Tribological Behaviour of Enamel Coatings Created by a Prototype Device for Local Repair of Inorganic Surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV40144
Ministry of Industry and Trade
PubMed
36770229
PubMed Central
PMC9919588
DOI
10.3390/ma16031224
PII: ma16031224
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, abrasive water jet, enamel, inorganic surface, interaction, local repairs, wear,
- Publikační typ
- časopisecké články MeSH
The ability of materials to withstand environmental influences is a frequent necessity in many industries. Special requirements are imposed by such industries where surfaces are affected by acidity during the processing or storage of products. In such cases, when the basic surface is exposed to chemical influences, it is possible to use enamel coatings, which, with their properties, guarantee the protection of the surface and achieve the required service life of the material. This article deals mainly with the interaction between the base material and the enamel and its resistance to wear between the original and the renovated surface caused by local heating. The article presents a methodical procedure for the preparation of test specimens with an enamel layer prepared by AWJ cutting, eliminating its damage. There are minimal differences in the microstructure between the original and the renovated surface due to the production technique. The renovated enamel surface had more bubbles of a larger size than the original surface. Good adhesion between the base metal material (substrate) and the ground coat was demonstrated. The tested surfaces demonstrated high resistance to intensive abrasion conditions with low linear wear increments.
Zobrazit více v PubMed
Liao Y., Zhang B., Chen M., Feng M., Wang J., Zhu S., Wang F. Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution. Corros. Sci. 2020;167:108526. doi: 10.1016/j.corsci.2020.108526. DOI
Das S., Mukhopadhyay A., Datta S., Basu D. Evaluation of microwave processed glass–ceramic coating on nimonic superalloy substrate. Ceram. Int. 2010;36:1125–1130. doi: 10.1016/j.ceramint.2009.12.003. DOI
Hutchings I., Shipway P. Tribology: Friction and Wear of Engineering Materials. Butterworth-Heinemann; Oxford, UK: 2017. 386p.
Zhang H., Yang L., Zhang X., Wang Q., Wu J., Liu Z., Zeng C., Zhu S. Effect of enamel coating on the hot corrosion of 304 stainless steel beneath KCl–ZnCl2 deposits at 450 °C. J. Mater. Res. Technol. 2023;23:245–257. doi: 10.1016/j.jmrt.2022.12.152. DOI
Xu K., Li Z., Zheng J., Liu J. Effect of tetragonal zirconia nanoparticle content on enamel strength. Ceram. Int. 2022;48:9710–9720. doi: 10.1016/j.ceramint.2021.12.172. DOI
Rossi S., Calovi M., Velez D., Munoz J. Influence of addition of hard particles on the mechanical and chemical behavior of vitreous enamel. Surf. Coat. Technol. 2018;357:69–77. doi: 10.1016/j.surfcoat.2018.09.062. DOI
Tang F., Cheng X., Chen G., Brow R.K., Volz J.S., Koenigstein M.L. Electrochemical behavior of enamel-coated carbon steel in simulated concrete pore water solution with various chloride concentrations. Electrochim. Acta. 2013;92:36–46. doi: 10.1016/j.electacta.2012.12.125. DOI
Nguyen H.H., Wan S., Tieu K.A., Pham S.T., Zhu H. Tribological behaviour of enamel coatings. Wear. 2019;426–427:319–329. doi: 10.1016/j.wear.2019.02.002. DOI
Mindess S., Young J.D. Darwin Concrete. 2nd ed. Pearson Education, Inc.; Upper Saddle River, NJ, USA: 1996.
Rossi S., Scrinzi E. Evaluation of the abrasion resistance of enamel coatings. Chem. Eng. Process. Process. Intensif. 2013;68:74–80. doi: 10.1016/j.cep.2012.10.009. DOI
Scrinzi E., Rossi S. The aesthetic and functional properties of enamel coatings on steel. Mater. Des. 2010;31:4138–4146. doi: 10.1016/j.matdes.2010.04.030. DOI
McKinley K., Evele H., Baldwin C. Analysis of fracture in porcelain enamels; Proceedings of the 22nd International Enamellers Congress, IEI; Cologne, Germany. 3–7 June 2012.
Wang D. Effect of crystallization on the property of hard enamel coating on steel substrate. Appl. Surf. Sci. 2009;255:4640–4645. doi: 10.1016/j.apsusc.2008.12.007. DOI
Rossi S., Fedel M., Deflorian F., Parziani N. Abrasion and chemical resistance of composite vitreous enamel coatings with hard particles. Surf. Interface Anal. 2015;48:827–837. doi: 10.1002/sia.5849. DOI
Zhang S., Ren Y.H., Sun M.R., Hu F., Zhang C.H. Effects of RE on the Friction and Abrasion Character of Porcelain Enamel Coating. Adv. Mater. Res. 2012;538–541:410–413. doi: 10.4028/www.scientific.net/AMR.538-541.410. DOI
Wang L., Qi Q., Wang Z., Li T., Yu Y., Qiao Z., Tang H., Liu X., Huang Z. The effect of tungsten introduction on the tribological properties of Si3N4 ceramics paired with GCr15 steel under nonlubricated conditions. Wear. 2022;506–507:204452. doi: 10.1016/j.wear.2022.204452. DOI
Luţcanu M., Munteanu C., Kicsi G., Roman A.-M., Croitoru C.G., Prisecariu B.A., Cazacu M.M., Ştirbu I., Chicet D.L., Cimpoeşu N. Analysis of water jet cutting of metal-ceramic elements made through atmospheric plasma spraying technique. Mater. Today Proc. 2023;72:550–553. doi: 10.1016/j.matpr.2022.10.037. DOI
Gunamgari B.R., Kharub M. Experimental investigation on abrasive water jet cutting of high strength aluminium 7068 alloy. Mater. Today Proc. 2022;69:488–493. doi: 10.1016/j.matpr.2022.09.180. DOI
Jesthi D., Nayak R., Nanda B., Das D. Assessment of Abrasive Jet Machining of Carbon and Glass Fiber Reinforced Polymer Hybrid Composites. Mater. Today Proc. 2019;18:3116–3121. doi: 10.1016/j.matpr.2019.07.185. DOI
Müller M., Kolář V., Šulc J., Mishra R.K., Hromasová M., Behera B.K. Effect of Waterjet Machining Parameters on the Cut Quality of PP and PVC-U Materials Coated with Polyurethane and Acrylate Coatings. Materials. 2021;14:7542. doi: 10.3390/ma14247542. PubMed DOI PMC
Shanmugam D., Chen F., Siores E., Brandt M. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials. Compos. Struct. 2002;57:289–296. doi: 10.1016/S0263-8223(02)00096-X. DOI
Saravanan S., Vijayan V., Suthahar S.J., Balan A., Sankar S., Ravichandran M. A review on recent progresses in machining methods based on abrasive water jet machining. Mater. Today Proc. 2020;21:116–122. doi: 10.1016/j.matpr.2019.05.373. DOI
Wang J. Abrasive Waterjet Machining of Polymer Matrix Composites—Cutting Performance, Erosive Process and Predictive Models. Int. J. Adv. Manuf. Technol. 1999;15:757–768. doi: 10.1007/s001700050129. DOI
Krajcarz D., Bańkowski D., Młynarczyk P. The Effect of Traverse Speed on Kerf Width in AWJ Cutting of Ceramic Tiles. Procedia Eng. 2017;192:469–473. doi: 10.1016/j.proeng.2017.06.081. DOI
GOST 23.208-79 Ensuring of Wear Resistance of Products. Wear Resistance Testing of Materials by Friction against Loosely Fixed Abrasive Particles. [(accessed on 22 February 2022)]. Available online: https://docs.cntd.ru/document/1200010684.
Baptista A., Silva F., Pinto G., Porteiro J., Míguez J., Alexandre R., Sousa V. Influence of the ball surface texture in the dragging of abrasive particles on micro-abrasion wear tests. Wear. 2021;476:203730. doi: 10.1016/j.wear.2021.203730. DOI