Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation-Extraction and Headspace Solid-Phase Microextraction

. 2021 Dec 07 ; 26 (24) : . [epub] 20211207

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34946508

The volatile components of areca nuts were isolated by headspace solid-phase microextraction (HS-SPME, DVB/CAR/PDMS fiber extraction) and simultaneous hydrodistillation-extraction (SHDE) and analyzed by gas chromatography/mass spectrometry. Furthermore, all SHDE fractions were tested for antimicrobial activity using the disk diffusion method on nine Gram-negative and Gram-positive bacteria (Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus canis, Streptococcus pyogenes, and Candida albicans). In total, 98 compounds (mainly alcohols, carbonyl compounds, fatty acids, esters, terpenes, terpenoids, and aliphatic hydrocarbons) were identified in SHDE fractions and by using SPME extraction Fatty acids were the main group of volatile constituents detected in all types of extracts. The microorganism most sensitive to the extract of the areca nut was Streptococcus canis. The results can provide essential information for the application of different treatments of areca nuts in the canning industry or as natural antibiotics.

Zobrazit více v PubMed

Peng W., Liu Y.-J., Wu N., Sun T., He X.-Y., Gao Y.-X., Wu C.-J. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015;164:340–356. doi: 10.1016/j.jep.2015.02.010. PubMed DOI

Ali N.S., Khuwaja A.K. Chapter 23—Betel Nut (Areca catechu) Usage and Its Effects on Health. In: Preedy V.R., Watson R.R., Patel V.B., editors. Nuts and Seeds in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2011. pp. 197–204.

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval. Carcinog. Risks Hum. 2004;85:1–334. PubMed PMC

Gupta P.C., Warnakulasuriya S. Global epidemiology of areca nut usage. Addict. Biol. 2002;7:77–83. doi: 10.1080/13556210020091437. PubMed DOI

Boucher B.J., Mannan N. Metabolic effects of the consumption of Areca catechu. Addict. Biol. 2002;7:103–110. doi: 10.1080/13556210120091464. PubMed DOI

Volgin A.D., Bashirzade A., Amstislavskaya T.G., Yakovlev O.A., Demin K.A., Ho Y.-J., Wang D., Shevyrin V., Yan D., Tang Z., et al. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem. Neurosci. 2019;10:2176–2185. doi: 10.1021/acschemneuro.8b00711. PubMed DOI

Schamschula R.G., Adkins B.L., Barmes D.E., Charlton G. Betel chewing and caries experience in New Guinea. Community Dent. Oral Epidemiol. 1977;5:284–286. doi: 10.1111/j.1600-0528.1977.tb01015.x. PubMed DOI

Möller I.J., Pindborg J.J., Effendi I. The relation between betel chewing and dental caries. Eur. J. Oral Sci. 1977;85:64–70. doi: 10.1111/j.1600-0722.1977.tb00534.x. PubMed DOI

Anthikat R.N., Michael A. Study on the areca nut for its antimicrobial properties. J. Young Pharm. 2009;1:42. doi: 10.4103/0975-1483.51874. DOI

Rahman M.A., Sultana P., Islam M.S., Mahmud M.T., Rashid M.M.O., Hossen F. Comparative Antimicrobial Activity of Areca catechu Nut Extracts using Different Extracting Solvents. Bangladesh J. Microbiol. 2016;31:19–23. doi: 10.3329/bjm.v31i1.28460. DOI

Chen P.-H., Mahmood Q., Mariottini G.L., Chiang T.-A., Lee K.-W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Res. Int. 2017;2017:3904098. doi: 10.1155/2017/3904098. PubMed DOI PMC

Ko Y.-C., Huang Y.-L., Lee C.-H., Chen M.-J., Lin L.-M., Tsai C.-C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med. 1995;24:450–453. doi: 10.1111/j.1600-0714.1995.tb01132.x. PubMed DOI

Chen P.-H., Lee K.-W., Chen C.-H., Shieh T.-Y., Ho P.-S., Wang S.-J., Lee C.-H., Yang S.-F., Chen M.-K., Chiang S.-L., et al. CYP26B1 is a novel candidate gene for betel quid-related oral squamous cell carcinoma. Oral Oncol. 2011;47:594–600. doi: 10.1016/j.oraloncology.2011.04.024. PubMed DOI

Lee K.-W., Kuo W.-R., Tsai S.-M., Wu D.-C., Wang W.-M., Fang F.-M., Chiang F.-Y., Ho K.-Y., Wang L.-F., Tai C.-F., et al. Different impact from betel quid, alcohol and cigarette: Risk factors for pharyngeal and laryngeal cancer. Int. J. Cancer. 2005;117:831–836. doi: 10.1002/ijc.21237. PubMed DOI

Jain V., Garg A., Parascandola M., Chaturvedi P., Khariwala S.S., Stepanov I. Analysis of Alkaloids in Areca Nut-Containing Products by Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2017;65:1977–1983. doi: 10.1021/acs.jafc.6b05140. PubMed DOI PMC

Tang S.-N., Zhang J., Liu D., Liu Z.-W., Zhang X.-Q., Ye W.-C. Three new areca alkaloids from the nuts of Areca catechu. J. Asian Nat. Prod. Res. 2017;19:1155–1159. doi: 10.1080/10286020.2017.1307187. PubMed DOI

Yuan M., Ao Y., Yao N., Xie J., Zhang D., Zhang J., Zhang X., Ye W. Two New Flavonoids from the Nuts of Areca catechu. Molecules. 2019;24:2862. doi: 10.3390/molecules24162862. PubMed DOI PMC

Chavan Y.V., Singhal R.S. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols. J. Sci. Food Agric. 2013;93:2580–2589. doi: 10.1002/jsfa.6081. PubMed DOI

Holdsworth D.K., Jones R.A., Self R. Volatile alkaloids from Areca catechu. Phytochemistry. 1998;48:581–582. doi: 10.1016/S0031-9422(98)00016-8. DOI

Self R., Jones R.A., Holdworth D.K. Gas chromatography/mass spectrometry analysis of alkaloids in betel nut (Areca catechu) Eur. Mass Spectrom. 1999;5:213–219. doi: 10.1255/ejms.277. DOI

Kiuchi F., Miyashita N., Tsuda Y., Kondo K., Yoshimura H. Studies on crude drugs effective on visceral Larva migrans. I. Identification of larvicidal principles in betel nuts. Chem. Pharm. Bull. 1987;35:2880–2886. doi: 10.1248/cpb.35.2880. PubMed DOI

Cao M., Liu Y., Yuan H., Qiu Y., Xie Q., Yi P., Tan D., Peng Y., Wang W. HPLC-Based Qualitative and Quantitative Analyses of Alkaloids in Chewable Areca Products from Different Geographic Regions. J. AOAC Int. 2020;103:1400–1405. doi: 10.1093/jaoacint/qsaa048. PubMed DOI

Yuan H.W., Cao M.R., Yi P., Xie Q.L., Jian Y.Q., Li B., Qin Y., Peng C.Y., Wu H.Y., Tan D.B., et al. Determination of alkaloids and phenols in the chewable husk products of Areca catechu L. Using HPLC-UV and UHPLC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2018;41:612–620. doi: 10.1080/10826076.2018.1486326. DOI

Lord G.A., Lim C.K., Warnakulasuriya S., Peters T.J. Chemical and analytical aspects of areca nut. Addict. Biol. 2002;7:99–102. doi: 10.1080/13556210120091455. PubMed DOI

Sari E.F., Prayogo G.P., Loo Y.T., Zhang P., McCullough M.J., Cirillo N. Distinct phenolic, alkaloid and antioxidant profile in betel quids from four regions of Indonesia. Sci. Rep. 2020;10:16254. doi: 10.1038/s41598-020-73337-0. PubMed DOI PMC

Franke A.A., Mendez A.J., Lai J.F., Arat-Cabading C., Li X., Custer L.J. Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers. Food Chem. Toxicol. 2015;80:241–246. doi: 10.1016/j.fct.2015.03.012. PubMed DOI PMC

Loughlin R., Gilmore B.F., Mc Carron P.A., Tunney M.M. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett. Appl. Microbiol. 2008;46:428–433. doi: 10.1111/j.1472-765X.2008.02334.x. PubMed DOI

Chen W.Y., Vermaak I., Viljoen A. Camphor—A Fumigant during the Black Death and a Coveted Fragrant Wood in Ancient Egypt and Babylon—A Review. Molecules. 2013;18:5434–5454. doi: 10.3390/molecules18055434. PubMed DOI PMC

Tada A., Hanada N. Opportunistic respiratory pathogens in the oral cavity of the elderly. FEMS Immunol. Med Microbiol. 2010;60:1–17. doi: 10.1111/j.1574-695X.2010.00709.x. PubMed DOI

Frymus T., Addie D.D., Boucraut-Baralon C., Egberink H., Gruffydd-Jones T., Hartmann K., Horzinek M.C., Hosie M.J., Lloret A., Lutz H., et al. Streptococcal infections in cats: ABCD guidelines on prevention and management. J. Feline Med. Surg. 2015;17:620–625. doi: 10.1177/1098612X15588454. PubMed DOI PMC

Anupama M., Puspita D., Rajesh K. Studies on antimicrobial properties of areca nut Areca catechu. J. Pharmacogn. Phytochem. 2021;10:961–963.

Guimarães A.C., Meireles L.M., Lemos M.F., Guimarães M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC

Park S.-N., Lim Y.K., Freire M.O., Cho E., Jin D.C., Kook J.-K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe. 2012;18:369–372. doi: 10.1016/j.anaerobe.2012.04.001. PubMed DOI

Krist S., Sato K., Glasl S., Hoeferl M., Saukel J. Antimicrobial effect of vapours of terpineol, (R)-(-)-linalool, carvacrol, (S)-(-)-perillaldehyde and 1,8-cineole on airborne microbes using a room diffuser. Flavour Fragr. J. 2008;23:353–356. doi: 10.1002/ffj.1893. DOI

Leite A.M., Lima E.D.O., De Souza E.L., Diniz M.D.F.F.M., Trajano V.N., De Medeiros I.A. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Ciências. Farm. 2007;43:121–126. doi: 10.1590/S1516-93322007000100015. DOI

Da Silva A.C.R., Lopes P.M., de Azevedo M.M.B., Costa D.C.M., Alviano C.S., Alviano D.S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules. 2012;17:6305–6316. doi: 10.3390/molecules17066305. PubMed DOI PMC

Chalchat J.C., Chiron F., Garry R.P., Lacoste J., Sautou V. Photochemical Hydroperoxidation of Terpenes. Antimicrobial Activity of α-Pinene, β-Pinene and Limonene Hydroperoxides. J. Essent. Oil Res. 2000;12:125–134. doi: 10.1080/10412905.2000.9712059. DOI

Churchward C.P., Alany R.G., Snyder L.A.S. Alternative antimicrobials: The properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 2018;44:561–570. doi: 10.1080/1040841X.2018.1467875. PubMed DOI

Faden A.A. Evaluation of Antibacterial Activities of Aqueous and Methanolic Extracts of Areca catechu against Some Opportunistic Oral Bacteria. Biosci. Biotechnol. Res. Asia. 2018;15:655–659. doi: 10.13005/bbra/2673. DOI

Jin X., Zhou J., Richey G., Wang M., Hong S.M.C., Hong A.S.H. Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation. J. Microbiol. Biotechnol. 2021;31:130–136. doi: 10.4014/jmb.2008.08027. PubMed DOI PMC

Van Den Dool H., Kratz P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. PubMed DOI

Linstrom P.J., Mallard W.G., editors. NIST Chemistry Webbook. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2001. DOI

Bauer A.W., Kirby W.M.M., Sherris J.C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966;45:493–496. doi: 10.1093/ajcp/45.4_ts.493. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...