• This record comes from PubMed

Tuning the quasi-harmonic treatment of crystalline ionic liquids within the density functional theory

. 2022 Mar 15 ; 43 (7) : 448-456. [epub] 20211227

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
19-04150Y Grantová Agentura České Republiky
the Ministry of Education, Youth and Sports
Czech Science Foundation

Five ionic liquids are selected for benchmarking the performance of quasi-harmonic density functional theory (DFT) calculations of structural, phonon, and thermodynamic properties of their crystals. Data predicted by individual computational setups are sorted, establishing a distinct hierarchy among the first-principles approaches. PBE-D3 and B3LYP-D3 functionals are coupled with various plane wave and Gaussian-type orbital (GTO) basis sets. Propagation of the basis set superposition error and of the imperfections of both functionals into finite-temperature properties is discussed in detail. PBE-D3 together with a triple-zeta GTO basis set often yields the most accurate predictions of predicted molar volume and heat capacity with errors at 1% and 8%, respectively, representing the state-of-the-art for quasi-harmonic DFT calculations for crystalline ionic liquids. Fortuitous error cancellation between the basis-set superposition (overbinding) and PBE imperfection (overexpanding) strongly affects the overall accuracy, unlike the case of B3LYP/GTO calculations, impeding systematic convergence of the methodology towards higher accuracy.

See more in PubMed

C. Červinka, M. Klajmon, V. Štejfa, J. Chem. Theory Comput. 2019, 15, 5563.

C. Červinka, M. Fulem, K. Růžička, J. Chem. Phys. 2016, 144(6), 064505.

G. J. O. Beran, Chem. Rev. 2016, 116(9), 5567.

J. Klimeš, J. Chem. Phys. 2016, 145(9), 094506.

A. Otero-de-la-Roza, E. R. Johnson, J. Chem. Phys. 2012, 137(5), 054103.

A. M. Reilly, A. Tkatchenko, Chem. Sci. 2015, 6(6), 3289.

J. Moellmann, S. Grimme, J. Phys. Chem. C 2014, 118(14), 7615.

G. A. Dolgonos, J. Hoja, A. D. Boese, Phys. Chem. Chem. Phys. 2019, 21(44), 24333.

C. Červinka, M. Fulem, J. Chem. Theory Comput. 2017, 13(6), 2840.

J. S. Chickos, A. Gavezzotti, Cryst. Growth Des. 2019, 19(11), 6566.

C. Červinka, M. Fulem, R. P. Stoffel, R. Dronskowski, J. Phys. Chem. A 2016, 120(12), 2022.

J. G. Brandenburg, S. Grimme, Acta Crystallogr. B 2016, 72, 502.

V. L. Deringer, J. George, R. Dronskowski, U. Englert, Acc. Chem. Res. 2017, 50(5), 1231.

J. L. McKinley, G. J. O. Beran, Faraday Discuss. 2018, 211, 181.

C. Červinka, G. J. O. Beran, Phys. Chem. Chem. Phys. 2017, 19(44), 29940.

P. E. Blöchl, Phys. Rev. B 1994, 50(24), 17953.

K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, E. Castelli Ivano, J. Clark Stewart, A. Dal Corso, S. de Gironcoli, T. Deutsch, K. Dewhurst John, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, A. Flores-Livas José, F. Garrity Kevin, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E. K. U. Gross, A. Gulans, F. Gygi, D. R. Hamann, J. Hasnip Phil, N. A. W. Holzwarth, D. Iuşan, B. Jochym Dominik, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, O. Kvashnin Yaroslav, L. M. Locht Inka, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, J. Pickard Chris, W. Poelmans, I. J. Probert Matt, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, J. van Setten Michiel, V. Van Speybroeck, M. Wills John, R. Yates Jonathan, G.-X. Zhang, S. Cottenier, Science 2016, 351(6280), aad3000.

G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, N. Marzari, npj Comput. Mater. 2018, 4(1), 72.

L. A. Burns, Á. V. Mayagoitia, B. G. Sumpter, C. D. Sherrill, J. Chem. Phys. 2011, 134(8), 084107.

R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8(4), e1360.

S. Tosoni, C. Tuma, J. Sauer, B. Civalleri, P. Ugliengo, J. Chem. Phys. 2007, 127(15), 154102.

C. Červinka, V. Štejfa, ChemPhysChem 2020, 21(11), 1184.

V. Štejfa, J. Rohlíček, C. Červinka, J. Chem. Thermodyn. 2020, 142, 106020.

J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem. Commun. 1992, 13, 965.

C. M. S. S. Neves, M. L. S. Batista, A. F. M. Cláudio, L. M. N. B. F. Santos, I. M. Marrucho, M. G. Freire, J. A. P. Coutinho, J. Chem. Eng. Data 2010, 55(11), 5065.

H. L. Ngo, K. LeCompte, L. Hargens, A. B. McEwen, Thermochim. Acta 2000, 357-358, 97.

P. B. P. Serra, F. M. S. Ribeiro, M. A. A. Rocha, M. Fulem, K. Růžička, J. A. P. Coutinho, L. M. N. B. F. Santos, J. Mol. Liq. 2017, 248, 678.

T. Endo, H. Masu, K. Fujii, T. Morita, H. Seki, S. Sen, K. Nishikawa, Cryst. Growth Des. 2013, 13(12), 5383.

P. C. Hillesheim, K. A. Scipione, Acta Crystallogr. Sect. E 2014, 70(12), o1248.

A. V. Blokhin, Y. U. Paulechka, G. J. Kabo, J. Chem. Eng. Data 2006, 51(4), 1377.

Y. Shimizu, Y. Ohte, Y. Yamamura, K. Saito, T. Atake, J. Phys. Chem. B 2006, 110(28), 13970.

Y. U. Paulechka, G. J. Kabo, A. V. Blokhin, A. S. Shaplov, E. I. Lozinskaya, D. G. Golovanov, K. A. Lyssenko, A. A. Korlyukov, Y. S. Vygodskii, J. Phys. Chem. B 2009, 113(28), 9538.

A. M. Reilly, A. Tkatchenko, J. Chem. Phys. 2013, 139(2), 024705.

R. P. Stoffel, C. Wessel, M.-W. Lumey, R. Dronskowski, Angew. Chem. Int. Ed. 2010, 49(31), 5242.

V. H. Paschoal, L. F. O. Faria, M. C. C. Ribeiro, Chem. Rev. 2017, 117(10), 7053.

J. Wu, X. Cheng, M. Wu, H. Li, X. Zhu, Z. Wang, C. Yuan, K. Yang, L. Su, J. Mol. Struct. 2019, 1189, 265.

E. R. Talaty, S. Raja, V. J. Storhaug, A. Dölle, W. R. Carper, J. Phys. Chem. B 2004, 108(35), 13177.

H. Azizi-Toupkanloo, S. F. Tayyari, P. Nancarrow, J. Iran. Chem. Soc. 2017, 14(6), 1281.

Hafner, J.; Kresse, G.; Vogtenhuber, D.; Marsman, M., Vienna ab-initio simulation package 5.4.1 2014.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132(15), 154104.

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32(7), 1456.

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59(3), 1758.

C. Červinka, M. Fulem, Phys. Chem. Chem. Phys. 2019, 21(34), 18501.

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7(18), 3297.

M. F. Peintinger, D. V. Oliveira, T. Bredow, J. Comput. Chem. 2013, 34(6), 451.

D. Vilela Oliveira, J. Laun, M. F. Peintinger, T. Bredow, J. Comput. Chem. 2019, 40(27), 2364.

K. Parlinski, Z. Q. Li, Y. Kawazoe, Phys. Rev. Lett. 1997, 78(21), 4063.

A. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1.

S. Wen, K. Nanda, Y. Huang, G. J. O. Beran, Phys. Chem. Chem. Phys. 2012, 14(21), 7578.

E. Proynov, F. Liu, Z. Gan, M. Wang, J. Kong, J. Chem. Phys. 2015, 143(8), 084125.

H. Kruse, S. Grimme, J. Chem. Phys. 2012, 136(15), 154101.

J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7(8), 2427.

P. B. P. Serra, F. M. S. Ribeiro, M. A. A. Rocha, M. Fulem, K. Růžička, L. M. N. B. F. Santos, J. Chem. Thermodyn. 2016, 100, 124.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...