Key parameter optimization using multivariable linear model for the evaluation of the in vitro estrogenic activity assay in T47D cell lines (CXCL-test)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-14318Y
Czech Science Foundation
PubMed
34964157
DOI
10.1002/jat.4280
Knihovny.cz E-zdroje
- Klíčová slova
- T47D, cytokine CXCL12/SDF1, estrogenic activity cellular assay, material variability, multivariate linear model (MLM),
- MeSH
- biotest MeSH
- buněčné linie MeSH
- chemické látky znečišťující vodu * MeSH
- estrogeny * toxicita MeSH
- estron MeSH
- lineární modely MeSH
- monitorování životního prostředí metody MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- estrogeny * MeSH
- estron MeSH
In comparison with analytical tools, bioassays provide higher sensitivity and more complex evaluation of environmental samples and are indispensable tools for monitoring increasing in anthropogenic pollution. Nevertheless, the disadvantage in cellular assays stems from the material variability used within the assays, and an interlaboratory adaptation does not usually lead to satisfactory test sensitivities. The aim of this study was to evaluate the influence of material variability on CXCL12 secretion by T47D cells, the outcome of the CXCL-test (estrogenic activity assay). For this purpose, the cell line sources, sera suppliers, experimental and seeding media, and the amount of cell/well were tested. The multivariable linear model (MLM), employed as an innovative approach in this field for parameter evaluation, identified that all the tested parameters had significant effects. Knowledge of the contributions of each parameter has permitted step-by-step optimization. The most beneficial approach was seeding 20,000 cells/well directly in treatment medium and using DMEM for the treatment. Great differences in both basal and maximal cytokine secretions among the three tested cell lines and different impacts of each serum were also observed. Altogether, both these biologically based and highly variable inputs were additionally assessed by MLM and a subsequent two-step evaluation, which revealed a lower variability and satisfactory reproducibility of the test. This analysis showed that not only parameter and procedure optimization but also the evaluation methodology must be considered from the perspective of interlaboratory method adaptation. This overall methodology could be applied to all bioanalytical methods for fast multiparameter and accurate analysis.
Institute for Environmental Studies Faculty of Science Charles University Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Toxicology of Contaminant Unit Fougères Laboratory ANSES Fougères France
Zobrazit více v PubMed
Adam, A. H. B., de Haan, L. H. J., Estruch, I. M., Hooiveld, G., Louisse, J., & Rietjens, I. (2020). Estrogen receptor alpha (ER alpha)-mediated coregulator binding and gene expression discriminates the toxic ER alpha agonist diethylstilbestrol (DES) from the endogenous ER alpha agonist 17 beta-estradiol (E2). Cell Biology and Toxicology, 36(5), 417-435. https://doi.org/10.1007/s10565-020-09516-6
Boudot, A., Kerdivel, G., Habauzit, D., Eeckhoute, J., Le Dily, F., Flouriot, G., Samson, M., & Pakdel, F. (2011). Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells. PLoS ONE, 6(6), 20898. https://doi.org/10.1371/journal.pone.0020898
Conley, J. M., Evans, N., Mash, H., Rosenblum, L., Schenck, K., Glassmeyer, S., Furlong, E. T., Kolpin, D. W., & Wilson, V. S. (2017). Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 US drinking water treatment plants. Science of the Total Environment, 579, 1610-1617. https://doi.org/10.1016/j.scitotenv.2016.02.093
deCastro, B. R., & Neuberg, D. (2007). The statistical performance of an MCF-7 cell culture assay evaluated using generalized linear mixed models and a score test. Statistics in Medicine, 26(12), 2501-2518. https://doi.org/10.1002/sim.2719
Decision 2018/840/EU. (2018). Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. Official Journal of the European Union, 141, 9-12.
Directive 2008/105/EC. (2008). Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union, 348, 84-97.
Ezechias, M., & Cajthaml, T. (2016). Novel full logistic model for estimation of the estrogenic activity of chemical mixtures. Toxicology, 359, 58-70. https://doi.org/10.1016/j.tox.2016.06.017
Ezechias, M., Janochova, J., Filipova, A., Kresinova, Z., & Cajthaml, T. (2016). Widely used pharmaceuticals present in the environment revealed as in vitro antagonists for human estrogen and androgen receptors. Chemosphere, 152, 284-291. https://doi.org/10.1016/j.chemosphere.2016.02.067
Fernandez, P., Burghardt, R., Smith, R., Nodland, K., & Safe, S. (1994). High passage T47D human breast cancer cells: Altered endocrine and 2,3,7,8-tetrachlorodibenzo-p-dioxin responsiveness. European Journal of Pharmacology: Environmental Toxicology and Pharmacology, 270(1), 53-65. https://doi.org/10.1016/0926-6917(94)90080-9
Graham, M. L., Dalquist, K. E., & Horwitz, K. B. (1989). Simultaneous measurement of progesterone receptors and DNA indices by flow cytometry: Analysis of breast cancer cell mixtures and genetic instability of the T47D line. Cancer Research, 49(14), 3943-3949.
Graham, M. L., Krett, N. L., Miller, L. A., Leslie, K. K., Gordon, D. F., Wood, W. M., Horwitz, & K. B. (1990). T47DCO cells, genetically unstable and containing estrogen receptor mutations, are a model for the progression of breast cancers to hormone resistance. Cancer Research, 50(19), 6208-6217.
Habauzit, D., Boudot, A., Kerdivel, G., Flouriot, G., & Pakdel, F. (2010). Development and validation of a test for environmental estrogens: Checking xeno-estrogen activity by CXCL12 secretion in breast cancer cell lines (CXCL-test). Environmental Toxicology, 25(5), 495-503. https://doi.org/10.1002/tox.20594
Habauzit, D., Martin, C., Kerdivel, G., & Pakdel, F. (2017). Rapid assessment of estrogenic compounds by CXCL-test illustrated by the screening of the UV-filter derivative benzophenones. Chemosphere, 173, 253-260. https://doi.org/10.1016/j.chemosphere.2017.01.037
Jackson, L. M., Felgenhauer, B. E., & Klerks, P. L. (2019). Feminization, altered gonadal development, and liver damage in least killifish (Heterandria formosa) exposed to sublethal concentrations of 17 alpha-ethinylestradiol. Ecotoxicology and Environmental Safety, 170, 331-337. https://doi.org/10.1016/j.ecoenv.2018.11.094
Karthikeyan, B. S., Ravichandran, J., Aparna, S. R., & Samal, A. (2021). DEDuCT 2.0: An updated knowledgebase and an exploration of the current regulations and guidelines from the perspective of endocrine disrupting chemicals. Chemosphere, 267, 128898. https://doi.org/10.1016/j.chemosphere.2020.128898
Kavlock, R. J., Daston, G. P., DeRosa, C., FennerCrisp, P., Gray, L. E., Kaattari, S., Lucier, G., Luster, M., Mac, M., Maczka, C., Miller, R., Moore, J., Rolland, R., Scott, G., Sheehan, D., Sinks, T., & Tilson, H. (1996). Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the US EPA-sponsored workshop. Environmental Health Perspectives, 104, 715-740. https://doi.org/10.1289/ehp.96104s4715
Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., Chaitcik, S., & Brenner, H. J. (1979). Establishment and characterization of a cell-line of human-breast carcinoma origin. European Journal of Cancer, 15(5), 659-670. https://doi.org/10.1016/0014-2964(79)90139-7
Kim, S. W., Kim, S. J., Langley, R. R., & Fidler, I. J. (2015). Modulation of the cancer cell transcriptome by culture media formulations and cell density. International Journal of Oncology, 46(5), 2067-2075. https://doi.org/10.3892/ijo.2015.2930
Kleensang, A., Vantangoli, M. M., Odwin-DaCosta, S., Andersen, M. E., Boekelheide, K., Bouhifd, M., Fornace, A. J. Jr., Li, H.-H., Livi, C. B., Madnick, S., Maertens, A., Rosenberg, M., Yager, J. D., Zhao, L., & Hartung, T. (2016). Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Scientific Reports, 6(10), 28994. https://doi.org/10.1038/srep28994
Legler, J., van den Brink, C. E., Brouwer, A., Murk, A. J., van der Saag, P. T., Vethaak, A. D., & van der Burg, P. (1999). Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicological Sciences, 48(1), 55-66. https://doi.org/10.1093/toxsci/48.1.55
Leusch, F. D. L., Neale, P. A., Hebert, A., Scheurer, M., & Schriks, M. C. M. (2017). Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: Suitability for drinking and environmental waters. Environment International, 99, 120-130. https://doi.org/10.1016/j.envint.2016.12.014
Li, C. W., Wei, Y. L., Zhang, S. T., & Tan, W. L. (2020). Advanced methods to analyze steroid estrogens in environmental samples. Environmental Chemistry Letters, 18(3), 543-559. https://doi.org/10.1007/s10311-019-00961-2
Liu, Y., Mi, Y., Mueller, T., Kreibich, S., Williams, E. G., Van Drogen, A., Borel, C., Frank, M., Germain, P.-L., Bludau, I., Mehnert, M., Seifert, M., Emmenlauer, M., Sorg, I., Bezrukov, F., Sloan Bena, F., Zhou, H., Dehio, C., Testa, G., … Aebersold, R. (2019). Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nature Biotechnology, 37(3), 314-322. https://doi.org/10.1038/s41587-019-0037-y
Lorsch, J. R., Collins, F. S., & Lippincott-Schwartz, J. (2014). Fixing problems with cell lines. Science, 346(6216), 1452-1453. https://doi.org/10.1126/science.1259110
Michalikova, K., Linhartova, L., Ezechias, M., & Cajthaml, T. (2019). Assessment of agonistic and antagonistic properties of widely used oral care antimicrobial substances toward steroid estrogenic and androgenic receptors. Chemosphere, 217, 534-541. https://doi.org/10.1016/j.chemosphere.2018.11.006
Reddel, R. R., Alexander, I. E., Koga, M., Shine, J., & Sutherland, R. L. (1988). Genetic instability and the development of steroid hormone insensitivity in cultured T 47D human breast cancer cells. Cancer Research, 48(15), 4340-4347.
Resnicoff, M., Medrano, E. E., Podhajcer, O. L., Bravo, A. I., Bover, L., & Mordoh, J. (1987). Subpopulations of MCF7 cells separated by Percoll gradient centrifugation-A model to analyze the heterogeneity of human-breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 84(20), 7295-7299. https://doi.org/10.1073/pnas.84.20.7295
Sikora, M. J., Johnson, M. D., Lee, A. V., & Oesterreich, S. (2016). Endocrine response phenotypes are altered by charcoal-stripped serum variability. Endocrinology, 157(10), 3760-3766. https://doi.org/10.1210/en.2016-1297
Soto, A. M., Sonnenschein, C., Chung, K. L., Fernandez, M. F., Olea, N., & Serrano, F. O. (1995). The E-SCREEN assay as a tool to identify estrogens-An update on estrogenic environmental-pollutants. Environmental Health Perspectives, 103, 113-122. https://doi.org/10.2307/3432519
Tomkova, V., Sandoval-Acuna, C., Torrealba, N., & Truksa, J. (2019). Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells. Free Radical Biology and Medicine, 143, 510-521. https://doi.org/10.1016/j.freeradbiomed.2019.09.004
Tousova, Z., Oswald, P., Slobodnik, J., Blaha, L., Muz, M., Hu, M., Brack, W., Krauss, M., Di Paolo, C., Tarcai, Z., Seiler, T.-B., Hollert, H., Koprivica, S., Ahel, M., Schollée, J. E., Hollender, J., Suter, M. J.-F., Hidasi, A. O., Schirmer, K., … Schulze, T. (2017). European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Science of the Total Environment, 601, 1849-1868. https://doi.org/10.1016/j.scitotenv.2017.06.032
Valitalo, P., Perkola, N., Seiler, T. B., Sillanpaa, M., Kuckelkorn, J., Mikola, A., Hollert, H., & Schultz, E. (2016). Estrogenic activity in Finnish municipal wastewater effluents. Water Research, 88, 740-749. https://doi.org/10.1016/j.watres.2015.10.056
Wee, S. Y., & Aris, A. Z. (2017). Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environment International, 106, 207-233. https://doi.org/10.1016/j.envint.2017.05.004
Wilson, V. S., Bobseine, K., & Gray, L. E. (2004). Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicological Sciences, 81(1), 69-77. https://doi.org/10.1093/toxsci/kfh180
Wu, X. H., Lin, M. K., Li, Y. F., Zhao, X., & Yan, F. H. (2009). Effects of DMEM and RPMI 1640 on the biological behavior of dog periosteum-derived cells. Cytotechnology, 59(2), 103-111. https://doi.org/10.1007/s10616-009-9200-5
Zhao, S., Chang, S. L., Linderman, J. J., Feng, F. Y., & Luker, G. D. (2014). A comprehensive analysis of CXCL12 isoforms in breast cancer. Translational Oncology, 7(3), 429-438. https://doi.org/10.1016/j.tranon.2014.04.001
Zheng, X. Y., Baker, H., Hancock, W. S., Fawaz, F., McCaman, M., & Pungor, E. (2006). Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnology Progress, 22(5), 1294-1300. https://doi.org/10.1021/bp060121o