Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation-Extraction and Headspace Solid-Phase Microextraction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34946508
PubMed Central
PMC8706666
DOI
10.3390/molecules26247422
PII: molecules26247422
Knihovny.cz E-zdroje
- Klíčová slova
- HS-SPME, SHDE, antimicrobial activity, areca nut volatiles,
- MeSH
- antibakteriální látky chemie izolace a purifikace farmakologie MeSH
- Areka chemie MeSH
- gramnegativní bakterie účinky léků MeSH
- grampozitivní bakterie účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- mikroextrakce na pevné fázi * MeSH
- těkavé organické sloučeniny chemie izolace a purifikace farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- těkavé organické sloučeniny MeSH
The volatile components of areca nuts were isolated by headspace solid-phase microextraction (HS-SPME, DVB/CAR/PDMS fiber extraction) and simultaneous hydrodistillation-extraction (SHDE) and analyzed by gas chromatography/mass spectrometry. Furthermore, all SHDE fractions were tested for antimicrobial activity using the disk diffusion method on nine Gram-negative and Gram-positive bacteria (Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus canis, Streptococcus pyogenes, and Candida albicans). In total, 98 compounds (mainly alcohols, carbonyl compounds, fatty acids, esters, terpenes, terpenoids, and aliphatic hydrocarbons) were identified in SHDE fractions and by using SPME extraction Fatty acids were the main group of volatile constituents detected in all types of extracts. The microorganism most sensitive to the extract of the areca nut was Streptococcus canis. The results can provide essential information for the application of different treatments of areca nuts in the canning industry or as natural antibiotics.
Zobrazit více v PubMed
Peng W., Liu Y.-J., Wu N., Sun T., He X.-Y., Gao Y.-X., Wu C.-J. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015;164:340–356. doi: 10.1016/j.jep.2015.02.010. PubMed DOI
Ali N.S., Khuwaja A.K. Chapter 23—Betel Nut (Areca catechu) Usage and Its Effects on Health. In: Preedy V.R., Watson R.R., Patel V.B., editors. Nuts and Seeds in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2011. pp. 197–204.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval. Carcinog. Risks Hum. 2004;85:1–334. PubMed PMC
Gupta P.C., Warnakulasuriya S. Global epidemiology of areca nut usage. Addict. Biol. 2002;7:77–83. doi: 10.1080/13556210020091437. PubMed DOI
Boucher B.J., Mannan N. Metabolic effects of the consumption of Areca catechu. Addict. Biol. 2002;7:103–110. doi: 10.1080/13556210120091464. PubMed DOI
Volgin A.D., Bashirzade A., Amstislavskaya T.G., Yakovlev O.A., Demin K.A., Ho Y.-J., Wang D., Shevyrin V., Yan D., Tang Z., et al. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem. Neurosci. 2019;10:2176–2185. doi: 10.1021/acschemneuro.8b00711. PubMed DOI
Schamschula R.G., Adkins B.L., Barmes D.E., Charlton G. Betel chewing and caries experience in New Guinea. Community Dent. Oral Epidemiol. 1977;5:284–286. doi: 10.1111/j.1600-0528.1977.tb01015.x. PubMed DOI
Möller I.J., Pindborg J.J., Effendi I. The relation between betel chewing and dental caries. Eur. J. Oral Sci. 1977;85:64–70. doi: 10.1111/j.1600-0722.1977.tb00534.x. PubMed DOI
Anthikat R.N., Michael A. Study on the areca nut for its antimicrobial properties. J. Young Pharm. 2009;1:42. doi: 10.4103/0975-1483.51874. DOI
Rahman M.A., Sultana P., Islam M.S., Mahmud M.T., Rashid M.M.O., Hossen F. Comparative Antimicrobial Activity of Areca catechu Nut Extracts using Different Extracting Solvents. Bangladesh J. Microbiol. 2016;31:19–23. doi: 10.3329/bjm.v31i1.28460. DOI
Chen P.-H., Mahmood Q., Mariottini G.L., Chiang T.-A., Lee K.-W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Res. Int. 2017;2017:3904098. doi: 10.1155/2017/3904098. PubMed DOI PMC
Ko Y.-C., Huang Y.-L., Lee C.-H., Chen M.-J., Lin L.-M., Tsai C.-C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med. 1995;24:450–453. doi: 10.1111/j.1600-0714.1995.tb01132.x. PubMed DOI
Chen P.-H., Lee K.-W., Chen C.-H., Shieh T.-Y., Ho P.-S., Wang S.-J., Lee C.-H., Yang S.-F., Chen M.-K., Chiang S.-L., et al. CYP26B1 is a novel candidate gene for betel quid-related oral squamous cell carcinoma. Oral Oncol. 2011;47:594–600. doi: 10.1016/j.oraloncology.2011.04.024. PubMed DOI
Lee K.-W., Kuo W.-R., Tsai S.-M., Wu D.-C., Wang W.-M., Fang F.-M., Chiang F.-Y., Ho K.-Y., Wang L.-F., Tai C.-F., et al. Different impact from betel quid, alcohol and cigarette: Risk factors for pharyngeal and laryngeal cancer. Int. J. Cancer. 2005;117:831–836. doi: 10.1002/ijc.21237. PubMed DOI
Jain V., Garg A., Parascandola M., Chaturvedi P., Khariwala S.S., Stepanov I. Analysis of Alkaloids in Areca Nut-Containing Products by Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2017;65:1977–1983. doi: 10.1021/acs.jafc.6b05140. PubMed DOI PMC
Tang S.-N., Zhang J., Liu D., Liu Z.-W., Zhang X.-Q., Ye W.-C. Three new areca alkaloids from the nuts of Areca catechu. J. Asian Nat. Prod. Res. 2017;19:1155–1159. doi: 10.1080/10286020.2017.1307187. PubMed DOI
Yuan M., Ao Y., Yao N., Xie J., Zhang D., Zhang J., Zhang X., Ye W. Two New Flavonoids from the Nuts of Areca catechu. Molecules. 2019;24:2862. doi: 10.3390/molecules24162862. PubMed DOI PMC
Chavan Y.V., Singhal R.S. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols. J. Sci. Food Agric. 2013;93:2580–2589. doi: 10.1002/jsfa.6081. PubMed DOI
Holdsworth D.K., Jones R.A., Self R. Volatile alkaloids from Areca catechu. Phytochemistry. 1998;48:581–582. doi: 10.1016/S0031-9422(98)00016-8. DOI
Self R., Jones R.A., Holdworth D.K. Gas chromatography/mass spectrometry analysis of alkaloids in betel nut (Areca catechu) Eur. Mass Spectrom. 1999;5:213–219. doi: 10.1255/ejms.277. DOI
Kiuchi F., Miyashita N., Tsuda Y., Kondo K., Yoshimura H. Studies on crude drugs effective on visceral Larva migrans. I. Identification of larvicidal principles in betel nuts. Chem. Pharm. Bull. 1987;35:2880–2886. doi: 10.1248/cpb.35.2880. PubMed DOI
Cao M., Liu Y., Yuan H., Qiu Y., Xie Q., Yi P., Tan D., Peng Y., Wang W. HPLC-Based Qualitative and Quantitative Analyses of Alkaloids in Chewable Areca Products from Different Geographic Regions. J. AOAC Int. 2020;103:1400–1405. doi: 10.1093/jaoacint/qsaa048. PubMed DOI
Yuan H.W., Cao M.R., Yi P., Xie Q.L., Jian Y.Q., Li B., Qin Y., Peng C.Y., Wu H.Y., Tan D.B., et al. Determination of alkaloids and phenols in the chewable husk products of Areca catechu L. Using HPLC-UV and UHPLC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2018;41:612–620. doi: 10.1080/10826076.2018.1486326. DOI
Lord G.A., Lim C.K., Warnakulasuriya S., Peters T.J. Chemical and analytical aspects of areca nut. Addict. Biol. 2002;7:99–102. doi: 10.1080/13556210120091455. PubMed DOI
Sari E.F., Prayogo G.P., Loo Y.T., Zhang P., McCullough M.J., Cirillo N. Distinct phenolic, alkaloid and antioxidant profile in betel quids from four regions of Indonesia. Sci. Rep. 2020;10:16254. doi: 10.1038/s41598-020-73337-0. PubMed DOI PMC
Franke A.A., Mendez A.J., Lai J.F., Arat-Cabading C., Li X., Custer L.J. Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers. Food Chem. Toxicol. 2015;80:241–246. doi: 10.1016/j.fct.2015.03.012. PubMed DOI PMC
Loughlin R., Gilmore B.F., Mc Carron P.A., Tunney M.M. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett. Appl. Microbiol. 2008;46:428–433. doi: 10.1111/j.1472-765X.2008.02334.x. PubMed DOI
Chen W.Y., Vermaak I., Viljoen A. Camphor—A Fumigant during the Black Death and a Coveted Fragrant Wood in Ancient Egypt and Babylon—A Review. Molecules. 2013;18:5434–5454. doi: 10.3390/molecules18055434. PubMed DOI PMC
Tada A., Hanada N. Opportunistic respiratory pathogens in the oral cavity of the elderly. FEMS Immunol. Med Microbiol. 2010;60:1–17. doi: 10.1111/j.1574-695X.2010.00709.x. PubMed DOI
Frymus T., Addie D.D., Boucraut-Baralon C., Egberink H., Gruffydd-Jones T., Hartmann K., Horzinek M.C., Hosie M.J., Lloret A., Lutz H., et al. Streptococcal infections in cats: ABCD guidelines on prevention and management. J. Feline Med. Surg. 2015;17:620–625. doi: 10.1177/1098612X15588454. PubMed DOI PMC
Anupama M., Puspita D., Rajesh K. Studies on antimicrobial properties of areca nut Areca catechu. J. Pharmacogn. Phytochem. 2021;10:961–963.
Guimarães A.C., Meireles L.M., Lemos M.F., Guimarães M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC
Park S.-N., Lim Y.K., Freire M.O., Cho E., Jin D.C., Kook J.-K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe. 2012;18:369–372. doi: 10.1016/j.anaerobe.2012.04.001. PubMed DOI
Krist S., Sato K., Glasl S., Hoeferl M., Saukel J. Antimicrobial effect of vapours of terpineol, (R)-(-)-linalool, carvacrol, (S)-(-)-perillaldehyde and 1,8-cineole on airborne microbes using a room diffuser. Flavour Fragr. J. 2008;23:353–356. doi: 10.1002/ffj.1893. DOI
Leite A.M., Lima E.D.O., De Souza E.L., Diniz M.D.F.F.M., Trajano V.N., De Medeiros I.A. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Ciências. Farm. 2007;43:121–126. doi: 10.1590/S1516-93322007000100015. DOI
Da Silva A.C.R., Lopes P.M., de Azevedo M.M.B., Costa D.C.M., Alviano C.S., Alviano D.S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules. 2012;17:6305–6316. doi: 10.3390/molecules17066305. PubMed DOI PMC
Chalchat J.C., Chiron F., Garry R.P., Lacoste J., Sautou V. Photochemical Hydroperoxidation of Terpenes. Antimicrobial Activity of α-Pinene, β-Pinene and Limonene Hydroperoxides. J. Essent. Oil Res. 2000;12:125–134. doi: 10.1080/10412905.2000.9712059. DOI
Churchward C.P., Alany R.G., Snyder L.A.S. Alternative antimicrobials: The properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 2018;44:561–570. doi: 10.1080/1040841X.2018.1467875. PubMed DOI
Faden A.A. Evaluation of Antibacterial Activities of Aqueous and Methanolic Extracts of Areca catechu against Some Opportunistic Oral Bacteria. Biosci. Biotechnol. Res. Asia. 2018;15:655–659. doi: 10.13005/bbra/2673. DOI
Jin X., Zhou J., Richey G., Wang M., Hong S.M.C., Hong A.S.H. Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation. J. Microbiol. Biotechnol. 2021;31:130–136. doi: 10.4014/jmb.2008.08027. PubMed DOI PMC
Van Den Dool H., Kratz P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI
Linstrom P.J., Mallard W.G., editors. NIST Chemistry Webbook. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2001. DOI
Bauer A.W., Kirby W.M.M., Sherris J.C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966;45:493–496. doi: 10.1093/ajcp/45.4_ts.493. PubMed DOI