2020;130:5338–5348. doi: 10.1172/JCI135373. PubMed DOI PMC
Albino D., Civenni G., Dallavalle C., Roos M., Jahns H., Curti L., Rossi S., Pinton S., D’Ambrosio G., Sessa F., et al. Activation of the Lin28/let-7 Axis by Loss of ESE3/EHF Promotes a Tumorigenic and Stem-like Phenotype in Prostate Cancer. Cancer Res. 2016;76:3629–3643. doi: 10.1158/0008-5472.CAN-15-2665. PubMed DOI
Raj B., O’Hanlon D., Vessey J.P., Pan Q., Ray D., Buckley N.J., Miller F.D., Blencowe B.J. Cross-regulation between an alternative splicing activator and a transcription repressor controls neurogenesis. Mol. Cell. 2011;43:843–850. doi: 10.1016/j.molcel.2011.08.014. PubMed DOI
Chang Y.T., Lin T.P., Campbell M., Pan C.C., Lee S.H., Lee H.C., Yang M.H., Kung H.J., Chang P.C. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci. Rep. 2017;7:42795. doi: 10.1038/srep42795. PubMed DOI PMC
Flores-Morales A., Bergmann T.B., Lavallee C., Batth T.S., Lin D., Lerdrup M., Friis S., Bartels A., Kristensen G., Krzyzanowska A., et al. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2019;25:595–608. doi: 10.1158/1078-0432.CCR-18-0729. PubMed DOI
Yang Y.A., Yu J. Current perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer. Genes Dis. 2015;2:144–151. doi: 10.1016/j.gendis.2015.01.003. PubMed DOI PMC
Yu X., Gupta A., Wang Y., Suzuki K., Mirosevich J., Orgebin-Crist M.C., Matusik R.J. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. N. Y. Acad. Sci. 2005;1061:77–93. doi: 10.1196/annals.1336.009. PubMed DOI
Pomerantz M.M., Li F., Takeda D.Y., Lenci R., Chonkar A., Chabot M., Cejas P., Vazquez F., Cook J., Shivdasani R.A., et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat. Genet. 2015;47:1346–1351. doi: 10.1038/ng.3419. PubMed DOI PMC
Jin H.J., Zhao J.C., Wu L., Kim J., Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat. Commun. 2014;5:3972. doi: 10.1038/ncomms4972. PubMed DOI PMC
Kim J., Jin H., Zhao J.C., Yang Y.A., Li Y., Yang X., Dong X., Yu J. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene. 2017;36:4072–4080. doi: 10.1038/onc.2017.50. PubMed DOI PMC
Amador-Arjona A., Cimadamore F., Huang C.T., Wright R., Lewis S., Gage F.H., Terskikh A.V. SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA. 2015;112:E1936–E1945. doi: 10.1073/pnas.1421480112. PubMed DOI PMC
Vasconcelos F.F., Castro D.S. Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Front. Cell Neurosci. 2014;8:412. doi: 10.3389/fncel.2014.00412. PubMed DOI PMC
Couillard-Despres S., Winner B., Schaubeck S., Aigner R., Vroemen M., Weidner N., Bogdahn U., Winkler J., Kuhn H.G., Aigner L. Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci. 2005;21:1–14. doi: 10.1111/j.1460-9568.2004.03813.x. PubMed DOI
Arenas E. Foxa2: The rise and fall of dopamine neurons. Cell Stem. Cell. 2008;2:110–112. doi: 10.1016/j.stem.2008.01.012. PubMed DOI
Hashizume K., Yamanaka M., Ueda S. POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. Genes Brain Behav. 2018;17:118–125. doi: 10.1111/gbb.12408. PubMed DOI
Guo J., Cheng X., Zhang L., Wang L., Mao Y., Tian G., Xu W., Wu Y., Ma Z., Qin J., et al. Exploration of the Brn4-regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing. J. Neurosci. Res. 2017;95:2071–2079. doi: 10.1002/jnr.24043. PubMed DOI
Knoepfler P.S., Cheng P.F., Eisenman R.N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16:2699–2712. doi: 10.1101/gad.1021202. PubMed DOI PMC
van der Raadt J., van Gestel S.H.C., Nadif Kasri N., Albers C.A. ONECUT transcription factors induce neuronal characteristics and remodel chromatin accessibility. Nucleic Acids Res. 2019;47:5587–5602. doi: 10.1093/nar/gkz273. PubMed DOI PMC
Mu P., Zhang Z., Benelli M., Karthaus W.R., Hoover E., Chen C.C., Wongvipat J., Ku S.Y., Gao D., Cao Z., et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–88. doi: 10.1126/science.aah4307. PubMed DOI PMC
Rapa I., Ceppi P., Bollito E., Rosas R., Cappia S., Bacillo E., Porpiglia F., Berruti A., Papotti M., Volante M. Human ASH1 expression in prostate cancer with neuroendocrine differentiation. Mod. Pathol. 2008;21:700–707. doi: 10.1038/modpathol.2008.39. PubMed DOI
Rapa I., Volante M., Migliore C., Farsetti A., Berruti A., Vittorio Scagliotti G., Giordano S., Papotti M. Human ASH-1 promotes neuroendocrine differentiation in androgen deprivation conditions and interferes with androgen responsiveness in prostate cancer cells. Prostate. 2013;73:1241–1249. doi: 10.1002/pros.22679. PubMed DOI
Fraser J.A., Sutton J.E., Tazayoni S., Bruce I., Poole A.V. hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen. Sci. Rep. 2019;9:19076. doi: 10.1038/s41598-019-55665-y. PubMed DOI PMC
Tabrizi S., Alshalalfa M., Mahal B.A., Davicioni E., Liu Y., Mouw K.W., Feng F., Nguyen P.L., Muralidhar V. Doublecortin Expression in Prostate Adenocarcinoma and Neuroendocrine Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2020;108:936–940. doi: 10.1016/j.ijrobp.2020.06.024. PubMed DOI
Park J.W., Lee J.K., Witte O.N., Huang J. FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate. Mod. Pathol. 2017;30:1262–1272. doi: 10.1038/modpathol.2017.44. PubMed DOI PMC
Connelly Z.M., Yang S., Chen F., Yeh Y., Khater N., Jin R., Matusik R., Yu X. Foxa2 activates the transcription of androgen receptor target genes in castrate resistant prostatic tumors. Am. J. Clin. Exp. Urol. 2018;6:172–181. PubMed PMC
Bishop J.L., Thaper D., Vahid S., Davies A., Ketola K., Kuruma H., Jama R., Nip K.M., Angeles A., Johnson F., et al. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer Discov. 2017;7:54–71. doi: 10.1158/2159-8290.CD-15-1263. PubMed DOI
Bhagirath D., Yang T.L., Tabatabai Z.L., Majid S., Dahiya R., Tanaka Y., Saini S. BRN4 Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with BRN2. Clin. Cancer Res. 2019;25:6532–6545. doi: 10.1158/1078-0432.CCR-19-0498. PubMed DOI PMC
Lee J.K., Phillips J.W., Smith B.A., Park J.W., Stoyanova T., McCaffrey E.F., Baertsch R., Sokolov A., Meyerowitz J.G., Mathis C., et al. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells. Cancer Cell. 2016;29:536–547. doi: 10.1016/j.ccell.2016.03.001. PubMed DOI PMC
Zhang W., Liu B., Wu W., Li L., Broom B.M., Basourakos S.P., Korentzelos D., Luan Y., Wang J., Yang G., et al. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer. Clin. Cancer Res. 2018;24:696–707. doi: 10.1158/1078-0432.CCR-17-1872. PubMed DOI PMC
Guo H., Ci X., Ahmed M., Hua J.T., Soares F., Lin D., Puca L., Vosoughi A., Xue H., Li E., et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat. Commun. 2019;10:278. doi: 10.1038/s41467-018-08133-6. PubMed DOI PMC
Varambally S., Dhanasekaran S.M., Zhou M., Barrette T.R., Kumar-Sinha C., Sanda M.G., Ghosh D., Pienta K.J., Sewalt R.G., Otte A.P., et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–629. doi: 10.1038/nature01075. PubMed DOI
Zhang Y., Zheng D., Zhou T., Song H., Hulsurkar M., Su N., Liu Y., Wang Z., Shao L., Ittmann M., et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat. Commun. 2018;9:4080. doi: 10.1038/s41467-018-06177-2. PubMed DOI PMC
Li Y., Donmez N., Sahinalp C., Xie N., Wang Y., Xue H., Mo F., Beltran H., Gleave M., Collins C., et al. SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition. Eur. Urol. 2017;71:68–78. doi: 10.1016/j.eururo.2016.04.028. PubMed DOI
Lee A.R., Gan Y., Tang Y., Dong X. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. EBioMedicine. 2018;35:167–177. doi: 10.1016/j.ebiom.2018.08.011. PubMed DOI PMC
Akamatsu S., Wyatt A.W., Lin D., Lysakowski S., Zhang F., Kim S., Tse C., Wang K., Mo F., Haegert A., et al. The Placental Gene PEG10 Promotes Progression of Neuroendocrine Prostate Cancer. Cell Rep. 2015;12:922–936. doi: 10.1016/j.celrep.2015.07.012. PubMed DOI
Kim S., Thaper D., Bidnur S., Toren P., Akamatsu S., Bishop J.L., Colins C., Vahid S., Zoubeidi A. PEG10 is associated with treatment-induced neuroendocrine prostate cancer. J. Mol. Endocrinol. 2019;63:39–49. doi: 10.1530/JME-18-0226. PubMed DOI
Svensson C., Ceder J., Iglesias-Gato D., Chuan Y.C., Pang S.T., Bjartell A., Martinez R.M., Bott L., Helczynski L., Ulmert D., et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res. 2014;42:999–1015. doi: 10.1093/nar/gkt921. PubMed DOI PMC
Ballas N., Grunseich C., Lu D.D., Speh J.C., Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell. 2005;121:645–657. doi: 10.1016/j.cell.2005.03.013. PubMed DOI
Gao Z., Ure K., Ding P., Nashaat M., Yuan L., Ma J., Hammer R.E., Hsieh J. The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J. Neurosci. 2011;31:9772–9786. doi: 10.1523/JNEUROSCI.1604-11.2011. PubMed DOI PMC
Liu K., Wang S., Liu Y., Gu J., Gu S., Xu Z., Zhang R., Wang Z., Ma H., Chen Y., et al. Overexpression of MYCN promotes proliferation of non-small cell lung cancer. Tumour Biol. 2016;37:12855–12866. doi: 10.1007/s13277-016-5236-2. PubMed DOI
Metz E.P., Wilder P.J., Dong J., Datta K., Rizzino A. Elevating SOX2 in prostate tumor cells upregulates expression of neuroendocrine genes, but does not reduce the inhibitory effects of enzalutamide. J. Cell Physiol. 2020;235:3731–3740. doi: 10.1002/jcp.29267. PubMed DOI PMC
Niu W., Zang T., Smith D.K., Vue T.Y., Zou Y., Bachoo R., Johnson J.E., Zhang C.L. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem. Cell Rep. 2015;4:780–794. doi: 10.1016/j.stemcr.2015.03.006. PubMed DOI PMC
Mirosevich J., Gao N., Gupta A., Shappell S.B., Jove R., Matusik R.J. Expression and role of Foxa proteins in prostate cancer. Prostate. 2006;66:1013–1028. doi: 10.1002/pros.20299. PubMed DOI
Baca S.C., Takeda D.Y., Seo J.H., Hwang J., Ku S.Y., Arafeh R., Arnoff T., Agarwal S., Bell C., O’Connor E., et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat. Commun. 2021;12:1979. doi: 10.1038/s41467-021-22139-7. PubMed DOI PMC
Rotinen M., You S., Yang J., Coetzee S.G., Reis-Sobreiro M., Huang W.C., Huang F., Pan X., Yanez A., Hazelett D.J., et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat. Med. 2018;24:1887–1898. doi: 10.1038/s41591-018-0241-1. PubMed DOI PMC
Burke P.A., Gregg J.P., Bakhtiar B., Beckett L.A., Denardo G.L., Albrecht H., De Vere White R.W., De Nardo S.J. Characterization of MUC1 glycoprotein on prostate cancer for selection of targeting molecules. Int. J. Oncol. 2006;29:49–55. doi: 10.3892/ijo.29.1.49. PubMed DOI
Rajabi H., Kufe D. MUC1-C Oncoprotein Integrates a Program of EMT, Epigenetic Reprogramming and Immune Evasion in Human Carcinomas. Biochim. Biophys Acta Rev. Cancer. 2017;1868:117–122. doi: 10.1016/j.bbcan.2017.03.003. PubMed DOI PMC
Yasumizu Y., Rajabi H., Jin C., Hata T., Pitroda S., Long M.D., Hagiwara M., Li W., Hu Q., Liu S., et al. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat. Commun. 2020;11:338. doi: 10.1038/s41467-019-14219-6. PubMed DOI PMC
Hagiwara M., Yasumizu Y., Yamashita N., Rajabi H., Fushimi A., Long M.D., Li W., Bhattacharya A., Ahmad R., Oya M., et al. MUC1-C Activates the BAF (mSWI/SNF) Complex in Prostate Cancer Stem Cells. Cancer Res. 2021;81:1111–1122. doi: 10.1158/0008-5472.CAN-20-2588. PubMed DOI PMC
Kwon O.J., Zhang L., Jia D., Zhou Z., Li Z., Haffner M., Lee J.K., True L., Morrissey C., Xin L. De novo induction of lineage plasticity from human prostate luminal epithelial cells by activated AKT1 and c-Myc. Oncogene. 2020;39:7142–7151. doi: 10.1038/s41388-020-01487-6. PubMed DOI PMC
Hsu E.C., Rice M.A., Bermudez A., Marques F.J.G., Aslan M., Liu S., Ghoochani A., Zhang C.A., Chen Y.S., Zlitni A., et al. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proc. Natl. Acad. Sci. USA. 2020;117:2032–2042. doi: 10.1073/pnas.1905384117. PubMed DOI PMC
Abramovic I., Ulamec M., Katusic Bojanac A., Bulic-Jakus F., Jezek D., Sincic N. miRNA in prostate cancer: Challenges toward translation. Epigenomics. 2020;12:543–558. doi: 10.2217/epi-2019-0275. PubMed DOI
Alles J., Fehlmann T., Fischer U., Backes C., Galata V., Minet M., Hart M., Abu-Halima M., Grasser F.A., Lenhof H.P., et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–3364. doi: 10.1093/nar/gkz097. PubMed DOI PMC
Kabekkodu S.P., Shukla V., Varghese V.K., Jeevitha D.S., Chakrabarty S., Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol. Rev. Camb. Philos. Soc. 2018;93:1955–1986. doi: 10.1111/brv.12428. PubMed DOI
O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. (Lausanne) 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC
Vasudevan S., Tong Y., Steitz J.A. Switching from repression to activation: MicroRNAs can up-regulate translation. Science. 2007;318:1931–1934. doi: 10.1126/science.1149460. PubMed DOI
Bayraktar R., Bertilaccio M.T.S., Calin G.A. The Interaction Between Two Worlds: MicroRNAs and Toll-Like Receptors. Front. Immunol. 2019;10:1053. doi: 10.3389/fimmu.2019.01053. PubMed DOI PMC
Quillet A., Saad C., Ferry G., Anouar Y., Vergne N., Lecroq T., Dubessy C. Improving Bioinformatics Prediction of microRNA Targets by Ranks Aggregation. Front. Genet. 2019;10:1330. doi: 10.3389/fgene.2019.01330. PubMed DOI PMC
Huang H.Y., Lin Y.C., Li J., Huang K.Y., Shrestha S., Hong H.C., Tang Y., Chen Y.G., Jin C.N., Yu Y., et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48:D148–D154. doi: 10.1093/nar/gkz896. PubMed DOI PMC
Jiang X., Guo S., Zhang Y., Zhao Y., Li X., Jia Y., Xu Y., Ma B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell Signal. 2020;65:109422. doi: 10.1016/j.cellsig.2019.109422. PubMed DOI
Thomson D.W., Dinger M.E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet. 2016;17:272–283. doi: 10.1038/nrg.2016.20. PubMed DOI
Lo U.G., Pong R.C., Yang D., Gandee L., Hernandez E., Dang A., Lin C.J., Santoyo J., Ma S., Sonavane R., et al. IFNgamma-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019;79:1098–1112. doi: 10.1158/0008-5472.CAN-18-2207. PubMed DOI
Fernandes R.C., Toubia J., Townley S., Hanson A.R., Dredge B.K., Pillman K.A., Bert A.G., Winter J.M., Iggo R., Das R., et al. Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Rep. 2021;34:108585. doi: 10.1016/j.celrep.2020.108585. PubMed DOI
Das R., Gregory P.A., Fernandes R.C., Denis I., Wang Q., Townley S.L., Zhao S.G., Hanson A.R., Pickering M.A., Armstrong H.K., et al. MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Res. 2017;77:1021–1034. doi: 10.1158/0008-5472.CAN-16-2529. PubMed DOI
Selth L.A., Townley S.L., Bert A.G., Stricker P.D., Sutherland P.D., Horvath L.G., Goodall G.J., Butler L.M., Tilley W.D. Circulating microRNAs predict biochemical recurrence in prostate cancer patients. Br. J. Cancer. 2013;109:641–650. doi: 10.1038/bjc.2013.369. PubMed DOI PMC
Tong A.W., Fulgham P., Jay C., Chen P., Khalil I., Liu S., Senzer N., Eklund A.C., Han J., Nemunaitis J. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 2009;16:206–216. doi: 10.1038/cgt.2008.77. PubMed DOI
Bhagirath D., Liston M., Patel N., Akoto T., Lui B., Yang T.L., To D.M., Majid S., Dahiya R., Tabatabai Z.L., et al. MicroRNA determinants of neuroendocrine differentiation in metastatic castration-resistant prostate cancer. Oncogene. 2020;39:7209–7223. doi: 10.1038/s41388-020-01493-8. PubMed DOI PMC
Abdelmohsen K., Hutchison E.R., Lee E.K., Kuwano Y., Kim M.M., Masuda K., Srikantan S., Subaran S.S., Marasa B.S., Mattson M.P., et al. miR-375 inhibits differentiation of neurites by lowering HuD levels. Mol. Cell Biol. 2010;30:4197–4210. doi: 10.1128/MCB.00316-10. PubMed DOI PMC
Liu Y., Xing R., Zhang X., Dong W., Zhang J., Yan Z., Li W., Cui J., Lu Y. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells. DNA Repair (Amst) 2013;12:741–750. doi: 10.1016/j.dnarep.2013.06.002. PubMed DOI
Wang Y., Lieberman R., Pan J., Zhang Q., Du M., Zhang P., Nevalainen M., Kohli M., Shenoy N.K., Meng H., et al. miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol. Cancer. 2016;15:70. doi: 10.1186/s12943-016-0556-9. PubMed DOI PMC
He S., Shi J., Mao J., Luo X., Liu W., Liu R., Yang F. The expression of miR-375 in prostate cancer: A study based on GEO, TCGA data and bioinformatics analysis. Pathol. Res. Pr. 2019;215:152375. doi: 10.1016/j.prp.2019.03.004. PubMed DOI
Valera V.A., Parra-Medina R., Walter B.A., Pinto P., Merino M.J. microRNA Expression Profiling in Young Prostate Cancer Patients. J. Cancer. 2020;11:4106–4114. doi: 10.7150/jca.37842. PubMed DOI PMC
Costa-Pinheiro P., Ramalho-Carvalho J., Vieira F.Q., Torres-Ferreira J., Oliveira J., Goncalves C.S., Costa B.M., Henrique R., Jeronimo C. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin. Epigenetics. 2015;7:42. doi: 10.1186/s13148-015-0076-2. PubMed DOI PMC
Benoist G.E., van Oort I.M., Boerrigter E., Verhaegh G.W., van Hooij O., Groen L., Smit F., de Mol P., Hamberg P., Dezentje V.O., et al. Prognostic Value of Novel Liquid Biomarkers in Patients with Metastatic Castration-Resistant Prostate Cancer Treated with Enzalutamide: A Prospective Observational Study. Clin. Chem. 2020;66:842–851. doi: 10.1093/clinchem/hvaa095. PubMed DOI
Selth L.A., Das R., Townley S.L., Coutinho I., Hanson A.R., Centenera M.M., Stylianou N., Sweeney K., Soekmadji C., Jovanovic L., et al. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene. 2017;36:24–34. doi: 10.1038/onc.2016.185. PubMed DOI
Pickl J.M., Tichy D., Kuryshev V.Y., Tolstov Y., Falkenstein M., Schuler J., Reidenbach D., Hotz-Wagenblatt A., Kristiansen G., Roth W., et al. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 2016;7:59589–59603. doi: 10.18632/oncotarget.10729. PubMed DOI PMC
Huang X., Yuan T., Liang M., Du M., Xia S.S., Dittmar R., Wang D., See W., Costello B.A., Quevedo F., et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol. 2015;67:33–41. doi: 10.1016/j.eururo.2014.07.035. PubMed DOI PMC
Zedan A.H., Osther P.J.S., Assenholt J., Madsen J.S., Hansen T.F. Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Sci. Rep. 2020;10:227. doi: 10.1038/s41598-019-57101-7. PubMed DOI PMC
Cheng H.H., Plets M., Li H., Higano C.S., Tangen C.M., Agarwal N., Vogelzang N.J., Hussain M., Thompson I.M., Jr., Tewari M., et al. Circulating microRNAs and treatment response in the Phase II SWOG S0925 study for patients with new metastatic hormone-sensitive prostate cancer. Prostate. 2018;78:121–127. doi: 10.1002/pros.23452. PubMed DOI PMC
Foj L., Ferrer F., Serra M., Arevalo A., Gavagnach M., Gimenez N., Filella X. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate. 2017;77:573–583. doi: 10.1002/pros.23295. PubMed DOI
Ciszkowicz E., Porzycki P., Semik M., Kaznowska E., Tyrka M. MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer. Int. J. Mol. Sci. 2020;21:5667. doi: 10.3390/ijms21165667. PubMed DOI PMC
Jin W., Fei X., Wang X., Chen F., Song Y. Circulating miRNAs as Biomarkers for Prostate Cancer Diagnosis in Subjects with Benign Prostatic Hyperplasia. J. Immunol. Res. 2020;2020:5873056. doi: 10.1155/2020/5873056. PubMed DOI PMC
Haldrup C., Kosaka N., Ochiya T., Borre M., Hoyer S., Orntoft T.F., Sorensen K.D. Profiling of circulating microRNAs for prostate cancer biomarker discovery. Drug Deliv. Transl. Res. 2014;4:19–30. doi: 10.1007/s13346-013-0169-4. PubMed DOI
Fredsoe J., Rasmussen A.K.I., Mouritzen P., Bjerre M.T., Ostergren P., Fode M., Borre M., Sorensen K.D. Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics. 2020;10:188. doi: 10.3390/diagnostics10040188. PubMed DOI PMC
Bidarra D., Constancio V., Barros-Silva D., Ramalho-Carvalho J., Moreira-Barbosa C., Antunes L., Mauricio J., Oliveira J., Henrique R., Jeronimo C. Circulating MicroRNAs as Biomarkers for Prostate Cancer Detection and Metastasis Development Prediction. Front. Oncol. 2019;9:900. doi: 10.3389/fonc.2019.00900. PubMed DOI PMC
Paiva R.M., Zauli D.A.G., Neto B.S., Brum I.S. Urinary microRNAs expression in prostate cancer diagnosis: A systematic review. Clin. Transl. Oncol. 2020;22:2061–2073. doi: 10.1007/s12094-020-02349-z. PubMed DOI
Wach S., Al-Janabi O., Weigelt K., Fischer K., Greither T., Marcou M., Theil G., Nolte E., Holzhausen H.J., Stohr R., et al. The combined serum levels of miR-375 and urokinase plasminogen activator receptor are suggested as diagnostic and prognostic biomarkers in prostate cancer. Int. J. Cancer. 2015;137:1406–1416. doi: 10.1002/ijc.29505. PubMed DOI
Chu M., Chang Y., Li P., Guo Y., Zhang K., Gao W. Androgen receptor is negatively correlated with the methylation-mediated transcriptional repression of miR-375 in human prostate cancer cells. Oncol. Rep. 2014;31:34–40. doi: 10.3892/or.2013.2810. PubMed DOI PMC
Pillman K.A., Phillips C.A., Roslan S., Toubia J., Dredge B.K., Bert A.G., Lumb R., Neumann D.P., Li X., Conn S.J., et al. miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking. EMBO J. 2018;37:e99016. doi: 10.15252/embj.201899016. PubMed DOI PMC
Bhagirath D., Liston M., Akoto T., Lui B., Bensing B.A., Sharma A., Saini S. Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients. Sci. Rep. 2021;11:8279. doi: 10.1038/s41598-021-87441-2. PubMed DOI PMC
Ma F., Zhang J., Zhong L., Wang L., Liu Y., Wang Y., Peng L., Guo B. Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/beta-catenin signaling. Gene. 2014;535:191–197. doi: 10.1016/j.gene.2013.11.035. PubMed DOI
Xie H., Li L., Zhu G., Dang Q., Ma Z., He D., Chang L., Song W., Chang H.C., Krolewski J.J., et al. Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-beta1/Smad/MMP9 signals. Oncotarget. 2015;6:12326–12339. doi: 10.18632/oncotarget.3619. PubMed DOI PMC
Fan L., Wang Y., Huo W., Wang W.H. MicroRNA301a3p overexpression promotes cell invasion and proliferation by targeting runtrelated transcription factor 3 in prostate cancer. Mol. Med. Rep. 2019;20:3755–3763. doi: 10.3892/mmr.2019.10650. PubMed DOI
Li X., Li J., Cai Y., Peng S., Wang J., Xiao Z., Wang Y., Tao Y., Leng Q., Wu D., et al. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer. Cancer Lett. 2018;418:211–220. doi: 10.1016/j.canlet.2018.01.031. PubMed DOI
Wang W., Liu M., Guan Y., Wu Q. Hypoxia-Responsive Mir-301a and Mir-301b Promote Radioresistance of Prostate Cancer Cells via Downregulating NDRG2. Med. Sci. Monit. 2016;22:2126–2132. doi: 10.12659/MSM.896832. PubMed DOI PMC
Nam R.K., Benatar T., Wallis C.J., Amemiya Y., Yang W., Garbens A., Naeim M., Sherman C., Sugar L., Seth A. MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence. Prostate. 2016;76:869–884. doi: 10.1002/pros.23177. PubMed DOI
Damodaran C., Das T.P., Papu John A.M., Suman S., Kolluru V., Morris T.J., Faber E.N., Rai S.N., Messer J.C., Alatassi H., et al. miR-301a expression: A prognostic marker for prostate cancer. Urol. Oncol. 2016;34:336.e13–336.e20. doi: 10.1016/j.urolonc.2016.03.009. PubMed DOI PMC
Nam R.K., Amemiya Y., Benatar T., Wallis C.J., Stojcic-Bendavid J., Bacopulos S., Sherman C., Sugar L., Naeim M., Yang W., et al. Identification and Validation of a Five MicroRNA Signature Predictive of Prostate Cancer Recurrence and Metastasis: A Cohort Study. J. Cancer. 2015;6:1160–1171. doi: 10.7150/jca.13397. PubMed DOI PMC
Kolluru V., Chandrasekaran B., Tyagi A., Dervishi A., Ankem M., Yan X., Maiying K., Alatassi H., Shaheen S.P., Messer J.C., et al. miR-301a expression: Diagnostic and prognostic marker for prostate cancer. Urol. Oncol. 2018;36:503.e509–503.e515. doi: 10.1016/j.urolonc.2018.07.014. PubMed DOI
Saran U., Chandrasekaran B., Kolluru V., Tyagi A., Nguyen K.D., Valadon C.L., Shaheen S.P., Kong M., Poddar T., Ankem M.K., et al. Diagnostic molecular markers predicting aggressive potential in low-grade prostate cancer. Transl. Res. 2021;231:92–101. doi: 10.1016/j.trsl.2020.11.014. PubMed DOI
Dankert J.T., Wiesehofer M., Czyrnik E.D., Singer B.B., von Ostau N., Wennemuth G. The deregulation of miR-17/CCND1 axis during neuroendocrine transdifferentiation of LNCaP prostate cancer cells. PLoS ONE. 2018;13:e0200472. doi: 10.1371/journal.pone.0200472. PubMed DOI PMC
Arabi L., Gsponer J.R., Smida J., Nathrath M., Perrina V., Jundt G., Ruiz C., Quagliata L., Baumhoer D. Upregulation of the miR-17-92 cluster and its two paraloga in osteosarcoma—Reasons and consequences. Genes Cancer. 2014;5:56–63. doi: 10.18632/genesandcancer.6. PubMed DOI PMC
Fang Y., Shen H., Li H., Cao Y., Qin R., Long L., Zhu X., Xie C., Xu W. miR-106a confers cisplatin resistance by regulating PTEN/Akt pathway in gastric cancer cells. Acta Biochim. Biophys Sin. (Shanghai) 2013;45:963–972. doi: 10.1093/abbs/gmt106. PubMed DOI
Jiang Y., Wu Y., Greenlee A.R., Wu J., Han Z., Li X., Zhao Y. miR-106a-mediated malignant transformation of cells induced by anti-benzo[a]pyrene-trans-7,8-diol-9,10-epoxide. Toxicol. Sci. 2011;119:50–60. doi: 10.1093/toxsci/kfq306. PubMed DOI
Hoey C., Ray J., Jeon J., Huang X., Taeb S., Ylanko J., Andrews D.W., Boutros P.C., Liu S.K. miRNA-106a and prostate cancer radioresistance: A novel role for LITAF in ATM regulation. Mol. Oncol. 2018;12:1324–1341. doi: 10.1002/1878-0261.12328. PubMed DOI PMC
Cochetti G., Poli G., Guelfi G., Boni A., Egidi M.G., Mearini E. Different levels of serum microRNAs in prostate cancer and benign prostatic hyperplasia: Evaluation of potential diagnostic and prognostic role. Onco Targets Ther. 2016;9:7545–7553. doi: 10.2147/OTT.S119027. PubMed DOI PMC
Volinia S., Calin G.A., Liu C.G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci USA. 2006;103:2257–2261. doi: 10.1073/pnas.0510565103. PubMed DOI PMC
Luo B., Kang N., Chen Y., Liu L., Zhang Y. Oncogene miR-106a promotes proliferation and metastasis of prostate cancer cells by directly targeting PTEN in vivo and in vitro. Minerva Med. 2018;109:24–30. doi: 10.23736/S0026-4806.17.05342-3. PubMed DOI
Hoey C., Ahmed M., Fotouhi Ghiam A., Vesprini D., Huang X., Commisso K., Commisso A., Ray J., Fokas E., Loblaw D.A., et al. Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy. J. Transl. Med. 2019;17:173. doi: 10.1186/s12967-019-1920-5. PubMed DOI PMC
Sharova E., Grassi A., Marcer A., Ruggero K., Pinto F., Bassi P., Zanovello P., Zattoni F., D’Agostino D.M., Iafrate M., et al. A circulating miRNA assay as a first-line test for prostate cancer screening. Br. J. Cancer. 2016;114:1362–1366. doi: 10.1038/bjc.2016.151. PubMed DOI PMC
Alhasan A.H., Scott A.W., Wu J.J., Feng G., Meeks J.J., Thaxton C.S., Mirkin C.A. Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc. Natl. Acad. Sci. USA. 2016;113:10655–10660. doi: 10.1073/pnas.1611596113. PubMed DOI PMC
Wei P., Yang J., Zhang D., Cui M., Li L. lncRNA HAND2-AS1 Regulates Prostate Cancer Cell Growth Through Targeting the miR-106a-5p/RBM24 Axis. Onco Targets Ther. 2020;13:4523–4531. doi: 10.2147/OTT.S246274. PubMed DOI PMC
Xia T., Liao Q., Jiang X., Shao Y., Xiao B., Xi Y., Guo J. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci. Rep. 2014;4:6088. doi: 10.1038/srep06088. PubMed DOI PMC
Zhang G., Zhou H., Xiao H., Liu Z., Tian H., Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig. Dis. Sci. 2014;59:98–107. doi: 10.1007/s10620-013-2858-8. PubMed DOI
Liao G., Xiong H., Tang J., Li Y., Liu Y. MicroRNA-92a Inhibits the Cell Viability and Metastasis of Prostate Cancer by Targeting SOX4. Technol. Cancer Res. Treat. 2020;19:1533033820959354. doi: 10.1177/1533033820959354. PubMed DOI PMC
Xiaoli Z., Yawei W., Lianna L., Haifeng L., Hui Z. Screening of Target Genes and Regulatory Function of miRNAs as Prognostic Indicators for Prostate Cancer. Med. Sci. Monit. 2015;21:3748–3759. doi: 10.12659/MSM.894670. PubMed DOI PMC
Zhang R., Li F., Wang Y., Yao M., Chi C. Prognostic value of microRNA-20b expression level in patients with prostate cancer. Histol. Histopathol. 2020;35:827–831. doi: 10.14670/HH-18-216. PubMed DOI
Tian L., Fang Y.X., Xue J.L., Chen J.Z. Four microRNAs promote prostate cell proliferation with regulation of PTEN and its downstream signals in vitro. PLoS ONE. 2013;8:e75885. doi: 10.1371/journal.pone.0075885. PubMed DOI PMC
Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E., Zaporozhchenko I.A., Yarmoschuk S.V., Pashkovskaya O.A., Pak S.V., Laktionov P.P. The Panel of 12 Cell-Free MicroRNAs as Potential Biomarkers in Prostate Neoplasms. Diagnostics. 2020;10:38. doi: 10.3390/diagnostics10010038. PubMed DOI PMC
Huo W., Qi F., Wang K. Long non-coding RNA FER1L4 inhibits prostate cancer progression via sponging miR-92a-3p and upregulation of FBXW7. Cancer Cell Int. 2020;20:64. doi: 10.1186/s12935-020-1143-0. PubMed DOI PMC
Buechner J., Tomte E., Haug B.H., Henriksen J.R., Lokke C., Flaegstad T., Einvik C. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br. J. Cancer. 2011;105:296–303. doi: 10.1038/bjc.2011.220. PubMed DOI PMC
Olive V., Bennett M.J., Walker J.C., Ma C., Jiang I., Cordon-Cardo C., Li Q.J., Lowe S.W., Hannon G.J., He L. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 2009;23:2839–2849. doi: 10.1101/gad.1861409. PubMed DOI PMC
Fan Y., Yin S., Hao Y., Yang J., Zhang H., Sun C., Ma M., Chang Q., Xi J.J. miR-19b promotes tumor growth and metastasis via targeting TP53. Rna. 2014;20:765–772. doi: 10.1261/rna.043026.113. PubMed DOI PMC
Osip’yants A.I., Knyazev E.N., Galatenko A.V., Nyushko K.M., Galatenko V.V., Shkurnikov M.Y., Alekseev B.Y. Changes in the Level of Circulating hsa-miR-297 and hsa-miR-19b-3p miRNA Are Associated with Generalization of Prostate Cancer. Bull. Exp. Biol. Med. 2017;162:379–382. doi: 10.1007/s10517-017-3620-6. PubMed DOI
Stuopelyte K., Daniunaite K., Jankevicius F., Jarmalaite S. Detection of miRNAs in urine of prostate cancer patients. Medicina. 2016;52:116–124. doi: 10.1016/j.medici.2016.02.007. PubMed DOI
Duca R.B., Massillo C., Dalton G.N., Farré P.L., Graña K.D., Gardner K., De Siervi A. MiR-19b-3p and miR-101-3p as potential biomarkers for prostate cancer diagnosis and prognosis. Am. J. Cancer Res. 2021;11:2802–2820. PubMed PMC
Li D., Ilnytskyy Y., Kovalchuk A., Khachigian L.M., Bronson R.T., Wang B., Kovalchuk O. Crucial role for early growth response-1 in the transcriptional regulation of miR-20b in breast cancer. Oncotarget. 2013;4:1373–1387. doi: 10.18632/oncotarget.1165. PubMed DOI PMC
Guo J., Xiao Z., Yu X., Cao R. miR-20b promotes cellular proliferation and migration by directly regulating phosphatase and tensin homolog in prostate cancer. Oncol. Lett. 2017;14:6895–6900. doi: 10.3892/ol.2017.7041. PubMed DOI PMC
Qi J.C., Yang Z., Zhang Y.P., Lu B.S., Yin Y.W., Liu K.L., Xue W.Y., Qu C.B., Li W. miR-20b-5p, TGFBR2, and E2F1 Form a Regulatory Loop to Participate in Epithelial to Mesenchymal Transition in Prostate Cancer. Front. Oncol. 2019;9:1535. doi: 10.3389/fonc.2019.01535. PubMed DOI PMC
Pan Z., Mo F., Liu H., Zeng J., Huang K., Huang S., Cao Z., Xu X., Xu J., Liu T., et al. LncRNA prostate androgen-regulated transcript 1 (PART 1) functions as an oncogene in osteosarcoma via sponging miR-20b-5p to upregulate BAMBI. Ann. Transl. Med. 2021;9:488. doi: 10.21037/atm-21-658. PubMed DOI PMC
Pashaei E., Ahmady M., Ozen M., Aydin N. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS ONE. 2017;12:e0179543. doi: 10.1371/journal.pone.0179543. PubMed DOI PMC
Chen Y., Lu X., Wu B., Su Y., Li J., Wang H. MicroRNA 363 mediated positive regulation of c-myc translation affect prostate cancer development and progress. Neoplasma. 2015;62:191–198. doi: 10.4149/neo_2015_024. PubMed DOI
Liang H., Studach L., Hullinger R.L., Xie J., Andrisani O.M. Down-regulation of RE-1 silencing transcription factor (REST) in advanced prostate cancer by hypoxia-induced miR-106b~25. Exp. Cell Res. 2014;320:188–199. doi: 10.1016/j.yexcr.2013.09.020. PubMed DOI PMC
Cai K., Wang Y., Bao X. MiR-106b promotes cell proliferation via targeting RB in laryngeal carcinoma. J. Exp. Clin. Cancer Res. 2011;30:73. doi: 10.1186/1756-9966-30-73. PubMed DOI PMC
Yang T.S., Yang X.H., Chen X., Wang X.D., Hua J., Zhou D.L., Zhou B., Song Z.S. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett. 2014;588:2162–2169. doi: 10.1016/j.febslet.2014.04.050. PubMed DOI
Song C.J., Chen H., Chen L.Z., Ru G.M., Guo J.J., Ding Q.N. The potential of microRNAs as human prostate cancer biomarkers: A meta-analysis of related studies. J. Cell Biochem. 2018;119:2763–2786. doi: 10.1002/jcb.26445. PubMed DOI PMC
Yin W., Chen J., Wang G., Zhang D. MicroRNA106b functions as an oncogene and regulates tumor viability and metastasis by targeting LARP4B in prostate cancer. Mol. Med. Rep. 2019;20:951–958. doi: 10.3892/mmr.2019.10343. PubMed DOI PMC
Poliseno L., Salmena L., Riccardi L., Fornari A., Song M.S., Hobbs R.M., Sportoletti P., Varmeh S., Egia A., Fedele G., et al. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci. Signal. 2010;3:ra29. doi: 10.1126/scisignal.2000594. PubMed DOI PMC
Hudson R.S., Yi M., Esposito D., Glynn S.A., Starks A.M., Yang Y., Schetter A.J., Watkins S.K., Hurwitz A.A., Dorsey T.H., et al. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. 2013;32:4139–4147. doi: 10.1038/onc.2012.424. PubMed DOI PMC
Li B., Shi X.B., Nori D., Chao C.K., Chen A.M., Valicenti R., White Rde V. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 2011;71:567–574. doi: 10.1002/pros.21272. PubMed DOI
Fu X., Tian J., Zhang L., Chen Y., Hao Q. Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett. 2012;586:1279–1286. doi: 10.1016/j.febslet.2012.03.006. PubMed DOI
Pudova E.A., Krasnov G.S., Nyushko K.M., Kobelyatskaya A.A., Savvateeva M.V., Poloznikov A.A., Dolotkazin D.R., Klimina K.M., Guvatova Z.G., Simanovsky S.A., et al. miRNAs expression signature potentially associated with lymphatic dissemination in locally advanced prostate cancer. BMC Med. Genom. 2020;13:129. doi: 10.1186/s12920-020-00788-9. PubMed DOI PMC
Liu J.-J., Zhang X., Wu X.-H. miR-93 Promotes the Growth and Invasion of Prostate Cancer by Upregulating Its Target Genes TGFBR2, ITGB8, and LATS2. Mol. Ther.-Oncolytics. 2018;11:14–19. doi: 10.1016/j.omto.2018.08.001. PubMed DOI PMC
Choi N., Park J., Lee J.-S., Yoe J., Park G.Y., Kim E., Jeon H., Cho Y.M., Roh T.-Y., Lee Y. miR-93/miR-106b/miR-375-CIC-CRABP1: A novel regulatory axis in prostate cancer progression. Oncotarget. 2015;6:23533. doi: 10.18632/oncotarget.4372. PubMed DOI PMC
Wang C., Tian S., Zhang D., Deng J., Cai H., Shi C., Yang W. Increased expression of microRNA-93 correlates with progression and prognosis of prostate cancer. Medicine (Baltimore) 2020;99:e18432. doi: 10.1097/MD.0000000000018432. PubMed DOI
Barceló M., Castells M., Pérez-Riba M., Bassas L., Vigués F., Larriba S. Seminal plasma microRNAs improve diagnosis/prognosis of prostate cancer in men with moderately altered prostate-specific antigen. Am. J. Transl. Res. 2020;12:2041–2051. PubMed PMC
Martínez-González L.J., Sánchez-Conde V., González-Cabezuelo J.M., Antunez-Rodríguez A., Andrés-León E., Robles-Fernandez I., Lorente J.A., Vázquez-Alonso F., Alvarez-Cubero M.J. Identification of MicroRNAs as Viable Aggressiveness Biomarkers for Prostate Cancer. Biomedicines. 2021;9:646. doi: 10.3390/biomedicines9060646. PubMed DOI PMC
Zhang S., Liu C., Zou X., Geng X., Zhou X., Fan X., Zhu D., Zhang H., Zhu W. MicroRNA panel in serum reveals novel diagnostic biomarkers for prostate cancer. PeerJ. 2021;9:e11441. doi: 10.7717/peerj.11441. PubMed DOI PMC
Li Z., Sun Y., Chen X., Squires J., Nowroozizadeh B., Liang C., Huang J. p53 Mutation Directs AURKA Overexpression via miR-25 and FBXW7 in Prostatic Small Cell Neuroendocrine Carcinoma. Mol. Cancer Res. 2015;13:584–591. doi: 10.1158/1541-7786.MCR-14-0277-T. PubMed DOI PMC
Esposito F., Tornincasa M., Pallante P., Federico A., Borbone E., Pierantoni G.M., Fusco A. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J. Clin. Endocrinol. Metab. 2012;97:E710–E718. doi: 10.1210/jc.2011-3068. PubMed DOI
Kumar M., Lu Z., Takwi A.A., Chen W., Callander N.S., Ramos K.S., Young K.H., Li Y. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30:843–853. doi: 10.1038/onc.2010.457. PubMed DOI PMC
Zoni E., van der Horst G., van de Merbel A.F., Chen L., Rane J.K., Pelger R.C.M., Collins A.T., Visakorpi T., Snaar-Jagalska B.E., Maitland N.J., et al. miR-25 Modulates Invasiveness and Dissemination of Human Prostate Cancer Cells via Regulation of αv- and α6- Integrin Expression. Cancer Res. 2015;75:2326–2336. doi: 10.1158/0008-5472.CAN-14-2155. PubMed DOI
Srivastava A., Goldberger H., Dimtchev A., Marian C., Soldin O., Li X., Collins S.P., Suy S., Kumar D. Circulatory miR-628-5p is downregulated in prostate cancer patients. Tumour. Biol. 2014;35:4867–4873. doi: 10.1007/s13277-014-1638-1. PubMed DOI PMC
Cai K., Wan Y., Sun G., Shi L., Bao X., Wang Z. Let-7a inhibits proliferation and induces apoptosis by targeting EZH2 in nasopharyngeal carcinoma cells. Oncol. Rep. 2012;28:2101–2106. doi: 10.3892/or.2012.2027. PubMed DOI
Cai J., Yang C., Yang Q., Ding H., Jia J., Guo J., Wang J., Wang Z. Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin. Oncogenesis. 2013;2:e75. doi: 10.1038/oncsis.2013.39. PubMed DOI PMC
Murray M.J., Saini H.K., Siegler C.A., Hanning J.E., Barker E.M., van Dongen S., Ward D.M., Raby K.L., Groves I.J., Scarpini C.G., et al. LIN28 Expression in malignant germ cell tumors downregulates let-7 and increases oncogene levels. Cancer Res. 2013;73:4872–4884. doi: 10.1158/0008-5472.CAN-12-2085. PubMed DOI PMC
Cimadamore F., Amador-Arjona A., Chen C., Huang C.-T., Terskikh A.V. SOX2–LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc. Natl. Acad. Sci. USA. 2013;110:E3017–E3026. doi: 10.1073/pnas.1220176110. PubMed DOI PMC
Kong D., Heath E., Chen W., Cher M.L., Powell I., Heilbrun L., Li Y., Ali S., Sethi S., Hassan O., et al. Loss of Let-7 Up-Regulates EZH2 in Prostate Cancer Consistent with the Acquisition of Cancer Stem Cell Signatures That Are Attenuated by BR-DIM. PLoS ONE. 2012;7:e33729. doi: 10.1371/journal.pone.0033729. PubMed DOI PMC
Schubert M., Spahn M., Kneitz S., Scholz C.J., Joniau S., Stroebel P., Riedmiller H., Kneitz B. Distinct microRNA Expression Profile in Prostate Cancer Patients with Early Clinical Failure and the Impact of let-7 as Prognostic Marker in High-Risk Prostate Cancer. PLoS ONE. 2013;8:e65064. doi: 10.1371/journal.pone.0065064. PubMed DOI PMC
Costanzi E., Romani R., Scarpelli P., Bellezza I. Extracellular Vesicles-Mediated Transfer of miRNA Let-7b from PC3 Cells to Macrophages. Genes. 2020;11:1495. doi: 10.3390/genes11121495. PubMed DOI PMC
Guelfi G., Cochetti G., Stefanetti V., Zampini D., Diverio S., Boni A., Mearini E. Next Generation Sequencing of urine exfoliated cells: An approach of prostate cancer microRNAs research. Sci. Rep. 2018;8:7111. doi: 10.1038/s41598-018-24236-y. PubMed DOI PMC
Xiao G.a., Yao J., Kong D., Ye C., Chen R., Li L., Zeng T., Wang L., Zhang W., Shi X., et al. The Long Noncoding RNA TTTY15, Which Is Located on the Y Chromosome, Promotes Prostate Cancer Progression by Sponging let-7. Eur. Urol. 2019;76:315–326. doi: 10.1016/j.eururo.2018.11.012. PubMed DOI
Nadiminty N., Tummala R., Lou W., Zhu Y., Shi X.-B., Zou J.X., Chen H., Zhang J., Chen X., Luo J., et al. MicroRNA let-7c Is Downregulated in Prostate Cancer and Suppresses Prostate Cancer Growth. PLoS ONE. 2012;7:e32832. doi: 10.1371/journal.pone.0032832. PubMed DOI PMC
Pernicová Z., Slabáková E., Fedr R., Šimečková Š., Jaroš J., Suchánková T., Bouchal J., Kharaishvili G., Král M., Kozubík A., et al. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol. Cancer. 2014;13:113. doi: 10.1186/1476-4598-13-113. PubMed DOI PMC
Akoto T., Bhagirath D., Saini S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. Cancer Drug Resist. 2020;3:804–818. doi: 10.20517/cdr.2020.30. PubMed DOI PMC
Chen J., Bardes E.E., Aronow B.J., Jegga A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–W311. doi: 10.1093/nar/gkp427. PubMed DOI PMC
Kong Q., Chen X.S., Tian T., Xia X.Y., Xu P. MicroRNA-194 suppresses prostate cancer migration and invasion by downregulating human nuclear distribution protein. Oncol. Rep. 2017;37:803–812. doi: 10.3892/or.2016.5305. PubMed DOI
Gao S., Zhao Z., Wu R., Wu L., Tian X., Zhang Z. MicroRNA-194 regulates cell viability and apoptosis by targeting CDH2 in prostatic cancer. Onco Targets Ther. 2018;11:4837–4844. doi: 10.2147/OTT.S169101. PubMed DOI PMC
Li Z., Li L.X., Diao Y.J., Wang J., Ye Y., Hao X.K. Identification of Urinary Exosomal miRNAs for the Non-Invasive Diagnosis of Prostate Cancer. Cancer Manag. Res. 2021;13:25–35. doi: 10.2147/CMAR.S272140. PubMed DOI PMC
Konoshenko M.Y., Bryzgunova O.E., Lekchnov E.A., Amelina E.V., Yarmoschuk S.V., Pak S.V., Laktionov P.P. The Influence of Radical Prostatectomy on the Expression of Cell-Free MiRNA. Diagnostics. 2020;10:600. doi: 10.3390/diagnostics10080600. PubMed DOI PMC
Mosquera J.M., Beltran H., Park K., MacDonald T.Y., Robinson B.D., Tagawa S.T., Perner S., Bismar T.A., Erbersdobler A., Dhir R., et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia. 2013;15:1–10. doi: 10.1593/neo.121550. PubMed DOI PMC
Kishore S., Jaskiewicz L., Burger L., Hausser J., Khorshid M., Zavolan M. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods. 2011;8:559–564. doi: 10.1038/nmeth.1608. PubMed DOI
Riley K.J., Rabinowitz G.S., Yario T.A., Luna J.M., Darnell R.B., Steitz J.A. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. Embo J. 2012;31:2207–2221. doi: 10.1038/emboj.2012.63. PubMed DOI PMC
Heo I., Joo C., Kim Y.K., Ha M., Yoon M.J., Cho J., Yeom K.H., Han J., Kim V.N. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138:696–708. doi: 10.1016/j.cell.2009.08.002. PubMed DOI
Mogilyansky E., Rigoutsos I. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20:1603–1614. doi: 10.1038/cdd.2013.125. PubMed DOI PMC
Liu H., Wu Z., Zhou H., Cai W., Li X., Hu J., Gao L., Feng T., Wang L., Peng X., et al. The SOX4/miR-17-92/RB1 Axis Promotes Prostate Cancer Progression. Neoplasia. 2019;21:765–776. doi: 10.1016/j.neo.2019.05.007. PubMed DOI PMC
Tan H.L., Sood A., Rahimi H.A., Wang W., Gupta N., Hicks J., Mosier S., Gocke C.D., Epstein J.I., Netto G.J., et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 2014;20:890–903. doi: 10.1158/1078-0432.CCR-13-1982. PubMed DOI PMC
Hu H., Li H., He Y. MicroRNA-17 downregulates expression of the PTEN gene to promote the occurrence and development of adenomyosis. Exp. Ther. Med. 2017;14:3805–3811. doi: 10.3892/etm.2017.5013. PubMed DOI PMC
Dong P., Xiong Y., Yu J., Chen L., Tao T., Yi S., Hanley S.J.B., Yue J., Watari H., Sakuragi N. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer. Oncogene. 2018;37:5257–5268. doi: 10.1038/s41388-018-0347-4. PubMed DOI PMC
Liang Z., Li Y., Huang K., Wagar N., Shim H. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. 2011;28:3091–3100. doi: 10.1007/s11095-011-0570-y. PubMed DOI
Wang F., Li T., Zhang B., Li H., Wu Q., Yang L., Nie Y., Wu K., Shi Y., Fan D. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem. Biophys Res. Commun. 2013;434:688–694. doi: 10.1016/j.bbrc.2013.04.010. PubMed DOI
Trompeter H.I., Abbad H., Iwaniuk K.M., Hafner M., Renwick N., Tuschl T., Schira J., Muller H.W., Wernet P. MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS ONE. 2011;6:e16138. doi: 10.1371/journal.pone.0016138. PubMed DOI PMC
Jiang Y., Chang H., Chen G. Effects of microRNA-20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway. Oncol. Lett. 2018;15:10001–10007. doi: 10.3892/ol.2018.8555. PubMed DOI PMC
Lewis B.P., Shih I.H., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of mammalian microRNA targets. Cell. 2003;115:787–798. doi: 10.1016/S0092-8674(03)01018-3. PubMed DOI
Lu W.D., Zuo Y., Xu Z., Zhang M. MiR-19a promotes epithelial-mesenchymal transition through PI3K/AKT pathway in gastric cancer. World J. Gastroenterol. 2015;21:4564–4573. doi: 10.3748/wjg.v21.i15.4564. PubMed DOI PMC
Wiesehofer M., Czyrnik E.D., Spahn M., Ting S., Reis H., Dankert J.T., Wennemuth G. Increased Expression of AKT3 in Neuroendocrine Differentiated Prostate Cancer Cells Alters the Response Towards Anti-Androgen Treatment. Cancers. 2021;13:578. doi: 10.3390/cancers13030578. PubMed DOI PMC
Jiao L., Deng Z., Xu C., Yu Y., Li Y., Yang C., Chen J., Liu Z., Huang G., Li L.C., et al. miR-663 induces castration-resistant prostate cancer transformation and predicts clinical recurrence. J. Cell Physiol. 2014;229:834–844. doi: 10.1002/jcp.24510. PubMed DOI
Cho J.G., Park S., Lim C.H., Kim H.S., Song S.Y., Roh T.Y., Sung J.H., Suh W., Ham S.J., Lim K.H., et al. ZNF224, Kruppel like zinc finger protein, induces cell growth and apoptosis-resistance by down-regulation of p21 and p53 via miR-663a. Oncotarget. 2016;7:31177–31190. doi: 10.18632/oncotarget.8870. PubMed DOI PMC
Sadeghi M., Ranjbar B., Ganjalikhany M.R., Khan F.M., Schmitz U., Wolkenhauer O., Gupta S.K. MicroRNA and Transcription Factor Gene Regulatory Network Analysis Reveals Key Regulatory Elements Associated with Prostate Cancer Progression. PLoS ONE. 2016;11:e0168760. doi: 10.1371/journal.pone.0168760. PubMed DOI PMC
Dang Q., Li L., Xie H., He D., Chen J., Song W., Chang L.S., Chang H.C., Yeh S., Chang C. Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells → androgen receptor (AR) → miRNA32 signals. Mol. Oncol. 2015;9:1241–1251. doi: 10.1016/j.molonc.2015.02.010. PubMed DOI PMC
Jalava S.E., Urbanucci A., Latonen L., Waltering K.K., Sahu B., Janne O.A., Seppala J., Lahdesmaki H., Tammela T.L., Visakorpi T. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 2012;31:4460–4471. doi: 10.1038/onc.2011.624. PubMed DOI
Zhang L., Li X., Chao Y., He R., Liu J., Yuan Y., Zhao W., Han C., Song X. KLF4, a miR-32-5p targeted gene, promotes cisplatin-induced apoptosis by upregulating BIK expression in prostate cancer. Cell Commun. Signal. 2018;16:53. doi: 10.1186/s12964-018-0270-x. PubMed DOI PMC
Latonen L., Scaravilli M., Gillen A., Hartikainen S., Zhang F.P., Ruusuvuori P., Kujala P., Poutanen M., Visakorpi T. In Vivo Expression of miR-32 Induces Proliferation in Prostate Epithelium. Am. J. Pathol. 2017;187:2546–2557. doi: 10.1016/j.ajpath.2017.07.012. PubMed DOI
Liao H., Xiao Y., Hu Y., Yin Z., Liu L. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol. Lett. 2015;10:2055–2062. doi: 10.3892/ol.2015.3551. PubMed DOI PMC
Zhu G., Chai J., Ma L., Duan H., Zhang H. Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells. Biochem. Biophys Res. Commun. 2013;433:526–531. doi: 10.1016/j.bbrc.2013.03.018. PubMed DOI
Kong D., Heath E., Chen W., Cher M., Powell I., Heilbrun L., Li Y., Ali S., Sethi S., Hassan O., et al. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am. J. Transl. Res. 2012;4:14–23. PubMed PMC
Chen W.Y., Liu S.Y., Chang Y.S., Yin J.J., Yeh H.L., Mouhieddine T.H., Hadadeh O., Abou-Kheir W., Liu Y.N. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget. 2015;6:441–457. doi: 10.18632/oncotarget.2690. PubMed DOI PMC
Shu Y., Ren L., Xie B., Liang Z., Chen J.M. MiR-204 enhances mitochondrial apoptosis in doxorubicin-treated prostate cancer cells by targeting SIRT1/p53 pathway. Oncotarget. 2017;8:97313–97322. doi: 10.18632/oncotarget.21960. PubMed DOI PMC
Wa Q., Huang S., Pan J., Tang Y., He S., Fu X., Peng X., Chen X., Yang C., Ren D., et al. miR-204-5p Represses Bone Metastasis via Inactivating NF-kappaB Signaling in Prostate Cancer. Mol. Ther. Nucleic Acids. 2019;18:567–579. doi: 10.1016/j.omtn.2019.09.008. PubMed DOI PMC
Kashat M., Azzouz L., Sarkar S.H., Kong D., Li Y., Sarkar F.H. Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am. J. Transl. Res. 2012;4:432–442. PubMed PMC
Wei J.S., Song Y.K., Durinck S., Chen Q.R., Cheuk A.T.C., Tsang P., Zhang Q., Thiele C.J., Slack A., Shohet J., et al. The MYCN oncogene is a direct target of miR-34a. Oncogene. 2008;27:5204–5213. doi: 10.1038/onc.2008.154. PubMed DOI PMC
Choi Y.J., Lin C.P., Ho J.J., He X., Okada N., Bu P., Zhong Y., Kim S.Y., Bennett M.J., Chen C., et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol. 2011;13:1353–1360. doi: 10.1038/ncb2366. PubMed DOI PMC
Javeri A., Ghaffarpour M., Taha M.F., Houshmand M. Downregulation of miR-34a in breast tumors is not associated with either p53 mutations or promoter hypermethylation while it correlates with metastasis. Med. Oncol. 2013;30:413. doi: 10.1007/s12032-012-0413-7. PubMed DOI
Zheng C., Yinghao S., Li J. MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med. Oncol. 2012;29:815–822. doi: 10.1007/s12032-011-9934-8. PubMed DOI
Kiener M., Chen L., Krebs M., Grosjean J., Klima I., Kalogirou C., Riedmiller H., Kneitz B., Thalmann G.N., Snaar-Jagalska E., et al. miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo. BMC Cancer. 2019;19:627. doi: 10.1186/s12885-019-5819-6. PubMed DOI PMC
Sun T., Du S.-Y., Armenia J., Qu F., Fan J., Wang X., Fei T., Komura K., Liu S.X., Lee G.-S.M., et al. Expression of lncRNA MIR222HG co-transcribed from the miR-221/222 gene promoter facilitates the development of castration-resistant prostate cancer. Oncogenesis. 2018;7:30. doi: 10.1038/s41389-018-0039-5. PubMed DOI PMC
Xuan H., Xue W., Pan J., Sha J., Dong B., Huang Y. Downregulation of miR-221, -30d, and -15a contributes to pathogenesis of prostate cancer by targeting Bmi-1. Biochemistry (Moscow) 2015;80:276–283. doi: 10.1134/S0006297915030037. PubMed DOI
Lupini L., Bassi C., Ferracin M., Bartonicek N., D’Abundo L., Zagatti B., Callegari E., Musa G., Moshiri F., Gramantieri L., et al. miR-221 affects multiple cancer pathways by modulating the level of hundreds messenger RNAs. Front. Genet. 2013;4:64. doi: 10.3389/fgene.2013.00064. PubMed DOI PMC
Garofalo M., Di Leva G., Romano G., Nuovo G., Suh S.-S., Ngankeu A., Taccioli C., Pichiorri F., Alder H., Secchiero P., et al. miR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity through PTEN and TIMP3 Downregulation. Cancer Cell. 2009;16:498–509. doi: 10.1016/j.ccr.2009.10.014. PubMed DOI PMC
Boyle G.M., Woods S.L., Bonazzi V.F., Stark M.S., Hacker E., Aoude L.G., Dutton-Regester K., Cook A.L., Sturm R.A., Hayward N.K. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment. Cell Melanoma Res. 2011;24:525–537. doi: 10.1111/j.1755-148X.2011.00849.x. PubMed DOI
Kumar B., Khaleghzadegan S., Mears B., Hatano K., Kudrolli T.A., Chowdhury W.H., Yeater D.B., Ewing C.M., Luo J., Isaacs W.B., et al. Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget. 2016;7:72593–72607. doi: 10.18632/oncotarget.12241. PubMed DOI PMC
Lin P.C., Chiu Y.L., Banerjee S., Park K., Mosquera J.M., Giannopoulou E., Alves P., Tewari A.K., Gerstein M.B., Beltran H., et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res. 2013;73:1232–1244. doi: 10.1158/0008-5472.CAN-12-2968. PubMed DOI PMC
Ostano P., Mello-Grand M., Sesia D., Gregnanin I., Peraldo-Neia C., Guana F., Jachetti E., Farsetti A., Chiorino G. Gene Expression Signature Predictive of Neuroendocrine Transformation in Prostate Adenocarcinoma. Int. J. Mol. Sci. 2020;21:1078. doi: 10.3390/ijms21031078. PubMed DOI PMC
Coarfa C., Fiskus W., Eedunuri V.K., Rajapakshe K., Foley C., Chew S.A., Shah S.S., Geng C., Shou J., Mohamed J.S., et al. Comprehensive proteomic profiling identifies the androgen receptor axis and other signaling pathways as targets of microRNAs suppressed in metastatic prostate cancer. Oncogene. 2016;35:2345–2356. doi: 10.1038/onc.2015.295. PubMed DOI PMC
Fletcher C.E., Sulpice E., Combe S., Shibakawa A., Leach D.A., Hamilton M.P., Chrysostomou S.L., Sharp A., Welti J., Yuan W., et al. Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene. 2019;38:5700–5724. doi: 10.1038/s41388-019-0823-5. PubMed DOI PMC
Ebron J.S., Shankar E., Singh J., Sikand K., Weyman C.M., Gupta S., Lindner D.J., Liu X., Campbell M.J., Shukla G.C. MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Res. 2019;79:1844–1856. doi: 10.1158/0008-5472.CAN-18-2993. PubMed DOI
Qu H.W., Jin Y., Cui Z.L., Jin X.B. MicroRNA-373-3p inhibits prostate cancer progression by targeting AKT1. Eur. Rev. Med. Pharmacol. Sci. 2018;22:6252–6259. doi: 10.26355/eurrev_201810_16032. PubMed DOI
Josson S., Gururajan M., Hu P., Shao C., Chu G.Y., Zhau H.E., Liu C., Lao K., Lu C.L., Lu Y.T., et al. miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin. Cancer Res. 2014;20:4636–4646. doi: 10.1158/1078-0432.CCR-14-0305. PubMed DOI PMC
Josson S., Gururajan M., Sung S.Y., Hu P., Shao C., Zhau H.E., Liu C., Lichterman J., Duan P., Li Q., et al. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene. 2015;34:2690–2699. doi: 10.1038/onc.2014.212. PubMed DOI
Yang K., Handorean A.M., Iczkowski K.A. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int. J. Clin. Exp. Pathol. 2009;2:361–369. PubMed PMC
Huang Q., Ma B., Su Y., Chan K., Qu H., Huang J., Wang D., Qiu J., Liu H., Yang X., et al. miR-197-3p Represses the Proliferation of Prostate Cancer by Regulating the VDAC1/AKT/beta-catenin Signaling Axis. Int. J. Biol. Sci. 2020;16:1417–1426. doi: 10.7150/ijbs.42019. PubMed DOI PMC
Yang J., Song Q., Cai Y., Wang P., Wang M., Zhang D. RLIP76-dependent suppression of PI3K/AKT/Bcl-2 pathway by miR-101 induces apoptosis in prostate cancer. Biochem. Biophys Res. Commun. 2015;463:900–906. doi: 10.1016/j.bbrc.2015.06.032. PubMed DOI
Wu X., Bhayani M.K., Dodge C.T., Nicoloso M.S., Chen Y., Yan X., Adachi M., Thomas L., Galer C.E., Jiffar T., et al. Coordinated targeting of the EGFR signaling axis by microRNA-27a *. Oncotarget. 2013;4:1388–1398. doi: 10.18632/oncotarget.1239. PubMed DOI PMC
Fletcher C.E., Dart D.A., Sita-Lumsden A., Cheng H., Rennie P.S., Bevan C.L. Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum. Mol. Genet. 2012;21:3112–3127. doi: 10.1093/hmg/dds139. PubMed DOI
Wan X., Huang W., Yang S., Zhang Y., Zhang P., Kong Z., Li T., Wu H., Jing F., Li Y. Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int. J. Biochem. Cell Biol. 2016;79:249–260. doi: 10.1016/j.biocel.2016.08.043. PubMed DOI
Mo W., Zhang J., Li X., Meng D., Gao Y., Yang S., Wan X., Zhou C., Guo F., Huang Y., et al. Identification of Novel AR-Targeted MicroRNAs Mediating Androgen Signalling through Critical Pathways to Regulate Cell Viability in Prostate Cancer. PLoS ONE. 2013;8:e56592. doi: 10.1371/journal.pone.0056592. PubMed DOI PMC
Barros-Silva D., Costa-Pinheiro P., Duarte H., Sousa E.J., Evangelista A.F., Graça I., Carneiro I., Martins A.T., Oliveira J., Carvalho A.L., et al. MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis. Cell Death Dis. 2018;9:167. doi: 10.1038/s41419-017-0241-y. PubMed DOI PMC
Lin S.-C., Kao C.-Y., Lee H.-J., Creighton C.J., Ittmann M.M., Tsai S.-J., Tsai S.Y., Tsai M.-J. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat. Commun. 2016;7:11418. doi: 10.1038/ncomms11418. PubMed DOI PMC
Gao W., Hong Z., Huang H., Zhu A., Lin S., Cheng C., Zhang X., Zou G., Shi Z. miR-27a in serum acts as biomarker for prostate cancer detection and promotes cell proliferation by targeting Sprouty2. Oncol. Lett. 2018;16:5291–5298. doi: 10.3892/ol.2018.9274. PubMed DOI PMC
Ku A., Fredsøe J., Sørensen K.D., Borre M., Evander M., Laurell T., Lilja H., Ceder Y. High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs with Diagnostic Potential for Prostate Cancer. Front. Oncol. 2021;11:386. doi: 10.3389/fonc.2021.631021. PubMed DOI PMC
Nam R.K., Wallis C.J.D., Amemiya Y., Benatar T., Seth A. Identification of a Novel MicroRNA Panel Associated with Metastasis Following Radical Prostatectomy for Prostate Cancer. Anticancer Res. 2018;38:5027–5034. doi: 10.21873/anticanres.12821. PubMed DOI
Varambally S., Cao Q., Mani R.S., Shankar S., Wang X., Ateeq B., Laxman B., Cao X., Jing X., Ramnarayanan K., et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–1699. doi: 10.1126/science.1165395. PubMed DOI PMC
Li K., Liu C., Zhou B., Bi L., Huang H., Lin T., Xu K. Role of EZH2 in the Growth of Prostate Cancer Stem Cells Isolated from LNCaP Cells. Int. J. Mol. Sci. 2013;14:11981–11993. doi: 10.3390/ijms140611981. PubMed DOI PMC
Gu Z., You Z., Yang Y., Ding R., Wang M., Pu J., Chen J. Inhibition of MicroRNA miR-101-3p on prostate cancer progression by regulating Cullin 4B (CUL4B) and PI3K/AKT/mTOR signaling pathways. Bioengineered. 2021;12:4719–4735. doi: 10.1080/21655979.2021.1949513. PubMed DOI PMC
Antognelli C., Cecchetti R., Riuzzi F., Peirce M.J., Talesa V.N. Glyoxalase 1 sustains the metastatic phenotype of prostate cancer cells via EMT control. J. Cell. Mol. Med. 2018;22:2865–2883. doi: 10.1111/jcmm.13581. PubMed DOI PMC
Hao Y., Gu X., Zhao Y., Greene S., Sha W., Smoot D.T., Califano J., Wu T.C., Pang X. Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev. Res. 2011;4:1073–1083. doi: 10.1158/1940-6207.CAPR-10-0333. PubMed DOI PMC
Li P., You S., Nguyen C., Wang Y., Kim J., Sirohi D., Ziembiec A., Luthringer D., Lin S.C., Daskivich T., et al. Genes involved in prostate cancer progression determine MRI visibility. Theranostics. 2018;8:1752–1765. doi: 10.7150/thno.23180. PubMed DOI PMC
Lin Y., Chen F., Shen L., Tang X., Du C., Sun Z., Ding H., Chen J., Shen B. Biomarker microRNAs for prostate cancer metastasis: Screened with a network vulnerability analysis model. J. Transl. Med. 2018;16:134. doi: 10.1186/s12967-018-1506-7. PubMed DOI PMC
Watahiki A., Wang Y., Morris J., Dennis K., O’Dwyer H.M., Gleave M., Gout P.W., Wang Y. MicroRNAs Associated with Metastatic Prostate Cancer. PLoS ONE. 2011;6:e24950. doi: 10.1371/journal.pone.0024950. PubMed DOI PMC
Chen J.H., Tong W., Pu X.F., Wang J.Z. Long noncoding RNA CRNDE promotes proliferation, migration and invasion in prostate cancer through miR-101/Rap1A. Neoplasma. 2020;67:584–594. doi: 10.4149/neo_2020_190621N534. PubMed DOI
Cao P., Deng Z., Wan M., Huang W., Cramer S.D., Xu J., Lei M., Sui G. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen recept or and HIF-1α/HIF-1β. Mol. Cancer. 2010;9:108. doi: 10.1186/1476-4598-9-108. PubMed DOI PMC
Ramnarine V.R., Alshalalfa M., Mo F., Nabavi N., Erho N., Takhar M., Shukin R., Brahmbhatt S., Gawronski A., Kobelev M., et al. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. GigaScience. 2018;7:1–23. doi: 10.1093/gigascience/giy050. PubMed DOI PMC
Luo J., Wang K., Yeh S., Sun Y., Liang L., Xiao Y., Xu W., Niu Y., Cheng L., Maity S.N., et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat. Commun. 2019;10:2571. doi: 10.1038/s41467-019-09784-9. PubMed DOI PMC
Işın M., Uysaler E., Özgür E., Köseoğlu H., Şanlı Ö., Yücel Ö.B., Gezer U., Dalay N. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front. Genet. 2015;6:168. doi: 10.3389/fgene.2015.00168. PubMed DOI PMC
Liu B., Jiang H.-Y., Yuan T., Luo J., Zhou W.-D., Jiang Q.-Q., Wu D. Enzalutamide-Induced Upregulation of PCAT6 Promotes Prostate Cancer Neuroendocrine Differentiation by Regulating miR-326/HNRNPA2B1 Axis. Front. Oncol. 2021;11:1803. doi: 10.3389/fonc.2021.650054. PubMed DOI PMC
Lang C., Yin C., Lin K., Li Y., Yang Q., Wu Z., Du H., Ren D., Dai Y., Peng X. m6A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin. Transl. Med. 2021;11:e426. doi: 10.1002/ctm2.426. PubMed DOI PMC
Li Y., Li H., Wei X. Long noncoding RNA LINC00261 suppresses prostate cancer tumorigenesis through upregulation of GATA6-mediated DKK3. Cancer Cell Int. 2020;20:474. doi: 10.1186/s12935-020-01484-5. PubMed DOI PMC
Chang Y.-T., Lin T.-P., Tang J.-T., Campbell M., Luo Y.-L., Lu S.-Y., Yang C.-P., Cheng T.-Y., Chang C.-H., Liu T.-T., et al. HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer. Cancer Lett. 2018;433:43–52. doi: 10.1016/j.canlet.2018.06.029. PubMed DOI
Mather R.L., Wang Y., Crea F. Is HOTAIR really involved in neuroendocrine prostate cancer differentiation? Epigenomics. 2018;10:1259–1261. doi: 10.2217/epi-2018-0107. PubMed DOI
Zhang A., Zhao J.C., Kim J., Fong K.W., Yang Y.A., Chakravarti D., Mo Y.Y., Yu J. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. Cell Rep. 2015;13:209–221. doi: 10.1016/j.celrep.2015.08.069. PubMed DOI PMC
Sowalsky A.G., Xia Z., Wang L., Zhao H., Chen S., Bubley G.J., Balk S.P., Li W. Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer. Mol. Cancer Res. 2015;13:98–106. doi: 10.1158/1541-7786.MCR-14-0273. PubMed DOI PMC
Wang R., Sun Y., Li L., Niu Y., Lin W., Lin C., Antonarakis E.S., Luo J., Yeh S., Chang C. Preclinical Study using Malat1 Small Interfering RNA or Androgen Receptor. Splicing Variant 7 Degradation Enhancer ASC-J9(®) to Suppress Enzalutamide-resistant Prostate Cancer Progression. Eur. Urol. 2017;72:835–844. doi: 10.1016/j.eururo.2017.04.005. PubMed DOI PMC
Cai S., Pataillot-Meakin T., Shibakawa A., Ren R., Bevan C.L., Ladame S., Ivanov A.P., Edel J.B. Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat. Commun. 2021;12:3515. doi: 10.1038/s41467-021-23497-y. PubMed DOI PMC
Lakshmanan V.K., Ojha S., Jung Y.D. A modern era of personalized medicine in the diagnosis, prognosis, and treatment of prostate cancer. Comput. Biol. Med. 2020;126:104020. doi: 10.1016/j.compbiomed.2020.104020. PubMed DOI
Ahadi A., Brennan S., Kennedy P.J., Hutvagner G., Tran N. Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci. Rep. 2016;6:24922. doi: 10.1038/srep24922. PubMed DOI PMC
Reda El Sayed S., Cristante J., Guyon L., Denis J., Chabre O., Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers. 2021;13:2680. doi: 10.3390/cancers13112680. PubMed DOI PMC
Velagapudi S.P., Luo Y., Tran T., Haniff H.S., Nakai Y., Fallahi M., Martinez G.J., Childs-Disney J.L., Disney M.D. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA. ACS Cent. Sci. 2017;3:205–216. doi: 10.1021/acscentsci.7b00009. PubMed DOI PMC
Liu X., Haniff H.S., Childs-Disney J.L., Shuster A., Aikawa H., Adibekian A., Disney M.D. Targeted Degradation of the Oncogenic MicroRNA 17-92 Cluster by Structure-Targeting Ligands. J. Am. Chem. Soc. 2020;142:6970–6982. doi: 10.1021/jacs.9b13159. PubMed DOI PMC
Ottman R., Levy J., Grizzle W.E., Chakrabarti R. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget. 2016;7:73739–73753. doi: 10.18632/oncotarget.12061. PubMed DOI PMC
Zhou P., Ma L., Zhou J., Jiang M., Rao E., Zhao Y., Guo F. miR-17-92 plays an oncogenic role and conveys chemo-resistance to cisplatin in human prostate cancer cells. Int. J. Oncol. 2016;48:1737–1748. doi: 10.3892/ijo.2016.3392. PubMed DOI
Feng S., Qian X., Li H., Zhang X. Combinations of elevated tissue miRNA-17-92 cluster expression and serum prostate-specific antigen as potential diagnostic biomarkers for prostate cancer. Oncol. Lett. 2017;14:6943–6949. doi: 10.3892/ol.2017.7026. PubMed DOI PMC
Zhang X., Ladd A., Dragoescu E., Budd W.T., Ware J.L., Zehner Z.E. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin. Exp. Metastasis. 2009;26:965–979. doi: 10.1007/s10585-009-9287-2. PubMed DOI
Dai H., Wang C., Yu Z., He D., Yu K., Liu Y., Wang S. MiR-17 Regulates Prostate Cancer Cell Proliferation and Apoptosis Through Inhibiting JAK-STAT3 Signaling Pathway. Cancer Biother. Radiopharm. 2018;33:103–109. doi: 10.1089/cbr.2017.2386. PubMed DOI
Xu Z., Zhang Y., Ding J., Hu W., Tan C., Wang M., Tang J., Xu Y. miR-17-3p Downregulates Mitochondrial Antioxidant Enzymes and Enhances the Radiosensitivity of Prostate Cancer Cells. Mol. Ther. Nucleic Acids. 2018;13:64–77. doi: 10.1016/j.omtn.2018.08.009. PubMed DOI PMC
Yang X., Du W.W., Li H., Liu F., Khorshidi A., Rutnam Z.J., Yang B.B. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res. 2013;41:9688–9704. doi: 10.1093/nar/gkt680. PubMed DOI PMC
Gong A.Y., Eischeid A.N., Xiao J., Zhao J., Chen D., Wang Z.Y., Young C.Y., Chen X.M. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer. 2012;12:492. doi: 10.1186/1471-2407-12-492. PubMed DOI PMC
Dyson G., Farran B., Bolton S., Craig D.B., Dombkowski A., Beebe-Dimmer J.L., Powell I.J., Podgorski I., Heilbrun L.K., Bock C.H. The extrema of circulating miR-17 are identified as biomarkers for aggressive prostate cancer. Am. J. Cancer Res. 2018;8:2088–2095. PubMed PMC
Urabe F., Matsuzaki J., Yamamoto Y., Kimura T., Hara T., Ichikawa M., Takizawa S., Aoki Y., Niida S., Sakamoto H., et al. Large-scale Circulating microRNA Profiling for the Liquid Biopsy of Prostate Cancer. Clin. Cancer Res. 2019;25:3016–3025. doi: 10.1158/1078-0432.CCR-18-2849. PubMed DOI
Wang X., Wang R., Wu Z., Bai P. Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p. Cancer Cell Int. 2019;19:328. doi: 10.1186/s12935-019-0994-8. PubMed DOI PMC
Hu Y., Guo B. Circ-MTO1 correlates with favorable prognosis and inhibits cell proliferation, invasion as well as miR-17-5p expression in prostate cancer. J. Clin. Lab. Anal. 2020;34:e23086. doi: 10.1002/jcla.23086. PubMed DOI PMC
Xu Y., Fang F., Zhang J., Josson S., St Clair W.H., St Clair D.K. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS ONE. 2010;5:e14356. doi: 10.1371/journal.pone.0014356. PubMed DOI PMC
Liang B., Zhou C., Cui S., Lu H., Xu R., Xue D., Zou S., He X. Upregulation of miR-18a-5p promotes the proliferation of prostate cancer via inhibiting the expression of SLC40A1. Pathol.-Res. Pract. 2021;224:153448. doi: 10.1016/j.prp.2021.153448. PubMed DOI
Hsu T.I., Hsu C.H., Lee K.H., Lin J.T., Chen C.S., Chang K.C., Su C.Y., Hsiao M., Lu P.J. MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis. 2014;3:e99. doi: 10.1038/oncsis.2014.12. PubMed DOI PMC
Ibrahim N.H., Abdellateif M.S., Kassem S.H., Abd El Salam M.A., El Gammal M.M. Diagnostic significance of miR-21, miR-141, miR-18a and miR-221 as novel biomarkers in prostate cancer among Egyptian patients. Andrologia. 2019;51:e13384. doi: 10.1111/and.13384. PubMed DOI
Al-Kafaji G., Al-Naieb Z.T., Bakhiet M. Increased oncogenic microRNA-18a expression in the peripheral blood of patients with prostate cancer: A potential novel non-invasive biomarker. Oncol. Lett. 2016;11:1201–1206. doi: 10.3892/ol.2015.4014. PubMed DOI PMC
Yang J., Hao T., Sun J., Wei P., Zhang H. Long noncoding RNA GAS5 modulates α-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells. Biomed. Pharm. 2019;112:108656. doi: 10.1016/j.biopha.2019.108656. PubMed DOI
Zhang G., Han G., Zhang X., Yu Q., Li Z., Li Z., Li J. Long non-coding RNA FENDRR reduces prostate cancer malignancy by competitively binding miR-18a-5p with RUNX1. Biomarkers. 2018;23:435–445. doi: 10.1080/1354750X.2018.1443509. PubMed DOI
Zhao Y., Zhang Q., Liu H., Wang N., Zhang X., Yang S. lncRNA PART1, manipulated by transcriptional factor FOXP2, suppresses proliferation and invasion in ESCC by regulating the miR-18a-5p/SOX6 signaling axis. Oncol. Rep. 2021;45:1118–1132. doi: 10.3892/or.2021.7931. PubMed DOI PMC
Feng S., Zhu X., Fan B., Xie D., Li T., Zhang X. miR-19a-3p targets PMEPA1 and induces prostate cancer cell proliferation, migration and invasion. Mol. Med. Rep. 2016;13:4030–4038. doi: 10.3892/mmr.2016.5033. PubMed DOI
Wa Q., Li L., Lin H., Peng X., Ren D., Huang Y., He P., Huang S. Downregulation of miR-19a-3p promotes invasion, migration and bone metastasis via activating TGF-β signaling in prostate cancer. Oncol. Rep. 2018;39:81–90. doi: 10.3892/or.2017.6096. PubMed DOI PMC
Fu F., Wan X., Wang D., Kong Z., Zhang Y., Huang W., Wang C., Wu H., Li Y. MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression. Oncotarget. 2017;9:1931. doi: 10.18632/oncotarget.23026. PubMed DOI PMC
Lu K., Liu C., Tao T., Zhang X., Zhang L., Sun C., Wang Y., Chen S., Xu B., Chen M. MicroRNA-19a regulates proliferation and apoptosis of castration-resistant prostate cancer cells by targeting BTG1. FEBS Lett. 2015;589:1485–1490. doi: 10.1016/j.febslet.2015.04.037. PubMed DOI
Wang S.-Y., Shiboski S., Belair C.D., Cooperberg M.R., Simko J.P., Stoppler H., Cowan J., Carroll P.R., Blelloch R. miR-19, miR-345, miR-519c-5p Serum Levels Predict Adverse Pathology in Prostate Cancer Patients Eligible for Active Surveillance. PLoS ONE. 2014;9:e98597. doi: 10.1371/journal.pone.0098597. PubMed DOI PMC
Qiang X.F., Zhang Z.W., Liu Q., Sun N., Pan L.L., Shen J., Li T., Yun C., Li H., Shi L.H. miR-20a promotes prostate cancer invasion and migration through targeting ABL2. J. Cell Biochem. 2014;115:1269–1276. doi: 10.1002/jcb.24778. PubMed DOI
Pesta M., Klecka J., Kulda V., Topolcan O., Hora M., Eret V., Ludvikova M., Babjuk M., Novak K., Stolz J., et al. Importance of miR-20a expression in prostate cancer tissue. Anticancer Res. 2010;30:3579–3583. PubMed
Shen J., Hruby G.W., McKiernan J.M., Gurvich I., Lipsky M.J., Benson M.C., Santella R.M. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72:1469–1477. doi: 10.1002/pros.22499. PubMed DOI PMC
Hart M., Nolte E., Wach S., Szczyrba J., Taubert H., Rau T.T., Hartmann A., Grasser F.A., Wullich B. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol. Cancer Res. 2014;12:250–263. doi: 10.1158/1541-7786.MCR-13-0230. PubMed DOI
Li X., Pan J.H., Song B., Xiong E.Q., Chen Z.W., Zhou Z.S., Su Y.P. Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol. Ther. 2012;13:890–898. doi: 10.4161/cbt.20841. PubMed DOI
Sylvestre Y., De Guire V., Querido E., Mukhopadhyay U.K., Bourdeau V., Major F., Ferbeyre G., Chartrand P. An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem. 2007;282:2135–2143. doi: 10.1074/jbc.M608939200. PubMed DOI
Lin H.M., Castillo L., Mahon K.L., Chiam K., Lee B.Y., Nguyen Q., Boyer M.J., Stockler M.R., Pavlakis N., Marx G., et al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br. J. Cancer. 2014;110:2462–2471. doi: 10.1038/bjc.2014.181. PubMed DOI PMC
Mohammadi Torbati P., Asadi F., Fard-Esfahani P. Circulating miR-20a and miR-26a as Biomarkers in Prostate Cancer. Asian Pac. J. Cancer Prev. 2019;20:1453–1456. doi: 10.31557/APJCP.2019.20.5.1453. PubMed DOI PMC
Daniel R., Wu Q., Williams V., Clark G., Guruli G., Zehner Z. A Panel of MicroRNAs as Diagnostic Biomarkers for the Identification of Prostate Cancer. Int. J. Mol. Sci. 2017;18:1281. doi: 10.3390/ijms18061281. PubMed DOI PMC
Li J., Yang X., Guan H., Mizokami A., Keller E.T., Xu X., Liu X., Tan J., Hu L., Lu Y., et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int. J. Oncol. 2016;49:838–846. doi: 10.3892/ijo.2016.3560. PubMed DOI PMC
Ambrozkiewicz F., Karczmarski J., Kulecka M., Paziewska A., Cybulska M., Szymanski M., Dobruch J., Antoniewicz A., Mikula M., Ostrowski J. Challenges in Cancer Biomarker Discovery Exemplified by the Identification of Diagnostic MicroRNAs in Prostate Tissues. Biomed. Res. Int. 2020;2020:9086829. doi: 10.1155/2020/9086829. PubMed DOI PMC
Paziewska A., Mikula M., Dabrowska M., Kulecka M., Goryca K., Antoniewicz A., Dobruch J., Borowka A., Rutkowski P., Ostrowski J. Candidate diagnostic miRNAs that can detect cancer in prostate biopsy. Prostate. 2018;78:178–185. doi: 10.1002/pros.23427. PubMed DOI
Wu G., Wang J., Chen G., Zhao X. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1) Am. J. Transl. Res. 2017;9:3599–3610. PubMed PMC
Lin Y.C., Lin J.F., Tsai T.F., Chou K.Y., Chen H.E., Hwang T.I. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J. Surg. 2017;40:396–406. doi: 10.1016/j.asjsur.2016.07.001. PubMed DOI
Fredsoe J., Rasmussen A.K.I., Mouritzen P., Borre M., Orntoft T., Sorensen K.D. A five-microRNA model (pCaP) for predicting prostate cancer aggressiveness using cell-free urine. Int. J. Cancer. 2019;145:2558–2567. doi: 10.1002/ijc.32296. PubMed DOI
Koppers-Lalic D., Hackenberg M., de Menezes R., Misovic B., Wachalska M., Geldof A., Zini N., de Reijke T., Wurdinger T., Vis A., et al. Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;7:22566–22578. doi: 10.18632/oncotarget.8124. PubMed DOI PMC
He C., Lu X., Yang F., Qin L., Guo Z., Sun Y., Wu J. LncRNA UCA1 acts as a sponge of miR-204 to up-regulate CXCR4 expression and promote prostate cancer progression. Biosci. Rep. 2019;39:BSR20181465. doi: 10.1042/BSR20181465. PubMed DOI PMC
Zhang S., Dong X., Ji T., Chen G., Shan L. Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am. J. Transl. Res. 2017;9:366–375. PubMed PMC
Todorova K., Metodiev M.V., Metodieva G., Mincheff M., Fernandez N., Hayrabedyan S. Micro-RNA-204 Participates in TMPRSS2/ERG Regulation and Androgen Receptor Reprogramming in Prostate Cancer. Horm. Cancer. 2017;8:28–48. doi: 10.1007/s12672-016-0279-9. PubMed DOI PMC
Panigrahi G.K., Ramteke A., Birks D., Abouzeid Ali H.E., Venkataraman S., Agarwal C., Vibhakar R., Miller L.D., Agarwal R., Abd Elmageed Z.Y., et al. Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer. Oncotarget. 2018;9:13894–13910. doi: 10.18632/oncotarget.24532. PubMed DOI PMC
Zhang G., Tian X., Li Y., Wang Z., Li X., Zhu C. miR-27b and miR-34a enhance docetaxel sensitivity of prostate cancer cells through inhibiting epithelial-to-mesenchymal transition by targeting ZEB1. Biomed. Pharmacother. 2018;97:736–744. doi: 10.1016/j.biopha.2017.10.163. PubMed DOI
Rokavec M., Oner M.G., Li H., Jackstadt R., Jiang L., Lodygin D., Kaller M., Horst D., Ziegler P.K., Schwitalla S., et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Investig. 2014;124:1853–1867. doi: 10.1172/JCI73531. PubMed DOI PMC
Duan K., Ge Y.C., Zhang X.P., Wu S.Y., Feng J.S., Chen S.L., Zhang L.I., Yuan Z.H., Fu C.H. miR-34a inhibits cell proliferation in prostate cancer by downregulation of SIRT1 expression. Oncol. Lett. 2015;10:3223–3227. doi: 10.3892/ol.2015.3645. PubMed DOI PMC
Liang J., Li Y., Daniels G., Sfanos K., De Marzo A., Wei J., Li X., Chen W., Wang J., Zhong X., et al. LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a. Mol. Cancer Res. 2015;13:681–688. doi: 10.1158/1541-7786.MCR-14-0503. PubMed DOI PMC
Liao H., Xiao Y., Hu Y., Yin Z., Liu L., Kang X., Chen Y. Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. Oncol. Rep. 2016;35:64–72. doi: 10.3892/or.2015.4331. PubMed DOI
Liu X., Luo X., Wu Y., Xia D., Chen W., Fang Z., Deng J., Hao Y., Yang X., Zhang T., et al. MicroRNA-34a Attenuates Paclitaxel Resistance in Prostate Cancer Cells via Direct Suppression of JAG1/Notch1 Axis. Cell Physiol. Biochem. 2018;50:261–276. doi: 10.1159/000494004. PubMed DOI
Corcoran C., Rani S., O’Driscoll L. miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate. 2014;74:1320–1334. doi: 10.1002/pros.22848. PubMed DOI
Ma Y., Fan B., Ren Z., Liu B., Wang Y. Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway. Onco Targets Ther. 2019;12:5485–5497. doi: 10.2147/OTT.S197009. PubMed DOI PMC
Ma E., Wang Q., Li J., Zhang X., Guo Z., Yang X. LINC01006 facilitates cell proliferation, migration and invasion in prostate cancer through targeting miR-34a-5p to up-regulate DAAM1. Cancer Cell. Int. 2020;20:515. doi: 10.1186/s12935-020-01577-1. PubMed DOI PMC
Li N., Zhang L.Y., Qiao Y.H., Song R.J. Long noncoding RNA LINC00662 functions as miRNA sponge to promote the prostate cancer tumorigenesis through targeting miR-34a. Eur. Rev. Med. Pharmacol. Sci. 2019;23:3688–3698. doi: 10.26355/eurrev_201905_17792. PubMed DOI
Lodygin D., Tarasov V., Epanchintsev A., Berking C., Knyazeva T., Körner H., Knyazev P., Diebold J., Hermeking H. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7:2591–2600. doi: 10.4161/cc.7.16.6533. PubMed DOI
Krebs M., Behrmann C., Kalogirou C., Sokolakis I., Kneitz S., Kruithof-de Julio M., Zoni E., Rech A., Schilling B., Kubler H., et al. miR-221 Augments TRAIL-Mediated Apoptosis in Prostate Cancer Cells by Inducing Endogenous TRAIL Expression and Targeting the Functional Repressors SOCS3 and PIK3R1. Biomed. Res. Int. 2019;2019:6392748. doi: 10.1155/2019/6392748. PubMed DOI PMC
Kurul N.O., Ates F., Yilmaz I., Narli G., Yesildal C., Senkul T. The association of let-7c, miR-21, miR-145, miR-182, and miR-221 with clinicopathologic parameters of prostate cancer in patients diagnosed with low-risk disease. Prostate. 2019;79:1125–1132. doi: 10.1002/pros.23825. PubMed DOI
Maqbool R., Lone S.N., Ul Hussain M. Post-transcriptional regulation of the tumor suppressor p53 by a novel miR-27a, with implications during hypoxia and tumorigenesis. Biochem. J. 2016;473:3597–3610. doi: 10.1042/BCJ20160359. PubMed DOI
Cao Z., Xu L., Zhao S. Exosome-derived miR-27a produced by PSC-27 cells contributes to prostate cancer chemoresistance through p53. Biochem. Biophys Res. Commun. 2019;515:345–351. doi: 10.1016/j.bbrc.2019.05.120. PubMed DOI
Lyu J., Zhao L., Wang F., Ji J., Cao Z., Xu H., Shi X., Zhu Y., Zhang C., Guo F., et al. Discovery and Validation of Serum MicroRNAs as Early Diagnostic Biomarkers for Prostate Cancer in Chinese Population. Biomed. Res. Int. 2019;2019:9306803. doi: 10.1155/2019/9306803. PubMed DOI PMC
Sun F., Wu K., Yao Z., Mu X., Zheng Z., Sun M., Wang Y., Liu Z., Zhu Y. Long Noncoding RNA PVT1 Promotes Prostate Cancer Metastasis by Increasing NOP2 Expression via Targeting Tumor Suppressor MicroRNAs. Onco Targets Ther. 2020;13:6755–6765. doi: 10.2147/OTT.S242441. PubMed DOI PMC
Cui X., Piao C., Lv C., Lin X., Zhang Z., Liu X. ZNFX1 anti-sense RNA 1 promotes the tumorigenesis of prostate cancer by regulating c-Myc expression via a regulatory network of competing endogenous RNAs. Cell Mol. Life Sci. 2020;77:1135–1152. doi: 10.1007/s00018-019-03226-x. PubMed DOI PMC
Wu J., Zheng C., Fan Y., Zeng C., Chen Z., Qin W., Zhang C., Zhang W., Wang X., Zhu X., et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. 2014;25:92–104. doi: 10.1681/ASN.2012111101. PubMed DOI PMC
Ren Q., Liang J., Wei J., Basturk O., Wang J., Daniels G., Gellert L.L., Li Y., Shen Y., Osman I., et al. Epithelial and stromal expression of miRNAs during prostate cancer progression. Am. J. Transl. Res. 2014;6:329–339. PubMed PMC
Fredsøe J., Rasmussen A.K.I., Thomsen A.R., Mouritzen P., Høyer S., Borre M., Ørntoft T.F., Sørensen K.D. Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine. Eur. Urol. Focus. 2018;4:825–833. doi: 10.1016/j.euf.2017.02.018. PubMed DOI
Zhao Z., Weickmann S., Jung M., Lein M., Kilic E., Stephan C., Erbersdobler A., Fendler A., Jung K. A Novel Predictor Tool of Biochemical Recurrence after Radical Prostatectomy Based on a Five-MicroRNA Tissue Signature. Cancers. 2019;11:1603. doi: 10.3390/cancers11101603. PubMed DOI PMC
Chen W., Yao G., Zhou K. miR-103a-2-5p/miR-30c-1-3p inhibits the progression of prostate cancer resistance to androgen ablation therapy via targeting androgen receptor variant 7. J. Cell Biochem. 2019;120:14055–14064. doi: 10.1002/jcb.28680. PubMed DOI
Song Y., Song C., Yang S. Tumor-Suppressive Function of miR-30d-5p in Prostate Cancer Cell Proliferation and Migration by Targeting NT5E. Cancer Biother. Radiopharm. 2018;33:203–211. doi: 10.1089/cbr.2018.2457. PubMed DOI
Fuse M., Kojima S., Enokida H., Chiyomaru T., Yoshino H., Nohata N., Kinoshita T., Sakamoto S., Naya Y., Nakagawa M., et al. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J. Hum. Genet. 2012;57:691–699. doi: 10.1038/jhg.2012.95. PubMed DOI
Tsuchiyama K., Ito H., Taga M., Naganuma S., Oshinoya Y., Nagano K., Yokoyama O., Itoh H. Expression of microRNAs associated with Gleason grading system in prostate cancer: miR-182-5p is a useful marker for high grade prostate cancer. Prostate. 2013;73:827–834. doi: 10.1002/pros.22626. PubMed DOI
Bian X., Shen Y., Zhang G., Gu C., Cai Y., Wang C., Zhu Y., Zhu Y., Zhang H., Dai B., et al. Expression of Dicer and Its Related MiRNAs in the Progression of Prostate Cancer. PLoS ONE. 2015;10:e0120159. doi: 10.1371/journal.pone.0120159. PubMed DOI PMC
Zhao J., Xu H., Duan Z., Chen X., Ao Z., Chen Y., Ruan Y., Ni M. miR-31-5p Regulates 14-3-3 ɛ to Inhibit Prostate Cancer 22RV1 Cell Survival and Proliferation via PI3K/AKT/Bcl-2 Signaling Pathway. Cancer Manag. Res. 2020;12:6679–6694. doi: 10.2147/CMAR.S247780. PubMed DOI PMC
Bhatnagar N., Li X., Padi S.K.R., Zhang Q., Tang M.s., Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death. Dis. 2010;1:e105. doi: 10.1038/cddis.2010.85. PubMed DOI PMC
Daniunaite K., Dubikaityte M., Gibas P., Bakavicius A., Rimantas Lazutka J., Ulys A., Jankevicius F., Jarmalaite S. Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum. Mol. Genet. 2017;26:2451–2461. doi: 10.1093/hmg/ddx138. PubMed DOI
Lekchnov E.A., Amelina E.V., Bryzgunova O.E., Zaporozhchenko I.A., Konoshenko M.Y., Yarmoschuk S.V., Murashov I.S., Pashkovskaya O.A., Gorizkii A.M., Zheravin A.A., et al. Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. Int. J. Mol. Sci. 2018;19:4088. doi: 10.3390/ijms19124088. PubMed DOI PMC
Liu B., Sun Y., Tang M., Liang C., Huang C.P., Niu Y., Wang Z., Chang C. The miR-361-3p increases enzalutamide (Enz) sensitivity via targeting the ARv7 and MKNK2 to better suppress the Enz-resistant prostate cancer. Cell Death Dis. 2020;11:807. doi: 10.1038/s41419-020-02932-w. PubMed DOI PMC
Liu D., Tao T., Xu B., Chen S., Liu C., Zhang L., Lu K., Huang Y., Jiang L., Zhang X., et al. MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6) Biochem. Biophys Res. Commun. 2014;445:151–156. doi: 10.1016/j.bbrc.2014.01.140. PubMed DOI
Zhu J., Wang S., Zhang W., Qiu J., Shan Y., Yang D., Shen B. Screening key microRNAs for castration-resistant prostate cancer based on miRNA/mRNA functional synergistic network. Oncotarget. 2015;6:43819–43830. doi: 10.18632/oncotarget.6102. PubMed DOI PMC
Ju G., Zhu Y., Du T., Cao W., Lin J., Li C., Xu D., Wang Z. MiR-197 Inhibitor Loaded AbCD133@MSNs@GNR Affects the Development of Prostate Cancer Through Targeting ITGAV. Front. Cell Dev. Biol. 2021;9:1289. doi: 10.3389/fcell.2021.646884. PubMed DOI PMC
Walter B.A., Valera V.A., Pinto P.A., Merino M.J. Comprehensive microRNA Profiling of Prostate Cancer. J. Cancer. 2013;4:350–357. doi: 10.7150/jca.6394. PubMed DOI PMC
Qiu X., Zhu J., Sun Y., Fan K., Yang D.R., Li G., Yang G., Chang C. TR4 nuclear receptor increases prostate cancer invasion via decreasing the miR-373-3p expression to alter TGFβR2/p-Smad3 signals. Oncotarget. 2015;6:15397–15409. doi: 10.18632/oncotarget.3778. PubMed DOI PMC
Zhang G., Liu Z., Xu H., Yang Q. miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1. Biochem. Biophys. Res. Commun. 2016;469:189–195. doi: 10.1016/j.bbrc.2015.11.099. PubMed DOI
Nguyen H.C., Xie W., Yang M., Hsieh C.L., Drouin S., Lee G.S., Kantoff P.W. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 2013;73:346–354. doi: 10.1002/pros.22572. PubMed DOI PMC
Yu Q., Li P., Weng M., Wu S., Zhang Y., Chen X., Zhang Q., Shen G., Ding X., Fu S. Nano-Vesicles are a Potential Tool to Monitor Therapeutic Efficacy of Carbon Ion Radiotherapy in Prostate Cancer. J. Biomed. Nanotechnol. 2018;14:168–178. doi: 10.1166/jbn.2018.2503. PubMed DOI
Xiang S., Zou P., Tang Q., Zheng F., Wu J., Chen Z., Hann S.S. HOTAIR-mediated reciprocal regulation of EZH2 and DNMT1 contribute to polyphyllin I-inhibited growth of castration-resistant prostate cancer cells in vitro and in vivo. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2018;1862:589–599. doi: 10.1016/j.bbagen.2017.12.001. PubMed DOI
Li T., Liu N., Gao Y., Quan Z., Hao Y., Yu C., Li L., Yuan M., Niu L., Luo C., et al. Long noncoding RNA HOTAIR regulates the invasion and metastasis of prostate cancer by targeting hepaCAM. Br. J. Cancer. 2021;124:247–258. doi: 10.1038/s41416-020-01091-1. PubMed DOI PMC
Wang N., Jiang Y., Lv S., Wen H., Wu D., Wei Q., Dang Q. HOTAIR expands the population of prostatic cancer stem-like cells and causes Docetaxel resistance via activating STAT3 signaling. Aging (Albany NY) 2020;12:12771–12782. doi: 10.18632/aging.103188. PubMed DOI PMC
Ling Z., Wang X., Tao T., Zhang L., Guan H., You Z., Lu K., Zhang G., Chen S., Wu J., et al. Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer. J. Exp. Clin. Cancer Res. 2017;36:159. doi: 10.1186/s13046-017-0629-7. PubMed DOI PMC
Wang D., Ding L., Wang L., Zhao Y., Sun Z., Karnes R.J., Zhang J., Huang H. LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget. 2015;6:41045. doi: 10.18632/oncotarget.5728. PubMed DOI PMC
Hao T., Wang Z., Yang J., Zhang Y., Shang Y., Sun J. MALAT1 knockdown inhibits prostate cancer progression by regulating miR-140/BIRC6 axis. Biomed. Pharmacother. 2020;123:109666. doi: 10.1016/j.biopha.2019.109666. PubMed DOI
Chang J., Xu W., Du X., Hou J. MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. Onco Targets Ther. 2018;11:3461–3473. doi: 10.2147/OTT.S164131. PubMed DOI PMC
Xue D., Lu H., Xu H.-Y., Zhou C.-X., He X.-Z. Long noncoding RNA MALAT1 enhances the docetaxel resistance of prostate cancer cells via miR-145-5p-mediated regulation of AKAP12. J. Cell. Mol. Med. 2018;22:3223–3237. doi: 10.1111/jcmm.13604. PubMed DOI PMC
Li Y., Ji J., Lyu J., Jin X., He X., Mo S., Xu H., He J., Cao Z., Chen X., et al. A Novel Urine Exosomal lncRNA Assay to Improve the Detection of Prostate Cancer at Initial Biopsy: A Retrospective Multicenter Diagnostic Feasibility Study. Cancers. 2021;13:4075. doi: 10.3390/cancers13164075. PubMed DOI PMC
Wang F., Ren S., Chen R., Lu J., Shi X., Zhu Y., Zhang W., Jing T., Zhang C., Shen J., et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget. 2014;5:11091. doi: 10.18632/oncotarget.2691. PubMed DOI PMC
Ren S., Wang F., Shen J., Sun Y., Xu W., Lu J., Wei M., Xu C., Wu C., Zhang Z., et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur. J. Cancer. 2013;49:2949–2959. doi: 10.1016/j.ejca.2013.04.026. PubMed DOI
Dai X., Liang Z., Liu L., Guo K., Xu S., Wang H. Silencing of MALAT1 inhibits migration and invasion by sponging miR-1-3p in prostate cancer cells. Mol. Med. Rep. 2019;20:3499–3508. doi: 10.3892/mmr.2019.10602. PubMed DOI PMC
Eke I., Bylicky M.A., Sandfort V., Chopra S., Martello S., Graves E.E., Coleman C.N., Aryankalayil M.J. The lncRNAs LINC00261 and LINC00665 are upregulated in long-term prostate cancer adaptation after radiotherapy. Mol. Ther. Nucleic Acids. 2021;24:175–187. doi: 10.1016/j.omtn.2021.02.024. PubMed DOI PMC