Effect of Waterjet Machining Parameters on the Cut Quality of PP and PVC-U Materials Coated with Polyurethane and Acrylate Coatings

. 2021 Dec 08 ; 14 (24) : . [epub] 20211208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947137

Grantová podpora
2021:31140/1312/3108 Internal grant agency of Faculty of Engineering no. 2021:31140/1312/3108 "Experimental research of hybrid adhesive bonds with multilayer sandwich construction, Czech University of Life Sciences Prague"
2020:31140/1312/3107 Internal grant agency of Faculty of Engineering no. 2020:31140/1312/3107 "Research of mechanical properties of bio-composite with geometrical structured natural fibers", Czech University of Life Sciences, Prague

The article focuses on the machining of polymeric materials polypropylene (PP) and un-plasticized poly vinyl chloride (PVC-U) after surface treatment with polyurethane and acrylate coatings using waterjet technology. Two types of waterjet technologies, abrasive waterjet (AWJ) and waterjet without abrasive (WJ), were used. The kerf width and its taper angle, at the inlet and outlet of the waterjet from the workpiece, were evaluated. Significant differences between AWJ and WJ technology were found. WJ technology proved to be less effective due to the creation of a nonuniform cutting gap and significant burrs. AWJ technology was shown to be more efficient, i.e., more uniform cuts were achieved compared to WJ technology, especially at a cutting head traverse speed of 50 mm·min-1. The most uniform kerf width or taper angle was achieved for PP + MOBIHEL (0.09°). The materials (PP and PVC-U) with the POLURAN coating had higher values of the taper angle of the cutting gap than the material with the MOBIHEL coating at all cutting head traverse speeds. The SEM results showed that the inappropriate cutting head traverse speed and the associated WJ technology resulted in significant destruction of the material to be cut on the underside of the cut. Delamination of the POLURAN and MOBIHEL coatings from the base material PP and PVC-U was not demonstrated by SEM analysis over the range of cutting head traverse speeds, i.e., 50 to 1000 mm·min-1.

Zobrazit více v PubMed

Wolf R.A. Plastic Surface Modification. 2nd ed. Carl Hanser Verlag GmbH & Co. KG; Munich, Germany: 2015.

Müller M., Valášek P., Novotný J., Ruggiero A., D’Amato R., Habrová K. Lecture Notes in Mechanical Engineering. Springer; Cham, Switzerland: 2019. Research on water jet cutting of polymer composites based on epoxy/waste fibres from coconut processing; pp. 45–53.

Johansson K.S. Applied Plastics Engineering Handbook: Processing, Materials, and Applications. 2nd ed. William Andrew Publishing; Stockholm, Sweden: 2017. Surface Modification of Plastics; pp. 443–487.

Jesthi D.K., Nayak R.K., Nanda B.K., Das D. Assessment of abrasive jet machining of carbon and glass fiber reinforced polymer hybrid composites. Mater. Today Proc. 2019;18:3116–3121. doi: 10.1016/j.matpr.2019.07.185. DOI

Kumar U.A., Alam S.M., Laxminarayana P. Influence of abrasive water jet cutting on glass fibre reinforced polymer (GFRP) composites. Mater. Today Proc. 2020;27:1651–1654. doi: 10.1016/j.matpr.2020.03.554. DOI

Vikas B.G., Srinivas S. Kerf analysis and delamination studies on glass-epoxy composites cut by abrasive water jet. Mater. Today Proc. 2019;46:4475–4481. doi: 10.1016/j.matpr.2020.09.683. DOI

Shanmugam D.K., Nguyen T., Wang J. A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Compos. Part A Appl. Sci. Manuf. 2008;39:923–929. doi: 10.1016/j.compositesa.2008.04.001. DOI

Wang J. Abrasive waterjet machining of polymer matrix composites—Cutting performance, erosive process and predictive models. Int. J. Adv. Manuf. Technol. 1999;15:757–768. doi: 10.1007/s001700050129. DOI

Shanmugam D.K., Chen F.L., Siores E., Brandt M. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials. Compos. Struct. 2002;57:289–296. doi: 10.1016/S0263-8223(02)00096-X. DOI

Wang J., Guo D.M. A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. J. Mater. Process. Technol. 2002;121:390–394. doi: 10.1016/S0924-0136(01)01246-8. DOI

Foldyna J., Klich J., Hlaváček P., Zeleňák M., Ščučka J. Erosion of metals by pulsating water jet. Teh. Vjesn. 2012;19:381–386.

Saravanan S., Vijayan V., Jaya Suthahar S.T., Balan A.V., Sankar S., Ravichandran M. A review on recent progresses in machining methods based on abrasive water jet machining. Mater. Today Proc. 2020;21:116–122. doi: 10.1016/j.matpr.2019.05.373. DOI

Natarajan Y., Murugesan P.K., Mohan M., Liyakath Ali Khan S.A. Abrasive Water Jet Machining process: A state of art of review. J. Manuf. Process. 2020;49:271–322. doi: 10.1016/j.jmapro.2019.11.030. DOI

Papa I., Russo P., Astarita A., Viscusi A., Perna A.S., Carrino L., Lopresto V. Impact behaviour of a novel composite structure made of a polymer reinforced composite with a 3D printed metallic coating. Compos. Struct. 2020;245:112346. doi: 10.1016/j.compstruct.2020.112346. DOI

Srivastava A.K., Nag A., Dixit A.R., Scucka J., Hloch S., Klichová D., Hlaváček P., Tiwari S. Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED. Meas. J. Int. Meas. Confed. 2019;131:628–639. doi: 10.1016/j.measurement.2018.09.026. DOI

Müller M., Valášek P., Kolář V. Research on application of technology using water jet on machining of polymeric composite biological-reinforced materials. Manuf. Technol. 2018;18:630–634. doi: 10.21062/ujep/151.2018/a/1213-2489/MT/18/4/630. DOI

Alberdi A., Suárez A., Artaza T., Escobar-Palafox G., Ridgway K. Composite cutting with abrasive water jet. Procedia Eng. 2013;63:421–429. doi: 10.1016/j.proeng.2013.08.217. DOI

Gnanavelbabu A., Saravanan P., Kaliyamoorthy R., Karthikeyan S., Baskaran R. Effect of Abrasive Waterjet Machining Parameters on Hybrid AA6061-B4C- CNT Composites. Mater. Today Proc. 2018;5:13438–13450. doi: 10.1016/j.matpr.2018.02.338. DOI

Hejjaji A., Zitoune R., Crouzeix L., Le Roux S., Collombet F. Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior. Wear. 2017;376–377:1356–1364. doi: 10.1016/j.wear.2017.02.024. DOI

Krajcarz D., Bańkowski D., Młynarczyk P. The Effect of Traverse Speed on Kerf Width in AWJ Cutting of Ceramic Tiles. Procedia Eng. 2017;192:469–473. doi: 10.1016/j.proeng.2017.06.081. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...