Alginate Hydrogel with Pluronic F-68 Enhances Cryopreservation Efficiency in Peach Germplasm

. 2025 Nov 25 ; 11 (12) : . [epub] 20251125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41441104

Grantová podpora
MZE-RO0423 Ministry of Agriculture of the Czech Republic

The long-term conservation of Prunus persica (peach), a crop of significant agronomic and genetic value, remains challenging due to its recalcitrance to conventional cryopreservation methods. Low tolerance to dehydration and cryoprotectant toxicity often results in poor survival and regrowth, thereby limiting the reliability of germplasm storage. This study evaluated whether combining an alginate hydrogel matrix with Pluronic F-68 improves vitrification efficiency and post-thaw regeneration of peach shoot tips by enhancing dehydration dynamics and reducing cryo-injury. Shoot tips were immobilized in thin sodium alginate layers on aluminum foil strips, with the hydrogel providing mechanical stabilization and moderating water loss during exposure to PVS3 and subsequent liquid nitrogen immersion. To further mitigate cryoinjury, Pluronic F-68, a non-ionic surfactant with membrane-stabilizing properties, was incorporated into the system. Differential scanning calorimetry revealed that the hydrogel reached complete vitrification after 120 min in PVS3, whereas encapsulated shoot tips required 150 min for full suppression of crystallization. The optimized system achieved 71% post-cryopreservation survival and 40% regrowth, compared with 25% and 9% in non-encapsulated controls. PF-68 accelerated vitrification kinetics, lowered crystallization enthalpies, and improved post-thaw viability. These findings demonstrate that engineered hydrogel-surfactant matrices can stabilize the microenvironment during vitrification and offer a promising approach for the long-term cryopreservation of peach germplasm.

Zobrazit více v PubMed

Salgotra R.K., Chauhan B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes. 2023;14:174. doi: 10.3390/genes14010174. PubMed DOI PMC

Kang P., Kim S.J., Park H.J., Han S.J., Kim I.-C., Lee H., Yim J.H. Trends and Challenges in Plant Cryopreservation Research: A Meta-Analysis of Cryoprotective Agent Development and Research Focus. Plants. 2025;14:447. doi: 10.3390/plants14030447. PubMed DOI PMC

El Merzougui S., Benelli C., El Boullani R., Serghini M.A. The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges. Plants. 2023;12:2143. doi: 10.3390/plants12112143. PubMed DOI PMC

Mas-Gómez J., Cantín C.M., Moreno M.Á., Martínez-García P.J. Genetic Diversity and Genome-Wide Association Study of Morphological and Quality Traits in Peach Using Two Spanish Peach Germplasm Collections. Front. Plant Sci. 2022;13:854770. doi: 10.3389/fpls.2022.854770. PubMed DOI PMC

Li Y., Wang L. Genetic Resources, Breeding Programs in China, and Gene Mining of Peach: A Review. Hortic. Plant J. 2020;6:205–215. doi: 10.1016/j.hpj.2020.06.001. DOI

Tanner J.D., Chen K.Y., Jenderek M.M., Wallner S.J., Minas I.S. Determining the Effect of Pretreatments on Freeze Resistance and Survival of Cryopreserved Temperate Fruit Tree Dormant Buds. Cryobiology. 2021;101:87–94. doi: 10.1016/j.cryobiol.2021.05.003. PubMed DOI

Damiano C., Sgueglia A., Arias M., Frattarelli A., Condello E., Caboni E. Cryopreservation of peach shoot tips by encapsulation dehydration. Acta Hortic. 2011;918:121–124. doi: 10.17660/ActaHortic.2011.918.13. DOI

Verzhuk V., Eremin V., Gasanova T., Eremina O., Novikova L.Y., Filipenko G., Sitnikov M., Pavlov A. Post-Cryogenic Viability of Peach (Persica vulgaris Mill.) Dormant Buds from the VIR Genetic Collection. Agriculture. 2023;13:111. doi: 10.3390/agriculture13010111. DOI

Normah M.N., Sulong N., Reed B.M. Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology. 2019;87:1–14. doi: 10.1016/j.cryobiol.2019.01.008. PubMed DOI

Vozovyk K., Bobrova O., Prystalov A., Shevchenko N., Kuleshova L. Amorphous state stability of plant vitrification solutions. Biologija. 2020;66:47–53. doi: 10.6001/biologija.v66i1.4190. DOI

Zamecnik J., Faltus M., Bilavcik A. Vitrification Solutions for Plant Cryopreservation: Modification and Properties. Plants. 2021;10:2623. doi: 10.3390/plants10122623. PubMed DOI PMC

Bryant S.J., Elbourne A., Greaves T.L., Bryant G. Applying Soft Matter Techniques to Solve Challenges in Cryopreservation. Front. Soft Matter. 2023;3:1219497. doi: 10.3389/frsfm.2023.1219497. DOI

Awan M., Buriak I., Fleck R., Fuller B., Goltsev A., Kerby J., Lowdell M., Mericka P., Petrenko A., Petrenko Y., et al. Dimethyl Sulfoxide: A Central Player since the Dawn of Cryobiology, Is Efficacy Balanced by Toxicity? Regen. Med. 2020;15:1463–1491. doi: 10.2217/rme-2019-0145. PubMed DOI

Niebergall-Roth E., Kluth M.A. Dimethyl Sulfoxide in Cryopreserved Mesenchymal Stromal Cell Therapy Products: Is There a Safety Risk to Patients? J. Transl. Med. 2025;23:932. doi: 10.1186/s12967-025-06807-6. PubMed DOI PMC

Nausch H., Buyel J.F. Cryopreservation of Plant Cell Cultures—Diverse Practices and Protocols. New Biotechnol. 2021;62:86–95. doi: 10.1016/j.nbt.2021.02.002. PubMed DOI

Chan C.C., Hsiao Y.Y. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J. Pers. Med. 2021;11:286. doi: 10.3390/jpm11040286. PubMed DOI PMC

Valencia-Quintana R., Gómez-Arroyo S., Waliszewski S.M., Sánchez-Alarcón J., Gómez-Olivares J.L., Flores-Márquez A.R., Cortés-Eslava J., Villalobos-Pietrini R. Evaluation of the Genotoxic Potential of Dimethyl Sulfoxide (DMSO) in Meristematic Cells of the Root of Vicia faba. Toxicol. Environ. Health Sci. 2012;4:154–160. doi: 10.1007/s13530-012-0130-9. DOI

Nagel M., Pence V., Ballesteros D., Lambardi M., Popova E., Panis B. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. Annu. Rev. Plant Biol. 2024;75:797–824. doi: 10.1146/annurev-arplant-070623-103551. PubMed DOI

Roque-Borda C.A., Kulus D., Vacaro de Souza A., Kaviani B., Vicente E.F. Cryopreservation of Agronomic Plant Germplasm Using Vitrification-Based Methods: An Overview of Selected Case Studies. Int. J. Mol. Sci. 2021;22:6157. doi: 10.3390/ijms22116157. PubMed DOI PMC

Zhang C., Zhou Y., Zhang L., Wu L., Chen Y., Xie D., Chen W. Hydrogel Cryopreservation System: An Effective Method for Cell Storage. Int. J. Mol. Sci. 2018;19:3330. doi: 10.3390/ijms19113330. PubMed DOI PMC

Tan J., Jia S., Xu Q., Lin C., Cao Y., Shen J., Han S., Li Z., Zhou X. Hydrogel encapsulation facilitates a low-concentration cryoprotectant for cryopreservation of mouse testicular tissue. Colloids Surf. B Biointerfaces. 2024;242:114096. doi: 10.1016/j.colsurfb.2024.114096. PubMed DOI

Memon K., Zhang B., Fareed M.A., Zhao G. Encapsulation for Efficient Cryopreservation. Frigid Zone Med. 2025;5:73–80. doi: 10.1515/fzm-2025-0008. DOI

Guerreiro B.M., Dionísio M.M., Lima J.C., Silva J.C., Freitas F. Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservation. Biomacromolecules. 2024;25:3384–3397. doi: 10.1021/acs.biomac.4c00040. PubMed DOI

Ganguly S., Das P., Itzhaki E., Hadad E., Gedanken A., Margel S. Microwave-Synthesized Polysaccharide-Derived Carbon Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS Appl. Mater. Interfaces. 2020;12:51940–51951. doi: 10.1021/acsami.0c14527. PubMed DOI

Liao J., Ding C., Shi J., Jiang L., Wang Q., Wang L., Wang R. A Sodium Alginate Gel Bead Adsorbent Doping with Amidoxime-Modified Hydroxyapatite for the Efficient Adsorption of Uranium. Int. J. Biol. Macromol. 2024;266:131112. doi: 10.1016/j.ijbiomac.2024.131112. PubMed DOI

He S., Liang W., Tang Y., Zhang J., Wang R., Quan L., Ouyang Y., Huang R., Dou R., Wu D. Robust super-structured porous hydrogel enables bioadaptive repair of dynamic soft tissue. Nat. Commun. 2025;16:3198. doi: 10.1038/s41467-025-58062-4. PubMed DOI PMC

Jeang W.J., Bose S., Zhao Y., Wong B.M., Yang J., Jiang A.L., Langer R., Anderson D.G. Silicone Cryogel Skeletons Enhance the Survival and Mechanical Integrity of Hydrogel-encapsulated Cell Therapies. Sci. Adv. 2024;10:eadk5949. doi: 10.1126/sciadv.adk5949. PubMed DOI PMC

Ziani K., Saenz-del-Burgo L., Pedraz J.L., Ciriza J. Advances in Cryopreservation Strategies for 3D Biofabricated Constructs: From Hydrogels to Bioprinted Tissues. Int. J. Mol. Sci. 2025;26:6908. doi: 10.3390/ijms26146908. PubMed DOI PMC

Bakhshpour M., Idil N., Perçin I., Denizli A. Biomedical Applications of Polymeric Cryogels. Appl. Sci. 2019;9:553. doi: 10.3390/app9030553. DOI

Anthony P., Jelodar N.B., Lowe K.C., Power J.B., Davey M.R. Pluronic F-68 Increases the Post-thaw Growth of Cryopreserved Plant Cells. Cryobiology. 1996;33:508–514. doi: 10.1006/cryo.1996.0054. DOI

Doğan A., Yalvaç M.E., Yılmaz A., Rizvanov A., Şahin F. Effect of F68 on Cryopreservation of Mesenchymal Stem Cells Derived from Human Tooth Germ. Appl. Biochem. Biotechnol. 2013;171:1819–1831. doi: 10.1007/s12010-013-0472-z. PubMed DOI

Lowe K.C., Anthony P., Davey M.R., Power J.B. Beneficial Effects of Pluronic F-68 and Artificial Oxygen Carriers on the Post-thaw Recovery of Cryopreserved Plant Cells. Artif. Cells Blood Substit. Biotechnol. 2021;29:297–316. doi: 10.1081/BIO-100104232. PubMed DOI

Mehdipour M., Daghigh K.H., Martínez-Pastor F. Poloxamer 188 exerts a cryoprotective effect on rooster sperm and allows decreasing glycerol concentration in the freezing extender. Poult Sci. 2020;99:6212–6220. doi: 10.1016/j.psj.2020.08.041. PubMed DOI PMC

Cartwright A., Zargaran M., Wankhade A., Jacobson A., McLean J.E., Anderson A.J., Britt D.W. Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate. Agrochemicals. 2025;4:12. doi: 10.3390/agrochemicals4030012. DOI

De-Xian Kok A., Ong-Abdullah J., Shen-Yee Kong A., Sekeli R., Wee C.-Y., Lim S.-H.E., Cheng W.-H., Loh J.-Y., Lai K.-S. Pluronic F-68 Improves Root Growth of Recalcitrant Rice Cultivar Through Enhanced Auxin Biosynthesis. Trop. Life Sci. Res. 2025;36:253–264. doi: 10.21315/tlsr2025.36.2.12. PubMed DOI PMC

De-Xian K.A., Fatihah M.Y.N., Rogayah S., Chien-Yeong W., Udie L.D., Janna O.-A., Kok-Song L. Pluronic F-68 Improves Callus Proliferation of Recalcitrant Rice Cultivar via Enhanced Carbon and Nitrogen Metabolism and Nutrients Uptake. Front. Plant Sci. 2021;12:2021. doi: 10.3389/fpls.2021.667434. PubMed DOI PMC

Streeter A.R., Cartwright A., Zargaran M., Wankhade A., Anderson A.J., Britt D.W. Adjuvant Pluronic F68 Is Compatible with a Plant Root-Colonizing Probiotic, Pseudomonas chlororaphis O6. Agrochemicals. 2024;3:1–11. doi: 10.3390/agrochemicals3010001. DOI

Rantala S., Kaseva J., Nukari A., Laamanen J., Tuohimetsä S., Karhu S., Veteläinen M., Häggman H. Droplet vitrification technique for cryopreservation of a large diversity of blackcurrant (Ribes nigrum L.) cultivars. Plant Cell Tiss. Organ Cult. 2021;144:79–90. doi: 10.1007/s11240-020-01841-2. DOI

Kreckel H.D., Samuels F.M.D., Bonnart R., Volk G.M., Stich D.G., Levinger N.E. Tracking Permeation of Dimethyl Sulfoxide (DMSO) in Mentha × piperita Shoot Tips Using Coherent Raman Microscopy. Plants. 2023;12:2247. doi: 10.3390/plants12122247. PubMed DOI PMC

Kumari N., Gupta M.K., Singh R.K. Open encapsulation-vitrification for cryopreservation of algae. Cryobiology. 2016;73:232–239. doi: 10.1016/j.cryobiol.2016.07.005. PubMed DOI

Kangas J.R., Hogan C.J., Bischof J.C. Eliminating osmotic stress during cryoprotectant loading: A mathematical investigation of solute–solvent transport. Cryobiology. 2025;118:105198. doi: 10.1016/j.cryobiol.2025.105198. PubMed DOI

Zhang D., Chen H., Zhang Y., Yang J., Chen Q., Wu J., Liu Y., Zhao C., Tang Y., Zheng J. Antifreezing hydrogels: From mechanisms and strategies to applications. Chem. Soc. Rev. 2025;54:5292–5341. doi: 10.1039/D4CS00718B. PubMed DOI

Huang M., Hu M., Cai G., Wei H., Huang S., Zheng E., Wu Z. Overcoming ice: Cutting-edge materials and advanced strategies for effective cryopreservation of biosample. J. Nanobiotechnol. 2025;23:187. doi: 10.1186/s12951-025-03265-6. PubMed DOI PMC

Martínez D., Revilla M.Á., Espina A., García J.R. Differential Scanning Calorimetry Applied to the Storage at Ultra Low Temperatures of Olive and Hop in vitro Grown Shoot-tips. Thermochim. Acta. 2000;349:147–151. doi: 10.1016/S0040-6031(99)00508-0. DOI

Li M., Wei X., You J., Feng J., Liu X., Zhou J., Wu Q., Zhang Y., Zhou Y. Cryogels with Controllable Physico-Chemical Properties as Advanced Delivery Systems for Biomedical Applications. Mater. Today Bio. 2025;32:101815. doi: 10.1016/j.mtbio.2025.101815. PubMed DOI PMC

Jain E., Zhang K., Mishra Tiwari R. Properties and Characterization of Cryogels: Structural, Mechanical, and Functional Insights. ACS Omega. 2025;10:36771–36787. doi: 10.1021/acsomega.5c02863. PubMed DOI PMC

Quoirin M., Lepoivre P.H. Improved media for in vitro culture of Prunus sp. Symposium on Tissue Culture for Horticultural Purposes. Acta Hortic. 1997;78:437–442. doi: 10.17660/ActaHortic.1977.78.54. DOI

Tharmalingam T., Goudar C.T. Evaluating the Impact of High Pluronic® F-68 Concentrations on Antibody-Producing CHO Cell Lines. Biotechnol. Bioeng. 2015;112:832–837. doi: 10.1002/bit.25491. PubMed DOI

Volk G.M., Bonnart R. Prunus Shoot Tip Cryopreservation. In: Volk G.M., editor. Training in Plant Genetic Resources: Cryopreservation of Clonal Propagules. Fort Colorado State University; Collins, CO, USA: 2020. [(accessed on 25 September 2025)]. Available online: https://colostate.pressbooks.pub/clonalcryopreservation/chapter/prunus-cryopreservation/

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...