From the Atlantic Coast to Lake Tanganyika: Gill-Infecting Flatworms of Freshwater Pellonuline Clupeid Fishes in West and Central Africa, with Description of Eleven New Species and Key to Kapentagyrus (Monogenea, Dactylogyridae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-13573S
Czech Science Foundation
BE-TAF-5731
SYNTHESYS
GOH3817N
Research Foundation - Flanders
BOF20TT06
Special Research Fund of Hasselt University
BOF21PD01
Special Research Fund of Hasselt University
PubMed
34944353
PubMed Central
PMC8697917
DOI
10.3390/ani11123578
PII: ani11123578
Knihovny.cz E-zdroje
- Klíčová slova
- Africa, Clupeidae, Clupeiformes, Dactylogyridea, Pellonulini, biodiversity infrastructure, flatworm, historical collection, monogenea, sardine,
- Publikační typ
- časopisecké články MeSH
Unlike their marine counterparts, tropical freshwater clupeids receive little scientific attention. However, they sustain important fisheries that may be of (inter)national commercial interest. Africa harbours over 20 freshwater clupeid species within Pellonulini. Recent research suggests their most abundant parasites are gill-infecting monogenean flatworms within Kapentagyrus. After inspecting specimens of 12 freshwater clupeids from West and Central Africa, mainly sourced in biodiversity collections, we propose 11 new species of Kapentagyrus, which we describe using their haptoral and genital morphology. Because of their high morphological similarity, species delineation relies mostly on the morphometrics of anchors and hooks. Specifically, earlier, molecular taxonomic work indicated that the proportion between the length of the anchor roots, and between the hook and anchor length, is diagnostic. On average, about one species of Kapentagyrus exists per pellonuline species, although Pellonula leonensis harbours four species and Microthrissa congica two, while Microthrissa moeruensis and Potamothrissa acutirostris share a gill monogenean species. This study more than quadruples the number of known species of Kapentagyrus, also almost quadrupling the number of pellonuline species of which monogeneans are known. Since members of Kapentagyrus are informative about their hosts' ecology, evolutionary history, and introduction routes, this enables a parasitological perspective on several data-poor African fisheries.
Zobrazit více v PubMed
Ganias K., editor. Biology and Ecology of Sardines and Anchovies. CRC Press; Boca Raton, FL, USA: 2014.
Lavoué S. Origins of Afrotropical freshwater fishes. Zool. J. Linn. Soc. 2020;188:345–411. doi: 10.1093/zoolinnean/zlz039. DOI
Paugy D., Lévêque C., Otero O. The Inland Water Fishes of Africa: Diversity, Ecology and human Use. Institut de Recherche pour le Développement Éditions; Marseille, France: Royal Museum for Central Africa; Tervuren, Belgium: 2017.
Kolding J., van Zwieten P., Marttin F., Funge-Smith S., Poulain F. Freshwater Small Pelagic Fish and Fisheries in Major African Lakes and Reservoirs in Relation to Food Security and Nutrition. Food and Agriculture Organization of the United Nations; Rome, Italy: 2019. FAO Fisheries and Aquaculture Technical Paper 642.
Ogutu-Ohwayo R., Balirwa J.S. Management challenges of freshwater fisheries in Africa. Lakes Reserv. Res. Manag. 2006;11:215–226. doi: 10.1111/j.1440-1770.2006.00312.x. DOI
Wilson A.B., Teugels G.G., Meyer A. Marine incursion: The freshwater herring of Lake Tanganyika are the product of a marine invasion into West Africa. PLoS ONE. 2008;3:e1979. doi: 10.1371/journal.pone.0001979. PubMed DOI PMC
Hoberg E.P., Brooks D.R., Molina-Urena H., Erbe E. Echinocephalus janzeni n. sp. (Nematoda: Gnathostomatidae) in Himantura pacifica (Chondrichthyes: Myliobatiformes) from the Pacific Coast of Costa Rica and Mexico, with historical biogeographic analysis of the genus. J. Parasitol. 1998;84:571–581. doi: 10.2307/3284726. PubMed DOI
Boeger W.A., Kritsky D.C. Parasites, fossils and geologic history: Historical biogeography of the South American freshwater croakers, Plagioscion spp. (Teleostei, Sciaenidae) Zool. Scr. 2003;32:3–11. doi: 10.1046/j.1463-6409.2003.00109.x. DOI
Kmentová N., Van Steenberge M., Raeymaekers J.A.M., Koblmüller S., Hablützel P.I., Muterezi Bukinga F., Mulimbwa N’sibula T., Masilya Mulungula P., Nzigidahera B., Ntakimazi G., et al. Monogenean parasites of sardines in Lake Tanganyika: Diversity, origin and intra-specific variability. Cont. Zool. 2018;87:105–132. doi: 10.1163/18759866-08702004. DOI
Carvalho Schaeffner V.C. Host-parasite list. AbcTaxa. 2018;18:361–402.
Marshall J., Cowx I.G. Will the explosion of Ligula intestinalis in Rastrineobola argentea lead to another shift in the fisheries of Lake Victoria? In: Cowx I.G., editor. Interactions between Fish and Birds: Implications for Management. Blackwell Science Ltd.; Oxford, UK: 2003. pp. 244–258.
Mombaerts M., Verreycken H., Volckaert F.A.M., Huyse T. The invasive round goby Neogobius melanostomus and tubenose goby Proterorhinus semilunaris: Two introduction routes into Belgium. Aquat. Invasions. 2014;9:305–314. doi: 10.3391/ai.2014.9.3.06. DOI
Bueno-Silva M., Boeger W.A. Rapid divergence, molecular evolution, and morphological diversification of coastal host-parasite systems from southern Brazil. Parasitology. 2019;146:1313–1332. doi: 10.1017/S0031182019000556. PubMed DOI
Catalano S.R., Whittington I.D., Donnellan S.C., Gillanders B.M. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 2014;3:220–226. doi: 10.1016/j.ijppaw.2013.11.001. PubMed DOI PMC
Kmentová N., Van Steenberge M., Thys van den Audenaerde D.F.E., Nhiwatiwa T., Muterezi Bukinga F., Mulimbwa N’sibula T., Masilya Mulungula P., Gelnar M., Vanhove M.P.M. Co-introduction success of monogeneans infecting the fisheries target Limnothrissa miodon differs between two non-native areas: The potential of parasites as a tag for introduction pathway. Biol. Invasions. 2019;21:757–773. doi: 10.1007/s10530-018-1856-3. DOI
Kmentová N., Cruz-Laufer A.J., Pariselle A., Smeets K., Artois T., Vanhove M.P.M. Dactylogyridae 2021: Seeing the forest through the (phylogenetic) trees. EcoEvoRxiv. 2021 doi: 10.32942/osf.io/5mh3d. DOI
Pariselle A., Boeger W.A., Snoeks J., Bilong Bilong C.F., Morand S., Vanhove M.P.M. The monogenean parasite fauna of cichlids: A potential tool for host biogeography. Int. J. Evol. Biol. 2011;2011:471480. doi: 10.4061/2011/471480. PubMed DOI PMC
Kmentová N., Koblmüller S., Van Steenberge M., Artois T., Muterezi Bukinga F., Mulimbwa N’sibula T., Muzumani Risasi D., Masilya Mulungula P., Gelnar M., Vanhove M.P.M. Failure to diverge in African Great Lakes: The case of Dolicirroplectanum lacustre gen. nov. comb. nov. (Monogenea, Diplectanidae) infecting latid hosts. J. Great Lakes Res. 2020;46:1113–1130. doi: 10.1016/j.jglr.2019.09.022. DOI
Harmon A., Littlewood D.T.J., Wood C.L. Parasites lost: Using natural history collections to track disease change across deep time. Front. Ecol. Environ. 2019;17:157–166. doi: 10.1002/fee.2017. DOI
Jorissen M.W.P., Huyse T., Pariselle A., Wamuini Lunkayilakio S., Muterezi Bukinga F., Chocha Manda A., Kapepula Kasembele G., Vreven E.J., Snoeks J., Decru E., et al. Historical museum collections help detect parasite species jumps after tilapia introductions in the Congo Basin. Biol. Invasions. 2020;22:2825–2844. doi: 10.1007/s10530-020-02288-4. DOI
Frey J.K., Yates T.L., Duszynski D.W., Gannon W.L., Gardner S.L. Designation and curatorial management of type host specimens (symbiotypes) for new parasite species. J. Parasitol. 1992;78:930–932. doi: 10.2307/3283335. DOI
Bradley R.D., Bradley L.C., Honeycutt R.L., MacDonald K.A., Amarilla-Stevens H.N., Stevens R.D. Nomenclatural, curatorial, and archival best practices for symbiotypes and other type materials in natural history collections. Occas. Pap. Mus. Tex. Tech Univ. 2020;366:1–20.
International Commission on Zoological Nomenclature Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zootaxa. 2012;3450:1–7. doi: 10.11646/zootaxa.3450.1.1. PubMed DOI PMC
Thioulouse J., Dray S., Dufour A.B., Siberchicot A., Jombart T., Pavoine S. Multivariate Analysis of Ecological Data with Ade4. Springer; New York, NY, USA: 2018.
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P., O’Hara R.B., Simpson G., Solymos P., et al. Vegan: Community Ecology Package. 2.5-7. [(accessed on 5 December 2021)]. Available online: https://CRAN.R-project.org/package=vegan.
Kmentová N., Koblmüller S., Van Steenberge M., Raeymaekers J.A.M., Artois T., De Keyzer E.L.R., Milec L., Muterezi Bukinga F., Mulimbwa N’sibula T., Masilya Mulungula P., et al. Weak population structure and expansive demographic history of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int. J. Parasitol. 2020;50:471–486. doi: 10.1016/j.ijpara.2020.02.002. PubMed DOI
Fankoua S.-O., Bitja Nyom A.R., Bahanak D.n.D., Bilong Bilong C.F., Pariselle A. Influence of preservative and mounting media on the size and shape of monogenean sclerites. Parasitol. Res. 2017;116:2277–2281. doi: 10.1007/s00436-017-5534-7. PubMed DOI
Wägele J. Foundations of Phylogenetic Systematics. 2nd ed. Verlag Dr. Friedrich Pfeil; München, Germany: 2005.
Davis J.I., Nixon K.C. Populations, genetic variation, and the delimitation of phylogenetic species. Syst. Biol. 1992;41:421–435. doi: 10.1093/sysbio/41.4.421. DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Kassambara A., Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. [(accessed on 5 December 2021)]. R package version 1.0.7. Available online: https://CRAN.R-project.org/package=factoextra.
Paperna I. Monogenetic trematodes of the fish of the Volta basin and south Ghana. Bull. Inst. Fr. Afr. Noire Série A Sci. Nat. 1969;31:840–880.
Pariselle A., Van Steenberge M., Snoeks J., Volckaert F.A.M., Huyse T., Vanhove M.P.M. Ancyrocephalidae (Monogenea) of Lake Tanganyika: Does the Cichlidogyrus parasite fauna of Interochromis loocki (Teleostei, Cichlidae) reflect its host’s phylogenetic affinities? Cont. Zool. 2015;84:25–38. doi: 10.1163/18759866-08401003. DOI
Pouyaud L., Desmarais E., Deveney M., Pariselle A. Phylogenetic relationships among monogenean gill parasites (Dactylogyridea, Ancyrocephalidae) infesting tilapiine hosts (Cichlidae): Systematic and evolutionary implications. Mol. Phylogenet. Evol. 2006;38:241–249. doi: 10.1016/j.ympev.2005.08.013. PubMed DOI
Řehulková E., Kičinjaová M.L., Mahmoud Z.N., Gelnar M., Seifertová M. Species of Characidotrema Paperna & Thurston, 1968 (Monogenea: Dactylogyridae) from fishes of the Alestidae (Characiformes) in Africa: New species, host-parasite associations and first insights into the phylogeny of the genus. Parasite Vector. 2019;12:366. doi: 10.1186/s13071-019-3580-y. PubMed DOI PMC
Messu Mandeng F.D., Bilong Bilong C.F., Pariselle A., Vanhove M.P.M., Bitja Nyom A.R., Agnèse J.-F. A phylogeny of Cichlidogyrus species (Monogenea, Dactylogyridea) clarifies a host switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus. Parasite Vector. 2015;8:582. doi: 10.1186/s13071-015-1181-y. PubMed DOI PMC
Jorissen M.W.P., Vanhove M.P.M., Pariselle A., Snoeks J., Vreven E., Šimková A., Wamuini Lunkayilakio S., Chocha Manda A., Kapepula Kasembele G., Muterezi Bukinga F., et al. Molecular footprint of parasite co-introduction with Nile tilapia in the Congo Basin. ResearchSquare. 2021 doi: 10.21203/rs.3.rs-995291/v1. DOI
Kmentová N. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: 2019. The Parasite Fauna of Economically Important Pelagic Fishes in Lake Tanganyika.
Cowx I.G., Kapasa C.K. Species changes in reservoir fisheries following impoundment: The case of Lake Itezhi-tezhi, Zambia. In: Pitcher T.J., Hart P.J.B., editors. The Impact of Species Changes in African Lakes. Springer; Dordrecht, The Netherlands: 1995. pp. 321–332.
Pariselle A., Morand S., Deveney M., Pouyaud L. Parasite species richness of closely related hosts: Historical scenario and “genetic” hypothesis. In: Combes C., Jourdane J., editors. Hommage à Louis Euzet—Taxonomie, Écologie et Évolution des Métazoaires Parasites. Taxonomy, Ecology and Evolution of Metazoan Parasites. Presses Universitaires de Perpignan; Perpignan, France: 2003. pp. 147–166.
Froese R., Pauly D., editors; Froese R., Pauly D., editors. FishBase, Version (08/2021) [(accessed on 18 October 2021)]. Available online: www.fishbase.org.
Cruz-Laufer A.J., Artois T., Koblmüller S., Pariselle A., Smeets K., Van Steenberge M., Vanhove M.P.M. The role of phylogeny and ecological opportunity in host-parasite interactions: Network metrics, host repertoire, and network link prediction. Authorea. 2021 doi: 10.22541/au.163274253.31016446/v1. DOI
Bloom D.D., Lovejoy N.R. The evolutionary origins of diadromy inferred from a time-calibrated phylogeny for Clupeiformes (herring and allies) Proc. R. Soc. B. 2014;281:20132081. doi: 10.1098/rspb.2013.2081. PubMed DOI PMC
Cruz-Laufer A.J., Artois T., Pariselle A., Smeets K., Vanhove M.P.M. The cichlid-Cichlidogyrus network: A blueprint for a model system of parasite evolution. Hydrobiologia. 2021;848:3847–3863. doi: 10.1007/s10750-020-04426-4. DOI
Vanhove M.P.M., Economou A.N., Zogaris S., Giakoumi S., Volckaert F.A.M., Huyse T. Ph.D. Thesis. KU Leuven; Leuven, Belgium: 2012. Back to the roots: The centre of endemism of sand gobies challenges the phylogeny of their Gyrodactylus parasites. In Species Flocks and Parasite Evolution—Towards a co-Phylogenetic Analysis of Monogenean Flatworms of Cichlids and Gobies; pp. 159–186.
Moons T. MSc Dissertation. Ghent University; Ghent, Belgium: 2021. Intraspecific Variability in Two New Species of Cichlidogyrus Paperna, 1960 (Platyhelminthes: Monogenea) Infecting the Gills of Species of Chromidotilapia Boulenger, 1898 (Teleostei: Cichlidae) from Gabon and the Republic of Congo.
Zimmermann J., Hajibabaei M., Blackburn D.C., Hanken J., Cantin E., Posfai J., Evans T.C. DNA damage in preserved specimens and tissue samples: A molecular assessment. Front. Zool. 2008;5:18. doi: 10.1186/1742-9994-5-18. PubMed DOI PMC
Hykin S.M., Bi K., McGuire J.A. Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE. 2015;10:e0141579. doi: 10.1371/journal.pone.0141579. PubMed DOI PMC