Vitrification Solutions for Plant Cryopreservation: Modification and Properties

. 2021 Nov 29 ; 10 (12) : . [epub] 20211129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34961099

Many plants cannot vitrify themselves because they lack glassy state-inducing substances and/or have high water content. Therefore, cryoprotectants are used to induce vitrification. A cryoprotectant must have at least the following primary abilities: high glass-forming property, dehydration strength on a colligative basis to dehydrate plant cells to induce the vitrification state, and must not be toxic for plants. This review introduces the compounds used for vitrification solutions (VSs), their properties indicating a modification of different plant vitrification solutions, their modifications in the compounds, and/or their concentration. An experimental comparison is listed based on the survival or regeneration rate of one particular species after using more than three different VSs or their modifications. A brief overview of various cryopreservation methods using the Plant Vitrification Solution (PVS) is also included. This review can help in alert researchers to newly introduced PVSs for plant vitrification cryoprotocols, their properties, and the choice of their modifications in the compounds and/or their concentration.

Zobrazit více v PubMed

Engelmann F. Use of biotechnologies for the conservation of plant biodiversity. Vitr. Cell. Dev. Biol. Anim. 2011;47:5–16. doi: 10.1007/s11627-010-9327-2. DOI

Wang M.-R., Bi W., Shukla M.R., Ren L., Hamborg Z., Blystad D.-R., Saxena P.K., Wang Q.-C. Epigenetic and Genetic Integrity, Metabolic Stability, and Field Performance of Cryopreserved Plants. Plants. 2021;10:1889. doi: 10.3390/plants10091889. PubMed DOI PMC

Engelmann F. In vitro conservation methods. In: Callow J.A., Ford Lloyd B.V., Newbury H.J., editors. Biotechnology and Plant Genetic Resources. CAB International; Oxford, UK: 1997. pp. 119–162.

Wang M.-R., Chen L., Da Silva J.A.T., Volk G.M., Wang Q.-C. Cryobiotechnology of apple (Malus spp.): Development, progress and future prospects. Plant Cell Rep. 2018;37:689–709. doi: 10.1007/s00299-018-2249-x. PubMed DOI

Panis B. Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic. 2019:1–8. doi: 10.17660/ActaHortic.2019.1234.1. DOI

Zámečník J., Šesták J. Hot Topics in Thermal Analysis and Calorimetry. Volume 8. Springer; Singapore: 2010. Constrained States Occurring in Plants Cryo-Processing and the Role of Biological Glasses; pp. 291–310.

Benson E.E. Cryopreservation of Phytodiversity: A Critical Appraisal of Theory & Practice. Crit. Rev. Plant Sci. 2008;27:141–219. doi: 10.1080/07352680802202034. DOI

Hirsh A.G. Vitrification in plants as a natural form of cryoprotection. Cryobiology. 1987;24:214–228. doi: 10.1016/0011-2240(87)90024-1. PubMed DOI

Volk G.M., Walters C. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology. 2006;52:48–61. doi: 10.1016/j.cryobiol.2005.09.004. PubMed DOI

Grout B.W.W. Genetic Preservation of Plant Cells in Vitro. Springer; Singapore: 1995. Introduction to the in Vitro Preservation of Plant Cells, Tissues and Organs; pp. 1–20.

Benson E.E. Plant Cryopreservation: A Practical Guide. Springer; New York, NY, USA: 2008. Cryopreservation theory; pp. 15–32.

Benson E.E. Plant Conservation Biotechnology. CRC Press; Boca Raton, FL, USA: 1999. Cryopreservation; pp. 109–122.

Sakai A., Kobayashi S., Oiyama I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990;9:30–33. doi: 10.1007/BF00232130. PubMed DOI

Uragami A., Sakai A., Nagai M., Takahashi T. Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep. 1989;8:418–421. doi: 10.1007/BF00270083. PubMed DOI

Leunufna S., Keller E.R.J. Investigating a new cryopreservation protocol for yams (Dioscorea spp.) Plant Cell Rep. 2003;21:1159–1166. doi: 10.1007/s00299-003-0652-3. PubMed DOI

Jiroutová P., Sedlák J. Cryobiotechnology of Plants: A Hot Topic not Only for Gene Banks. Appl. Sci. 2020;10:4677. doi: 10.3390/app10134677. DOI

Roque-Borda C., Kulus D., de Souza A.V., Kaviani B., Vicente E. Cryopreservation of Agronomic Plant Germplasm Using Vitrification-Based Methods: An Overview of Selected Case Studies. Int. J. Mol. Sci. 2021;22:6157. doi: 10.3390/ijms22116157. PubMed DOI PMC

Agrawal A., Singh S., Malhotra E.V., Meena D.P.S., Tyagi R.K. In Vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species. In: Rajasekharan P., Rao V., editors. Conservation and Utilization of Horticultural Genetic Resources. Springer; New York, NY, USA: 2019. pp. 529–578.

Bettoni J.C., Bonnart R., Volk G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tissue Organ Cult. (PCTOC) 2021;144:21–34. doi: 10.1007/s11240-020-01846-x. DOI

Malik S.K., Chaudhury R. Conservation and Utilization of Horticultural Genetic Resources. Springer; Singapore: 2019. Cryopreservation Techniques for Conservation of Tropical Horticultural Species Using Various Explants; pp. 579–594.

Panis B., Lambardi M. Status of cryopreservation technologies in plants (crops and forest trees) Role Biotechnol. 2005;5:43–54.

Sakai P.A., Hirai D., Niino T. Plant Cryopreservation: A Practical Guide. Springer; Singapore: 2008. Development of PVS-Based Vitrification and Encapsulation–Vitrification Protocols; pp. 33–57.

Höfer M., Hanke M.-V. Cryopreservation of fruit germplasm. Vitr. Cell. Dev. Biol. Anim. 2017;53:372–381. doi: 10.1007/s11627-017-9841-6. DOI

Kulus D., Zalewska M. Cryopreservation as a tool used in long-term storage of ornamental species—A review. Sci. Hortic. 2014;168:88–107. doi: 10.1016/j.scienta.2014.01.014. DOI

Bi W.-L., Pan C., Hao X.-Y., Cui Z.-H., Kher M.M., Marković Z., Wang Q.-C., da Silva J.A.T. Cryopreservation of grapevine (Vitis spp.)—A review. In Vitro Cell. Dev. Biol. Plant. 2017;53:449–460. doi: 10.1007/s11627-017-9822-9. DOI

Yamamoto S., Rafique T., Fukui K., Sekizawa K., Niino T. V-cryo-plate procedure as an effective protocol for cryobanks: Case study of mint cryopreservation. Cryo Lett. 2012;33:12–23. PubMed

Yamamoto S.-I., Rafique T., Priyantha W.S., Fukui K., Matsumoto T., Niino T. Development of a cryopreservation procedure using aluminium cryo-plates. Cryo Lett. 2011;32:256–265. PubMed

Kim H.H., Yoon J.W., Park Y.E., Cho E.G., Sohn J.K., Kim T.K., Engelmann F. Cryopreservation of potato cultivated varieties and wild species: Critical factors in droplet vitrification. Cryo Lett. 2006;27:223–234. PubMed

Panis B., Nguyẽn T.n.T. Cryopreservation of Musa Germplasm. Volume 5 Bioversity International; Rome, Italy: 2001.

Carra A., Carimi F., Bettoni J.C., Pathirana R. Synthetic Seeds. Springer; Singapore: 2019. Progress and Challenges in the Application of Synthetic Seed Technology for Ex Situ Germplasm Conservation in Grapevine (Vitis spp.) pp. 439–467.

Fahy G.M., Wowk B., Wu J., Paynter S. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology. 2004;48:22–35. doi: 10.1016/j.cryobiol.2003.11.004. PubMed DOI

Teixeira A.S., González-Benito M.E., Molina-García A.D. Glassy State and Cryopreservation of Mint Shoot Tips. Biotechnol. Prog. 2013;29:707–717. doi: 10.1002/btpr.1711. PubMed DOI

Zámečník J., Faltus M., Bilavčík A., Kotková R. Current Frontiers Cryopreservation. IntechOpen; London, UK: 2012. Comparison of cryopreservation methods of vegetatively propagated crops based on thermal analysis; pp. 333–358.

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Santarius K.A. Freezing of Isolated Thylakoid Membranes in Complex Media. VII. The Effect of Bovine Serum Albumin. Biochem. Physiol. Pflanz. 1991;187:149–162. doi: 10.1016/S0015-3796(11)80119-8. DOI

Elmoazzen H., Elliott J., McGann L. Cryoprotectant equilibration in tissues. Cryobiology. 2005;51:85–91. doi: 10.1016/j.cryobiol.2005.05.003. PubMed DOI

Kanaze F.I., Kokkalou E., Niopas I., Georgarakis M., Stergiou A., Bikiaris D. Thermal analysis study of flavonoid solid dispersions having enhanced solubility. J. Therm. Anal. Calorim. 2006;83:283–290. doi: 10.1007/s10973-005-6989-9. DOI

Tao D., Li P.H. Classification of plant cell cryoprotectants. J. Theor. Biol. 1986;123:305–310. doi: 10.1016/S0022-5193(86)80245-4. DOI

Rall W.F., Fahy G.M. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nat. Cell Biol. 1985;313:573–575. doi: 10.1038/313573a0. PubMed DOI

Gao D., Liu J., Liu C., McGann L., Watson P., Kleinhans F., Mazur P., Critser E., Critser J. Andrology: Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum. Reprod. 1995;10:1109–1122. doi: 10.1093/oxfordjournals.humrep.a136103. PubMed DOI

Hubálek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology. 2003;46:205–229. doi: 10.1016/S0011-2240(03)00046-4. PubMed DOI

Golan M., Jelinkova S., Kratochvilova I., Skládal P., Pešl M., Rotrekl V., Pribyl J. AFM Monitoring the Influence of Selected Cryoprotectants on Regeneration of Cryopreserved Cells Mechanical Properties. Front. Physiol. 2018;9:804. doi: 10.3389/fphys.2018.00804. PubMed DOI PMC

Gerber D.W., Byerrum R.U., Gee R.W., Tolbert N. Glycerol concentrations in crop plants. Plant Sci. 1988;56:31–38. doi: 10.1016/0168-9452(88)90182-3. DOI

Sillanpää M., Ncibi C. A Sustainable Bioeconomy. Springer; Berlin/Heidelberg, Germany: 2017. Biochemicals; pp. 141–183.

Warner R.M., Ampo E., Nelson D., Benson J.D., Eroglu A., Higgins A.Z. Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method. Cryobiology. 2021;98:219–232. doi: 10.1016/j.cryobiol.2020.10.017. PubMed DOI PMC

Suzuki M., Tandon P., Ishikawa M., Toyomasu T. Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol. Rep. 2008;2:123–131. doi: 10.1007/s11816-008-0056-5. DOI

Nishizawa S., Sakai A., Amano Y., Matsuzawa T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993;91:67–73. doi: 10.1016/0168-9452(93)90189-7. DOI

Lu Z., Liu C.T. A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics. 2004;12:1035–1043. doi: 10.1016/j.intermet.2004.04.032. DOI

Kuleshova L., Mac Farlaneb D.R., Trounson A., Shaw J. Sugars Exert a Major Influence on the Vitrification Properties of Ethylene Glycol-Based Solutions and Have Low Toxicity to Embryos and Oocytes. Cryobiology. 1999;38:119–130. doi: 10.1006/cryo.1999.2153. PubMed DOI

Murthy S., Singh G. Examination of the concentration dependence of Tg of binary aqueous solutions. Thermochim. Acta. 2008;469:116–119. doi: 10.1016/j.tca.2008.01.007. DOI

Jonnalagadda S., Robinson D.H. Effect of the inclusion of PEG on the solid-state properties and drug release from polylactic acid films and microcapsules. J. Appl. Polym. Sci. 2004;93:2025–2030. doi: 10.1002/app.20667. DOI

Zondervan R., Kulzer F., Berkhout G.C.G., Orrit M. Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. Proc. Natl. Acad. Sci. USA. 2007;104:12628–12633. doi: 10.1073/pnas.0610521104. PubMed DOI PMC

Talja R.A., Roos Y.H. Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. Thermochim. Acta. 2001;380:109–121. doi: 10.1016/S0040-6031(01)00664-5. DOI

Simperler A., Kornherr A., Chopra R., Bonnet P.A., Jones W., Motherwell A.W.D.S., Zifferer G. Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study. J. Phys. Chem. B. 2006;110:19678–19684. doi: 10.1021/jp063134t. PubMed DOI

Roberts A., Finnigan W., Kelly P., Faulkner M., Breitling R., Takano E., Scrutton N., Blaker J., Hay S. Non-covalent protein-based adhesives for transparent substrates—Bovine serum albumin vs. recombinant spider silk. Mater. Today Bio. 2020;7:100068. doi: 10.1016/j.mtbio.2020.100068. PubMed DOI PMC

Anonym Data Safety Sheet—Formamide. 2015. [(accessed on 27 November 2021)]. Available online: https://www.carlroth.com/medias/SDB-4095-IE-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNjc1NzV8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oNzIvaDc2LzkwNDYwODU3MzAzMzQucGRmfDUyOGVmNzI4NzM3MmU1NDQwYmIzZDYwODI5OTYxNDU2NmZhOWJlNTVkMzVlOWRlZTk2NjQyNjNkYzliMzI0OTk.

Matsumoto T. Cryopreservation of Plant Genetic Resources: Conventional and New Methods. Rev. Agric. Sci. 2017;5:13–20. doi: 10.7831/ras.5.13. DOI

Vozovyk K., Bobrova O., Prystalov A., Shevchenko N., Kuleshova L. Amorphous state stability of plant vitrification solutions. Biologija. 2020;66:66. doi: 10.6001/biologija.v66i1.4190. DOI

Matsumoto T., Sakai A., Yamada K. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep. 1994;13:442–446. doi: 10.1007/BF00231963. PubMed DOI

Kawai K., Suzuki T., Oguni M. Low-Temperature Glass Transitions of Quenched and Annealed Bovine Serum Albumin Aqueous Solutions. Biophys. J. 2006;90:3732–3738. doi: 10.1529/biophysj.105.075986. PubMed DOI PMC

Kim H.-H., Lee Y.-G., Shin D.-J., Ko H.-C., Gwag J.-G., Cho E.-G., Engelmann F. Development of alternative plant vitrification solutions in droplet-vitrification procedures. Cryo Lett. 2009;30:320–334. doi: 10.17660/ActaHortic.2011.908.20. PubMed DOI

Notman R., Noro M., O’Malley B., Anwar J. Molecular Basis for Dimethylsulfoxide (DMSO) Action on Lipid Membranes. J. Am. Chem. Soc. 2006;128:13982–13983. doi: 10.1021/ja063363t. PubMed DOI

Kim H.-H., Kim J.-B., Baek H.-J., Cho E.-G., Chae Y.-A., Engelmann F. Evolution of DMSO concentration in garlic shoot tips during a vitrification procedure. Cryo Lett. 2004;25:91–100. PubMed

Kim J.-B., Kim H.-H., Baek H.-J., Cho E.-G., Kim Y.-H., Engelmann F. Changes in sucrose and glycerol content in garlic shoot tips during freezing using PVS3 solution. Cryo Lett. 2005;26:103–112. PubMed

Volk G.M., Harris J.L., Rotindo K.E. Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology. 2006;52:305–308. doi: 10.1016/j.cryobiol.2005.11.003. PubMed DOI

Hakura A., Mochida H., Yamatsu K. Dimethyl sulfoxide (DMSO) is mutagenic for bacterial mutagenicity tester strains. Mutat. Res. Lett. 1993;303:127–133. doi: 10.1016/0165-7992(93)90025-Q. PubMed DOI

Kapp R., Jr., Eventoff B. Mutagenicity of dimethylsulfoxide (DMSO): In vivo cytogenetics study in the rat. Teratog. Carcinog. Mutagenesis. 1981;1:141–145. doi: 10.1002/tcm.1770010203. PubMed DOI

Vogin E.E., Carson S., Cannon G., Linegar C.R., Rubin L.F. Chronic toxicity of DMSO in primates. Toxicol. Appl. Pharmacol. 1970;16:606–612. doi: 10.1016/0041-008X(70)90065-7. PubMed DOI

Halmagyi A., Valimareanu S., Coste A., Deliu C., Isac V. Cryopreservation of Malus shoot tips and subsequent plant regeneration. Rom. Biotechnol. Lett. 2010;15:80.

Volk G. Application of Functional Genomics and Proteomics to Plant Cryopreservation. Curr. Genom. 2010;11:24–29. doi: 10.2174/138920210790217945. PubMed DOI PMC

Franceschi V.R., Horner H.T. Calcium oxalate crystals in plants. Bot. Rev. 1980;46:361–427. doi: 10.1007/BF02860532. DOI

Prychid C.J., Jabaily R.S., Rudall P. Cellular Ultrastructure and Crystal Development in Amorphophallus (Araceae) Ann. Bot. 2008;101:983–995. doi: 10.1093/aob/mcn022. PubMed DOI PMC

Ranjbar H., Ahmadi H., Sheshdeh R.K., Ranjbar H. Application of relative sensitivity function in parametric optimization of a tri-ethylene glycol dehydration plant. J. Nat. Gas Sci. Eng. 2015;25:39–45. doi: 10.1016/j.jngse.2015.04.028. DOI

Bhattacharya S. Cryopreservation Biotechnology in Biomedical and Biological Sciences. IntechOpen; London, UK: 2018. Cryoprotectants and their usage in cryopreservation process; p. 7.

Steuter A.A., Mozafar A., Goodin J.R. Water Potential of Aqueous Polyethylene Glycol. Plant Physiol. 1981;67:64–67. doi: 10.1104/pp.67.1.64. PubMed DOI PMC

Popova E., Bukhov N., Popov A., Kim H.-H. Cryopreservation of protocorm-like bodies of the hybrid orchid Bratonia (Miltonia flavescens × Brassia longissima) Cryo Lett. 2010;31:426–437. PubMed

Fuller B.J. Cryoprotectants: The essential antifreezes to protect life in the frozen state. Cryo Lett. 2004;25:375–388. PubMed

Sipen P., Anthony P., Davey M.R. Cryopreservation of scalps of Malaysian bananas using a pre-growth method. Cryo Lett. 2011;32:197–205. PubMed

Acker J.P., McGann L.E. Protective effect of intracellular ice during freezing? Cryobiology. 2003;46:197–202. doi: 10.1016/S0011-2240(03)00025-7. PubMed DOI

Bryant G., Koster K.L., Wolfe J. Membrane behaviour in seeds and other systems at low water content: The various effects of solutes. Seed Sci. Res. 2001;11:17–25. doi: 10.1079/SSR200056. DOI

Shendurse A., Khedkar C. Glucose: Properties and analysis. Encycl. Food Health. 2016;3:239–247.

Bhandari B.R., Roos Y.H. Dissolution of sucrose crystals in the anhydrous sorbitol melt. Carbohydr. Res. 2003;338:361–367. doi: 10.1016/S0008-6215(02)00466-4. PubMed DOI

Göldner E.M., Seitz U., Reinhard E. Cryopreservation of Digitalis lanata Ehrh. cell cultures: Preculture and freeze tolerance. Plant Cell Tissue Organ Cult. 1991;24:19–24. doi: 10.1007/BF00044260. DOI

Salaj T., Matusikova I., Panis B., Swennen R., Salaj J. Recovery and characterisation of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. Cryo Lett. 2010;31:206–217. PubMed

Subramanian S., Raj A., Kumar R., Rana S.K., Jha A.K., Gautam S. Isolation, Culturing and cryopreservation of putative granulosa stem cells from buffalo ovaries. Int. J. Cell Sci. Biotechnol. 2014;4:20–25.

Carpenter J.F., Crowe J.H. The mechanism of cryoprotection of proteins by solutes. Cryobiology. 1988;25:244–255. doi: 10.1016/0011-2240(88)90032-6. PubMed DOI

Santarius K.A., Giersch C. Cryopreservation of spinach chloroplast membranes by low-molecular-weight carbohydrates: II. Discrimination between colligative and noncolligative protection. Cryobiology. 1983;20:90–99. doi: 10.1016/0011-2240(83)90063-9. PubMed DOI

Sikora A., Dupanov V.O., Kratochvíl J., Zamecnik J. Transitions in Aqueous Solutions of Sucrose at Subzero Temperatures. J. Macromol. Sci. Part B. 2007;46:71–85. doi: 10.1080/00222340601036819. DOI

Sakai A., Kobayashi S., Oiyama I. Survival by Vitrification of Nucellar Cells of Navel Orange (Citrus sinensis var. brasiliensis Tanaka) Cooled to −196 °C. J. Plant Physiol. 1991;137:465–470. doi: 10.1016/S0176-1617(11)80318-4. PubMed DOI

Sopalun K., Kanchit K., Ishikawa K. Vitrification-based cryopreservation of Grammatophyllum speciosum protocorm. Cryo Lett. 2010;31:347–357. PubMed

Horvath A., Wayman W.R., Urbányi B., Ware K.M., Dean J.C., Tiersch T.R. The relationship of the cryoprotectants methanol and dimethyl sulfoxide and hyperosmotic extenders on sperm cryopreservation of two North-American sturgeon species. Aquaculture. 2005;247:243–251. doi: 10.1016/j.aquaculture.2005.02.007. DOI

Bronshteyn V.L., Steponkus P.L. Nucleation and Growth of Ice Crystals in Concentrated Solutions of Ethylene Glycol. Cryobiology. 1995;32:1–22. doi: 10.1006/cryo.1995.1001. DOI

Rall W. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology. 1987;24:387–402. doi: 10.1016/0011-2240(87)90042-3. PubMed DOI

Turner S., Senaratna T., Touchell D., Bunn E., Dixon K., Tan B. Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci. 2001;160:489–497. doi: 10.1016/S0168-9452(00)00420-9. PubMed DOI

Kim H.-H., Yoon J.-W., Kim J.-B., Engelmann F., Cho E.-G. Thermal analysis of garlic shoot tips during a vitrification procedure. Cryo Lett. 2005;26:33–44. PubMed

Wu Y., Zhao Y., Zhou M., Engelmann F. Plant Genetic Resources Network in East Asia. Proceedings of the Meeting for the Regional Network for Conservation and Use of Plant Genetic Resources in East Asia, Ulaanbaatar, Mongolia, 13–16 August 2001. International Plant Genetic Resources Institute (IPGRI); Rome, Italy: 2002. Cryopreservation of temperate fruit tree germplasm; pp. 77–88.

Kim H.-H., Popova E.V., Yi J.-Y., Cho G.-T., Park S.-U., Lee S.-C., Engelmann F. Cryopreservation of hairy roots of Rubia akane (Nakai) using a droplet-vitrification procedure. Cryo Lett. 2011;31:473–484. PubMed

Hong S., Yin M., Shao X., Wang A., Xu W. Cryopreservation of embryogenic callus of Dioscorea bulbifera by vitrification. Cryo Lett. 2009;30:64–75. PubMed

Cho E.G., Hor Y.L., Kim H.H., Rao V.R., Engelmann F. Cryopreservation of Citrus madurensis zygotic embryonic axes by vitrification: Importance of pregrowth and preculture conditions. Cryo Lett. 2002;22:391–396. PubMed

Ivchenko T.V., Vitsenya T.I., Shevchenko N.A., Bashtan N.O., Kornienko S.I. Hypothermic and Low-Temperature Storage of Garlic (Allium sativum L.) for in Vitro Collections. Probl. Cryobiol. Cryomedicine. 2017;27:110–120. doi: 10.15407/cryo27.02.110. DOI

Ishikawa K., Harata K., Mii M., Sakai A., Yoshimatsu K., Shimomura K. Cryopreservation of zygotic embryos of a Japanese terrestrial orchid (Bletilla striata) by vitrification. Plant Cell Rep. 1997;16:754–757. doi: 10.1007/s002990050314. PubMed DOI

Ray A., Bhattacharya S. Cryopreservation of in vitro grown nodal segments of Rauvolfia serpentina by PVS2 vitrification. Cryo Lett. 2009;29:321–328. PubMed

Sajini K.K., Karun A., Amamath C.H., Engelmann F. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification. Cryo Lett. 2011;32:317–328. PubMed

Panis B., Swennen R. Society for Low Temperature Biology. Annual Scientific Meeting, AGM and Symposium. Validation, Safety and Ethical Issues Impacting the Low Temperature Storage of Biological Resources. Cryo Letters; Lewes, UK: 2007. Plant cryopreservation: Applications, constraints and prospects; pp. 1–29.

Tokatli Y.O., Akdemir H. Cryopreservation of Fraser photinia (Photinia × fraseri Dress.) via vitrification-based one-step freezing techniques. Cryo Lett. 2010;31:40–49. PubMed

Volk G.M., Maness N., Rotindo K. Cryopreservation of garlic (Allium sativum L.) using plant vitrification solution 2. Cryo Lett. 2004;25:219–226. PubMed

March G.G.-D., De Boucaud M.-T., Chmielarz P. Cryopreservation of Prunus avium L. embryogenic tissues. Cryo Lett. 2006;26:341–348. PubMed

Engelmann-Sylvestre I., Engelmann F. Cryopreservation of in vitro-grown shoot tips of Clinopodium odorum using aluminium cryo-plates. Vitr. Cell. Dev. Biol. Anim. 2015;51:185–191. doi: 10.1007/s11627-015-9668-y. DOI

Li B.-Q., Feng C.-H., Wang M.-R., Hu L.-Y., Volk G., Wang Q.-C. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J. Biotechnol. 2015;214:182–191. doi: 10.1016/j.jbiotec.2015.09.030. PubMed DOI

Vollmer R., Villagaray R., Castro M., Anglin N., Ellis D. Cryopreserved potato shoot tips showed genotype-specific response to sucrose concentration in rewarming solution (RS) Plant Cell Tissue Organ Cult. (PCTOC) 2018;136:353–363. doi: 10.1007/s11240-018-1520-8. DOI

Wang M.-R., Zhang Z., Zámečník J., Bilavčík A., Blystad D.-R., Haugslien S., Wang Q.-C. Droplet-vitrification for shoot tip cryopreservation of shallot (Allium cepa var. aggregatum): Effects of PVS3 and PVS2 on shoot regrowth. Plant Cell Tissue Organ Cult. 2020;140:185–195. doi: 10.1007/s11240-019-01721-4. DOI

Bettoni J.C., Kretzschmar A.A., Bonnart R., Shepherd A., Volk G.M. Cryopreservation of 12 Vitis Species Using Apical Shoot Tips Derived from Plants Grown In Vitro. HortScience. 2019;54:976–981. doi: 10.21273/HORTSCI13958-19. DOI

Hammond S.D.H., Viehmannova I., Zamecnik J., Panis B., Faltus M. Droplet-vitrification methods for apical bud cryopreservation of yacon [Smallanthus sonchifolius (Poepp. and Endl.) H. Rob.] Plant Cell Tissue Organ Cult. (PCTOC) 2021;147:197–208. doi: 10.1007/s11240-021-02116-0. DOI

Niedermeyer W., Parish G.R., Moor H. Reactions of yeast cells to glycerol treatment alterations to membrane structure and glycerol uptake. Protoplasma. 1977;92:177–193. doi: 10.1007/BF01279457. PubMed DOI

Brison M., de Boucaud M.-T., Dosba F. Cryopreservation of in vitro grown shoot tips of two interspecific Prunus rootstocks. Plant Sci. 1995;105:235–242. doi: 10.1016/0168-9452(94)04045-1. DOI

Serrano-Martinez F., Casas J.L. Cryopreservation of Tetraclinis articulata (vahl.) Masters. Cryo Lett. 2011;32:248–255. PubMed

Maruyama E., Kinoshita I., Ishii K., Ohba K., Sakai A. Germplasm conservation of Guazuma crinita, a useful tree in the Peru-Amazon, by the cryopreservation of in vitro-cultured multiple bud clusters. Plant Cell Tissue Organ Cult. (PCTOC) 1997;48:161–165. doi: 10.1023/A:1005858324187. DOI

Wang Q., Batuman Ö., Li P., Bar-Joseph M., Gafny R. A simple and efficient cryopreservation of in vitro-grown shoot tips of Troyer’citrange [Poncirus trifoliata (L.) Raf. × Citrus sinensis (L.) Osbeck.] by encapsulation-vitrification. Euphytica. 2002;128:135–142. doi: 10.1023/A:1020683305690. DOI

Vujović T., Jevremović D., Marjanović T., Ružić Đ. Cryopreservation of Serbian autochthonous plum ‘Crvena Ranka’ using aluminium cryo-plates. Genetika. 2021;53:283–294. doi: 10.2298/GENSR2101283V. DOI

Lambardi M., Fabbri A., Caccavale A. Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep. 2000;19:213–218. doi: 10.1007/s002990050001. PubMed DOI

Shin D.J., Kong H., Popova E.V., Moon H.K., Park S.Y., Park S.-U., Lee S.C., Kim H.H. Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification. Cryo Lett. 2012;33:402–410. PubMed

Barraco G., Sylvestre I., Iapichino G., Engelmann F. Investigating the cryopreservation of nodal explants of Lithodora rosmarinifolia (Ten.) Johnst., a rare, endemic Mediterranean species. Plant Biotechnol. Rep. 2012;7:141–146. doi: 10.1007/s11816-012-0241-4. DOI

Lee Y.-Y., Balaraju K., Song J.-Y., Yi J.-Y., Lee S.-Y., Lee J.-R., Yoon M., Kim H.-H. Cryopreservation of in vitro grown shoot tips of strawberry (Fragaria × ananassa Duch.) genetic resources by droplet-vitrification. Korean J. Plant Resour. 2019;32:689–697.

Sakai A. Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application. CGIAR; Montpellier, France: 2000. Development of cryopreservation techniques; pp. 1–7.

Langis R., Schnabel B., Earle E., Steponkus P. Cryopreservation of Brassica campestris L. cell suspensions by vitrification. Cryo Lett. 1989;10:421–428.

Kim H.-H., Cho E.-G., Baek H.-J., Kim C.-Y., Keller E.R.J., Engelmann F. Cryopreservation of garlic shoot tips by vitrification: Effects of dehydration, rewarming, unloading and regrowth conditions. Cryo Lett. 2004;25:59–70. PubMed

Towill L. Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep. 1990;9:178–180. doi: 10.1007/BF00232174. PubMed DOI

Grospietsch M., Stodulkova E., Zamecnik J. Effect of osmotic stress on the dehydration tolerance and cryopreservation of Solanum tuberosum shoot tips. Cryo Lett. 1999;20:339–346.

Suranthran P., Gantait S., Sinniah U.R., Subramaniam S., Alwee S.S.R.S., Roowi S.H. Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regul. 2012;66:101–109. doi: 10.1007/s10725-011-9633-7. DOI

Mallon R., Bunn E., Turner S.R., Gonzalez M.L. Cryopreservation of Centaurea ultreiae (Compositae) a critically endangered species from Galicia (Spain) Cryo Lett. 2008;29:363–370. PubMed

Turner S.R., Senaratna T., Bunn E., Tan B., Dixon K., Touchell D.H. Cryopreservation of Shoot Tips from Six Endangered Australian Species using a Modified Vitrification Protocol. Ann. Bot. 2001;87:371–378. doi: 10.1006/anbo.2000.1346. DOI

Halmagyi A., Deliu C., Coste A., Keul M., Cheregi O., Cristea V. Vitrification of potato shoot tips for germplasm cryopreservation. Contrib. Bot. 2004;39:187–193.

Shevchenko N., Mozgovska A., Bobrova O., Bashtan N., Kovalenko G., Ivchenko T. Post-Thaw Survival of Meristems from In Vitro Sweet Potato (Ipomoea batatas (L.) Lam.) Plants. Biol. Life Sci. Forum. 2020;4:43. doi: 10.3390/IECPS2020-08769. DOI

Watanabe K., Steponkus P.L. Vitrification of Oryza sativa L. cell suspensions. Cryo Lett. 1995;16:255–262.

Folgado R., Panis B., Sergeant K., Renaut J., Swennen R., Hausman J.-F. Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology. 2015;71:432–441. doi: 10.1016/j.cryobiol.2015.09.006. PubMed DOI

Dumet D., Grapin A., Bailly C., Dorion N. Revisiting crucial steps of an encapsulation/desiccation based cryopreservation process: Importance of thawing method in the case of Pelargonium meristems. Plant Sci. 2002;163:1121–1127. doi: 10.1016/S0168-9452(02)00323-0. DOI

Matsumoto T. An approach to enhance dehydration tolerance of alginate-coated dried meristems cooled to −196 °C. Cryo Lett. 1995;16:299–306.

Reed B.M. Plant Cryopreservation: A Practical Guide. Springer; Berlin/Heidelberg, Germany: 2008. Cryopreservation—Practical considerations; pp. 3–13.

Sakai A., Engelmann F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. Cryo Lett. 2007;28:151–172. PubMed

Volk G.M., Shepherd A.N., Bonnart R. Successful Cryopreservation of Vitis Shoot Tips: Novel Pre-treatment Combinations Applied to Nine Species. Cryo Lett. 2019;39:322–330. PubMed

Benelli C., Carvalho L., EL Merzougui S., Petruccelli R. Two Advanced Cryogenic Procedures for Improving Stevia rebaudiana (Bertoni) Cryopreservation. Plants. 2021;10:277. doi: 10.3390/plants10020277. PubMed DOI PMC

O’Brien C., Hiti-Bandaralage J.C.A., Folgado R., Lahmeyer S., Hayward A., Folsom J., Mitter N. First report on cryopreservation of mature shoot tips of two avocado (Persea americana Mill.) rootstocks. Plant Cell Tissue Organ Cult. (PCTOC) 2021;144:103–113. doi: 10.1007/s11240-020-01861-y. DOI

Sharma S., Parasher K., Mukherjee P., Sharma Y.P. Cryopreservation of a Threatened Medicinal Plant, Valeriana Jatamansi Jones, Using Vitrification and Assessment of Biosynthetic Stability of Regenerants. Cryo Lett. 2021;42:300–308. PubMed

Fahy G.M., Macfarlane D.R., Angell C.A., Meryman H.T. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21:407–426. doi: 10.1016/0011-2240(84)90079-8. PubMed DOI

Kim H.-H., Lee J.-K., Yoon J.-W., Ji J.-J., Nam S.-S., Hwang H.-S., Cho E.-G., Engelmann F. Cryopreservation of garlic bulbil primordia by the droplet-vitrification procedure. Cryo Lett. 2006;27:143–153. PubMed

Kartha K., Leung N., Mroginski L. In vitro Growth Responses and Plant Regeneration from Cryopreserved Meristems of Cassava (Manihot esculenta Crantz) Zeitschrift für Pflanzenphysiologie. 1982;107:133–140. doi: 10.1016/S0044-328X(82)80099-8. DOI

Ellis D., Skogerboe D., Andre C., Hellier B., Volk G. Implementation of garlic cryopreservation techniques in the national plant germplasm system. Cryo Lett. 2006;27:99–106. PubMed

Tanaka D., Niino T., Isuzugawa K., Hikage T., Uemura M. Cryopreservation of shoot apices of in-vitro grown gentian plants: Comparison of vitrification and encapsulation-vitrification protocols. Cryo Lett. 2004;25:167–176. PubMed

Kaczmarczyk A., Shvachko N., Lupysheva Y., Hajirezaei M.-R., Keller E.R.J. Influence of alternating temperature preculture on cryopreservation results for potato shoot tips. Plant Cell Rep. 2008;27:1551–1558. doi: 10.1007/s00299-008-0574-1. PubMed DOI PMC

Schaefer-Menuhr A., Schumacher H.-M., Mix-Wagner G. Long-term storage of old potato varieties by cryopreservation of meristems in liquid nitrogen. Landbauforsch. Voelkenrode. 1994;44:301–313.

Martinez-Montero M.E., Martinez J., Engelmann F. Cryopreservation of sugarcane somatic embryos. Cryo Lett. 2008;29:229–242. PubMed

Senula A.D., Keller E.R.J., Sanduijav T., Yohannes T. Cryopreservation of cold-acclimated mint (Mentha spp.) shoot tips using a simple vitrification protocol. Cryo Lett. 2007;28:1–12. PubMed

Bettoni J.C., Marković Z., Bi W., Volk G.M., Matsumoto T., Wang Q.-C. Grapevine Shoot Tip Cryopreservation and Cryotherapy: Secure Storage of Disease-Free Plants. Plants. 2021;10:2190. doi: 10.3390/plants10102190. PubMed DOI PMC

Panis B., Nagel M., Houwe I.V.D. Challenges and Prospects for the Conservation of Crop Genetic Resources in Field Genebanks, in In Vitro Collections and/or in Liquid Nitrogen. Plants. 2020;9:1634. doi: 10.3390/plants9121634. PubMed DOI PMC

Gámez-Pastrana R., González-Arnao M.T., Martínez-Ocampo Y., Engelmann F. Thermal events in calcium alginate beads during encapsulation dehydration and encapsulation-vitrification protocols. Acta Hortic. 2011;908:47–54. doi: 10.17660/ActaHortic.2011.908.3. DOI

Funnekotter B., Mancera R.L., Bunn E. Advances in understanding the fundamental aspects required for successful cryopreservation of Australian flora. Vitr. Cell. Dev. Biol. Anim. 2017;53:289–298. doi: 10.1007/s11627-017-9850-5. DOI

Funnekotter B., Bunn E., Mancera R.L. Cryo-mesh: A simple alternative cryopreservation protocol. Cryo Lett. 2017;38:155–159. PubMed

Nadarajan J., Pritchard H.W. Biophysical Characteristics of Successful Oilseed Embryo Cryoprotection and Cryopreservation Using Vacuum Infiltration Vitrification: An Innovation in Plant Cell Preservation. PLoS ONE. 2014;9:e96169. doi: 10.1371/journal.pone.0096169. PubMed DOI PMC

Bruňáková K., Zámečník J., Urbanová M., Čellárová E. Dehydration status of ABA-treated and cold-acclimated Hypericum perforatum L. shoot tips subjected to cryopreservation. Thermochim. Acta. 2011;525:62–70. doi: 10.1016/j.tca.2011.07.022. DOI

Šesták J., Zamecnik J. Can clustering of liquid water and thermal analysis be of assistance for better understanding of biological germplasm exposed to ultra-low temperatures. J. Therm. Anal. Calorim. 2007;88:411–416. doi: 10.1007/s10973-006-8232-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...