Prevalence of Vancomycin-Resistant Enterococci and Antimicrobial Residues in Wastewater and Surface Water

. 2021 Dec 15 ; 11 (12) : . [epub] 20211215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947934

Grantová podpora
NV18-05-00340 Czech Health Research Council

Due to the extensive use of antimicrobial agents in human and veterinary medicine, residues of various antimicrobials get into wastewater and, subsequently, surface water. On the one hand, a combination of processes in wastewater treatment plants aims to eliminate chemical and biological pollutants; on the other hand, this environment may create conditions suitable for the horizontal transfer of resistance genes and potential selection of antibiotic-resistant bacteria. Wastewater and surface water samples (Morava River) were analyzed to determine the concentrations of 10 antibiotics and identify those exceeding so-called predicted no-effect environmental concentrations (PNECs). This study revealed that residues of five of the tested antimicrobials, namely ampicillin, clindamycin, tetracycline, tigecycline and vancomycin, in wastewater samples exceeded the PNEC. Vancomycin concentrations were analyzed with respect to the detected strains of vancomycin-resistant enterococci (VRE), in which the presence of resistance genes, virulence factors and potential relationship were analyzed. VRE were detected in 16 wastewater samples (11%) and two surface water samples (6%). The PNEC of vancomycin was exceed in 16% of the samples. Since the detected VRE did not correlate with the vancomycin concentrations, no direct relationship was confirmed between the residues of this antimicrobials and the presence of the resistant strains.

Zobrazit více v PubMed

One Health Initiative. [(accessed on 2 November 2021)]. Available online: http://www.onehealthinitiative.com.

Černohorská L. Rod Enterococcus. 1.8 Grampozitivní aerobní a fakultativně anaerobní koky. In: Votava M., editor. A Kol: Lékařská Mikrobiologie Speciální. Neptun; Brno, Czech Republic: 2006. pp. 127–128.

Fisher K., Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology. 2009;155:1749–1757. doi: 10.1099/mic.0.026385-0. PubMed DOI

Yadav G., Thakuria B., Madan M., Agwan V., Pandey A. Linezolid and Vancomycin Resistant Enterococci: A Therapeutic Problem. J. Clin. Diagn. Res. 2017;11:7–11. doi: 10.7860/JCDR/2017/27260.10474. PubMed DOI PMC

Raza T., Ullah S.R., Mehmood K., Andleeb S. Vancomycin resistant Enterococci: A brief review. J. Pak. Med. Assoc. 2018;68:768–772. PubMed

Kirkizlar T.A., Akalin H., Kirkizlar O., Ozkalemkas F., Ozkocaman V., Kazak E., Ozakin C., Bulbul E.N., Ozboz E.S., Ali R. Vancomycin-resistant enterococci infection and predisposing factors for infection and mortality in patients with acute leukaemia and febrile neutropenia. Leuk. Res. 2020;99:106463. doi: 10.1016/j.leukres.2020.106463. PubMed DOI

Prematunge C., MacDougall C., Johnstone J., Adomako K., Lam F., Robertson J., Garber G. VRE and VSE Bacteremia Outcomes in the Era of Effective VRE Therapy: A Systematic Review and Meta-analysis. Infect. Control Hosp. Epidemiol. 2016;37:26–35. doi: 10.1017/ice.2015.228. PubMed DOI PMC

Hricová K., Štosová T., Kučová P., Fišerová K., Bardoň J., Kolář M. Analysis of Vancomycin-Resistant Enterococci in Hemato-Oncological Patients. Antibiotics. 2020;9:785. doi: 10.3390/antibiotics9110785. PubMed DOI PMC

Wist V., Morach M., Schneeberger M., Cernela N., Stevens M.J.A., Zurfluh K., Stephan R., Nüesch-Inderbinen M. Phenotypic and Genotypic Traits of Vancomycin-Resistant Enterococci from Healthy Food-Producing Animals. Microorganisms. 2020;8:261. doi: 10.3390/microorganisms8020261. Erratum in Microorganisms 2021, 9, 847. PubMed DOI PMC

Asgin N., Otlu B. Antibiotic Resistance and Molecular Epidemiology of Vancomycin-Resistant Enterococci in a Tertiary Care Hospital in Turkey. Infect. Drug Resist. 2020;13:191–198. doi: 10.2147/IDR.S191881. PubMed DOI PMC

Arias C.A., Murray B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012;10:266–278. doi: 10.1038/nrmicro2761. PubMed DOI PMC

Hassoun-Kheir N., Stabholz Y., Kreft J.-U., de la Cruz R., Romalde J.L., Nesme J., Sørensen S.J., Smets B.F., Graham D., Paul M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ. 2020;743:140804. doi: 10.1016/j.scitotenv.2020.140804. PubMed DOI

Nnadozie C.F., Odume O.N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ. Pollut. 2019;254:113067. doi: 10.1016/j.envpol.2019.113067. PubMed DOI

Kümmerer K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere. 2009;75:417–434. doi: 10.1016/j.chemosphere.2008.11.086. PubMed DOI

Polianciuc S.I., Gurzău A.E., Kiss B., Ștefan M.G., Loghin F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020;93:231–240. doi: 10.15386/mpr-1742. PubMed DOI PMC

Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I., Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013;447:345–360. doi: 10.1016/j.scitotenv.2013.01.032. PubMed DOI

Kumar A., Pal D. Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. J. Environ. Chem. Eng. 2018;6:52–58. doi: 10.1016/j.jece.2017.11.059. DOI

Savin M., Bierbaum G., Hammerl J.A., Heinemann C., Parcina M., Sib E., Voigt A., Kreyenschmidt J. Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Sci. Total Environ. 2020;727:138788. doi: 10.1016/j.scitotenv.2020.138788. PubMed DOI

Rodriguez-Mozaz S., Vaz-Moreira I., Della Giustina S.V., Llorca M., Barceló D., Schubert S., Berendonk T.U., Michael-Kordatou I., Fatta-Kassinos D., Martinez J.L., et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020;140:105733. doi: 10.1016/j.envint.2020.105733. PubMed DOI

Hu Y., Jiang L., Sun X., Wu J., Ma L., Zhou Y., Lin K., Luo Y., Cui C. Risk assessment of antibiotic resistance genes in the drinking water system. Sci. Total Environ. 2021;800:149650. doi: 10.1016/j.scitotenv.2021.149650. PubMed DOI

Morris D., Galvin S., Boyle F., Hickey P., Mulligan M., Cormican M. Enterococcus faecium of thevanAGenotype in Rural Drinking Water, Effluent, and the Aqueous Environment. Appl. Environ. Microbiol. 2011;78:596–598. doi: 10.1128/AEM.06636-11. PubMed DOI PMC

Bengtsson-Palme J., Kristiansson E., Larsson D.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2017;42:fux053. doi: 10.1093/femsre/fux053. PubMed DOI PMC

Bengtsson-Palme J., Larsson D.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016;86:140–149. doi: 10.1016/j.envint.2015.10.015. PubMed DOI

Moore B., Perry C.E.L., Chard S.T. A Survey by the sewage swab method of latent enteric infection in an urban area. J. Hyg. 1952;50:137–156. doi: 10.1017/S0022172400019501. PubMed DOI PMC

The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. [(accessed on 2 November 2021)]. Version 11.0. Available online: http://www.eucast.org.

Dutka-Malen S., Evers S., Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995;33:24–27. doi: 10.1128/jcm.33.1.24-27.1995. PubMed DOI PMC

Malhotra-Kumar S., Lammens C., Piessens J., Goossens H. Multiplex PCR for Simultaneous Detection of Macrolide and Tetracycline Resistance Determinants in Streptococci. Antimicrob. Agents Chemother. 2005;49:4798–4800. doi: 10.1128/AAC.49.11.4798-4800.2005. PubMed DOI PMC

Ng L.-K., Martin I., Alfa M., Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes. 2001;15:209–215. doi: 10.1006/mcpr.2001.0363. PubMed DOI

Weigel L.M., Donlan R.M., Shin D.H., Jensen B., Clark N.C., McDougal L.K., Zhu W., Musser K.A., Thompson J., Kohlerschmidt D., et al. High-Level Vancomycin-Resistant Staphylococcus aureus Isolates Associated with a Polymicrobial Biofilm. Antimicrob. Agents Chemother. 2007;51:231–238. doi: 10.1128/AAC.00576-06. PubMed DOI PMC

Vakulenko S.B., Donabedian S.M., Voskresenskiy A.M., Zervos M.J., Lerner S.A., Chow J.W. Multiplex PCR for Detection of Aminoglycoside Resistance Genes in Enterococci. Antimicrob. Agents Chemother. 2003;47:1423–1426. doi: 10.1128/AAC.47.4.1423-1426.2003. PubMed DOI PMC

Vankerckhoven V., Van Autgaerden T., Vael C., Lammens C., Chapelle S., Rossi R., Jabes D., Goossens H. Development of a Multiplex PCR for the Detection of asa1, gelE, cylA, esp, and hyl Genes in Enterococci and Survey for Virulence Determinants among European Hospital Isolates of Enterococcus faecium. J. Clin. Microbiol. 2004;42:4473–4479. doi: 10.1128/JCM.42.10.4473-4479.2004. PubMed DOI PMC

Poeta P., Costa D., Igrejas G., Sáenz Y., Zarazaga M., Rodrigues J., Torres C. Polymorphisms of the pbp5 gene and correlation with ampicillin resistance in Enterococcus faecium isolates of animal origin. J. Med. Microbiol. 2007;56:236–240. doi: 10.1099/jmm.0.46778-0. PubMed DOI

Husickova V., Cekanova L., Chroma M., Htoutou-Sedlakova M., Hricova K., Kolář M. Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomed. Pap. 2012;156:348–353. doi: 10.5507/bp.2012.039. PubMed DOI

Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995;33:2233–2239. doi: 10.1128/jcm.33.9.2233-2239.1995. PubMed DOI PMC

Bouki C., Venieri D., Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013;91:1–9. doi: 10.1016/j.ecoenv.2013.01.016. PubMed DOI

Goessens T., Huysman S., De Troyer N., Deknock A., Goethals P., Lens L., Vanhaecke L., Croubels S. Multi-class analysis of 46 antimicrobial drug residues in pond water using UHPLC-Orbitrap-HRMS and application to freshwater ponds in Flanders, Belgium. Talanta. 2020;220:121326. doi: 10.1016/j.talanta.2020.121326. PubMed DOI

Guan J., Zhang C., Wang Y., Guo Y., Huang P., Zhao L. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem. 2016;408:8099–8109. doi: 10.1007/s00216-016-9913-1. PubMed DOI

Li Z., Zhao L., Liang N., Chen H., Hou X. Simultaneous determination of seven residual pharmaceuticals in wastewater by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry with a switching ionization mode. Anal. Methods. 2014;6:9045–9052. doi: 10.1039/C4AY01590H. DOI

Camacho-Muñoz D., Kasprzyk-Hordern B., Thomas K.V. Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh performance supercritical fluid based chromatography tandem mass spectrometry. Anal. Chim. Acta. 2016;934:239–251. doi: 10.1016/j.aca.2016.05.051. PubMed DOI

Li B., Zhang T., Xu Z., Fang H.H.P. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2009;645:64–72. doi: 10.1016/j.aca.2009.04.042. PubMed DOI

Gros M., Rodriguez-Mozaz S., Barceló D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A. 2013;1292:173–188. doi: 10.1016/j.chroma.2012.12.072. PubMed DOI

Kim C., Ryu H.-D., Chung E.G., Kim Y. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. J. Chromatogr. B. 2018;1084:158–165. doi: 10.1016/j.jchromb.2018.03.038. PubMed DOI

Angeles L.F., Islam S., Aldstadt J., Saqeeb K.N., Alam M., Khan A., Johura F.-T., Ahmed S.I., Aga D.S. Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters. Sci. Total Environ. 2019;712:136285. doi: 10.1016/j.scitotenv.2019.136285. PubMed DOI

Kulkarni P., Olson N.D., Raspanti G.A., Goldstein R.E.R., Gibbs S.G., Sapkota A., Sapkota A.R. Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water. Int. J. Environ. Res. Public Healh. 2017;14:668. doi: 10.3390/ijerph14060668. PubMed DOI PMC

Craddock H.A., Panthi S., Rjoub Y., Lipchin C., Sapkota A., Sapkota A.R. Antibiotic and herbicide concentrations in household greywater reuse systems and pond water used for food crop irrigation: West Bank, Palestinian Territories. Sci. Total Environ. 2019;699:134205. doi: 10.1016/j.scitotenv.2019.134205. PubMed DOI

Tylová T., Flieger M., Olšovská J. Determination of antibiotics in influents and effluents of wastewater-treatment-plants in the Czech Republic—Development and application of the SPE and a UHPLC-ToFMS method. Anal. Methods. 2013;5:2110–2118. doi: 10.1039/c3ay00048f. DOI

Rossmann J., Schubert S., Gurke R., Oertel R., Kirch W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC–MS/MS. J. Chromatogr. B. 2014;969:162–170. doi: 10.1016/j.jchromb.2014.08.008. PubMed DOI

Panditi V.R., Batchu S.R., Gardinali P.R. Online solid-phase extraction–liquid chromatography–electrospray–tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters. Anal. Bioanal. Chem. 2013;405:5953–5964. doi: 10.1007/s00216-013-6863-8. PubMed DOI

Serra-Compte A., Pikkemaat M.G., Elferink A., Almeida D., Diogène J., Campillo J.A., Llorca M., Álvarez-Muñoz D., Barceló D., Rodríguez-Mozaz S. Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment. Environ. Pollut. 2020;271:116313. doi: 10.1016/j.envpol.2020.116313. PubMed DOI

Dinh Q.T., Alliot F., Moreau-Guigon E., Eurin J., Chevreuil M., Labadie P. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta. 2011;85:1238–1245. doi: 10.1016/j.talanta.2011.05.013. PubMed DOI

Dinh Q., Moreau-Guigon E., Labadie P., Alliot F., Teil M.-J., Blanchard M., Eurin J., Chevreuil M. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci. Total Environ. 2017;575:758–766. doi: 10.1016/j.scitotenv.2016.09.118. PubMed DOI

Giebułtowicz J., Nałęcz-Jawecki G., Harnisz M., Kucharski D., Korzeniewska E., Płaza G. Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules. 2020;25:1470. doi: 10.3390/molecules25061470. PubMed DOI PMC

Giebułtowicz J., Tyski S., Wolinowska R., Grzybowska W., Zaręba T., Drobniewska A., Wroczyński P., Nałęcz-Jawecki G. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland) Environ. Sci. Pollut. Res. 2017;25:5788–5807. doi: 10.1007/s11356-017-0861-x. PubMed DOI

Tran N.H., Hoang L., Nghiem L., Nguyen N.M.H., Ngo H.H., Guo W., Trinh Q.T., Mai N.H., Chen H., Nguyen D.D., et al. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Sci. Total Environ. 2019;692:157–174. doi: 10.1016/j.scitotenv.2019.07.092. PubMed DOI

Omotola E.O., Olatunji O.S. Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS) Heliyon. 2020;6:e05787. doi: 10.1016/j.heliyon.2020.e05787. PubMed DOI PMC

Pascale R., Bianco G., Coviello D., Lafiosca M.C., Masi S., Mancini I.M., Bufo S.A., Scrano L., Caniani D. Validation of a liquid chromatography coupled with tandem mass spectrometry method for the determination of drugs in wastewater using a three-phase solvent system. J. Sep. Sci. 2019;43:886–895. doi: 10.1002/jssc.201900509. PubMed DOI

Senta I., Krizman-Matasic I., Terzic S., Ahel M. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2017;1509:60–68. doi: 10.1016/j.chroma.2017.06.005. PubMed DOI

Araújo C., Torres C., Silva N., Carneiro C., Gonçalves A., Radhouani H., Correia S., Da Costa P.M., Paccheco R., Zarazaga M., et al. Vancomycin-resistant enterococci from Portuguese wastewater treatment plants. J. Basic Microbiol. 2010;50:605–609. doi: 10.1002/jobm.201000102. PubMed DOI

Goldstein R.E.R., Micallef S.A., Gibbs S.G., George A., Claye E., Sapkota A., Joseph S.W., Sapkota A.R. Detection of vancomycin-resistant enterococci (VRE) at four U.S. wastewater treatment plants that provide effluent for reuse. Sci. Total Environ. 2014;466-467:404–411. doi: 10.1016/j.scitotenv.2013.07.039. PubMed DOI PMC

Iversen A., Kühn I., Franklin A., Möllby R. High Prevalence of Vancomycin-Resistant Enterococci in Swedish Sewage. Appl. Environ. Microbiol. 2002;68:2838–2842. doi: 10.1128/AEM.68.6.2838-2842.2002. PubMed DOI PMC

Caplin J.L., Hanlon G.W., Taylor H.D. Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England. Environ. Microbiol. 2008;10:885–892. doi: 10.1111/j.1462-2920.2007.01507.x. PubMed DOI

Sahlström L., Rehbinder V., Albihn A., Aspan A., Bengtsson B. Vancomycin resistant enterococci (VRE) in Swedish sewage sludge. Acta Veter. Scand. 2009;51:24. doi: 10.1186/1751-0147-51-24. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bacterial Infections, Antimicrobial Resistance and Antibiotic Therapy

. 2022 Mar 23 ; 12 (4) : . [epub] 20220323

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...