Characterization of the ganglioside recognition profile of Escherichia coli heat-labile enterotoxin LT-IIc
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R21 CA208475
NCI NIH HHS - United States
PubMed
34972864
PubMed Central
PMC9022906
DOI
10.1093/glycob/cwab133
PII: 6482028
Knihovny.cz E-resources
- Keywords
- B-subunit, b-subunit crystal structure, carbohydrate binding, ganglioside recognition, heat-labile enterotoxin LT-IIc,
- MeSH
- Bacterial Toxins * chemistry metabolism MeSH
- Cholera Toxin metabolism MeSH
- Enterotoxins chemistry metabolism MeSH
- Escherichia coli genetics metabolism MeSH
- G(M1) Ganglioside metabolism MeSH
- Gangliosides metabolism MeSH
- Escherichia coli Proteins * metabolism MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Bacterial Toxins * MeSH
- Cholera Toxin MeSH
- Enterotoxins MeSH
- G(M1) Ganglioside MeSH
- Gangliosides MeSH
- Escherichia coli Proteins * MeSH
The heat-labile enterotoxins of Escherichia coli and cholera toxin of Vibrio cholerae are related in structure and function. Each of these oligomeric toxins is comprised of one A polypeptide and five B polypeptides. The B-subunits bind to gangliosides, which are followed by uptake into the intoxicated cell and activation of the host's adenylate cyclase by the A-subunits. There are two antigenically distinct groups of these toxins. Group I includes cholera toxin and type I heat-labile enterotoxin of E. coli; group II contains the type II heat-labile enterotoxins of E. coli. Three variants of type II toxins, designated LT-IIa, LT-IIb and LT-IIc have been described. Earlier studies revealed the crystalline structure of LT-IIb. Herein the carbohydrate binding specificity of LT-IIc B-subunits was investigated by glycosphingolipid binding studies on thin-layer chromatograms and in microtiter wells. Binding studies using a large variety of glycosphingolipids showed that LT-IIc binds with high affinity to gangliosides with a terminal Neu5Acα3Gal or Neu5Gcα3Gal, e.g. the gangliosides GM3, GD1a and Neu5Acα3-/Neu5Gcα3--neolactotetraosylceramide and Neu5Acα3-/Neu5Gcα3-neolactohexaosylceramide. The crystal structure of LT-IIc B-subunits alone and with bound LSTd/sialyl-lacto-N-neotetraose d pentasaccharide uncovered the molecular basis of the ganglioside recognition. These studies revealed common and unique functional structures of the type II family of heat-labile enterotoxins.
See more in PubMed
Aguirre J, Iglesias-Fernandez J, Rovira C, Davies GJ, Wilson KS, Cowtan KD. 2015. Privateer: Software for the conformational validation of carbohydrate structures. Nat Struct Mol Biol. 22:833–834. PubMed
van den Akker F, Sarfaty S, Twiddy EM, Connell TD, Holmes RK, Hol WG. 1996. Crystal structure of a new heat-labile enterotoxin LT-IIb. Structure. 4:665–678. PubMed
Ångström J, Bäckström M, Berntsson A, Karlsson N, Holmgren J, Karlsson K-A, Teneberg S. 2000. Novel carbohydrate binding site recognizing blood group a and B determinants in a cholera toxin/heat-labile enterotoxin B-subunit hybrid. J Biol Chem. 275:3231–3238. PubMed
Barone A, Benktander J, Ångström J, Aspegren A, Björquist P, Teneberg S, Breimer ME. 2013. Structural complexity of non-acid glycosphingolipids in human embryonic stem cells grown under feeder-free conditions. J Biol Chem. 288:10035–10050. PubMed PMC
Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC. 2010. Structure, biological functions and applications of the AB5 toxins. Trends Biochem. 35:411–418. PubMed PMC
Berenson CS, Nawar HF, Kruzel RL, Mandell LM, Connell TD. 2013. Ganglioside-binding specificities of E. coli enterotoxin LT-IIc: Importance of long-chain fatty acyl ceramide. Glycobiology. 23:23–31. PubMed PMC
Cervin J, Wands AM, Casselbrant A, Wu H, Krishnamurthy S, Cvjetkovic A, Estelius J, Coddens A, Diswall M, Ångström J et al. 2009. Recognition of blood group ABH type 1 determinants by the FedF adhesin of F18-fimbriated Escherichia coli. J Biol Chem. 284:9713–9726. PubMed PMC
Dedic B, Sethi A, Wallom KL, Riise R, Bäckström M, Wallenius V, Platt FM, Lebens M, Teneberg S, Fändriks L et al. 2015. GM1 ganglioside-independent intoxication by cholera toxin. PLoS Pathog. 14:e1006862. PubMed PMC
Emsley P, Lohkamp B. 2010. Features and development of coot. Acta Crystallogr Sect D Biol Crystallogr. 66:486–501. PubMed PMC
Fan E, Merritt EA, Verlinde CL, Hol WG. 2000. AB(5) toxins: Structures and inhibitor design. Curr Opin Struct Biol. 10:680–686. PubMed
Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V. 1988. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun. 56:1748–1753. PubMed PMC
Gascon J. 2006. Epidemiology, etiology and pathophysiology of traveler's diarrhea. Digestion. 73:102–108. PubMed
Hajishengallis G, Connell TD. 2013. Type II heat-labile enterotoxins: Structure, function and immunomodulatory properties. Vet Immunol Immunopathol. 152:68–77. PubMed PMC
Hauttecoeur B, Sonnino S, Ghidoni R. 1985. Characterization of two molecular species GD3 ganglioside from bovine buttermilk. Biochim Biophys Acta. 833:303–307. PubMed
Holmgren J. 1973. Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholera toxoid. Infect Immun. 8:851–859. PubMed PMC
Hu JC, Mathias-Santos C, Greene CJ, King-Lyons ND, Rodrigues JF, Hajishengallis G, Ferreira LC, Connell TD. 2014. Intradermal administration of the type II heat-labile enterotoxins LT-IIb and LT-IIc of enterotoxigenic Escherichia coli enhances humoral and CD8+ T cell immunity to a co-administered antigen. PLoS One. 9:e113978. PubMed PMC
Iwamori M, Nagai Y. 1981. Ganglioside composition of rabbit thymus. Biochim Biophys Acta. 665:205–213. PubMed
Jobling MG, Holmes RK. 2012. Type II heat-labile enterotoxins from 50 diverse Escherichia coli isolates belong almost exclusively to the LT-IIc family and may be prophage encoded. PLoS One. 7:29898. PubMed PMC
Kabsch W. 2010. XDS. Acta Crystallogr. 66:125–132. PubMed PMC
Karlsson KA. 1987. Preparation of total non-acid glycolipids for overlay analysis of receptors for bacteria and viruses and for other studies. Methods Enzymol. 138:212–220. PubMed
Kiguchi K, Henning-Chubb CB, Huberman E. 1990. Glycosphingolipid patterns of peripheral blood lymphocytes, monocytes, and granulocytes are cell specific. J Biochem. 107:8–14. PubMed
Kotloff KL, Platts-Mills JA, Nasrin D, Roose A, Blackwelder WC, Levine MM. 2017. Global burden of diarrheal diseases among children in developing countries: Incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine. 35:6783–6789. PubMed
Lamberti LM, Bourgeois AL, Fischer Walker CL, Black RE, Sack D. 2014. Estimating diarrheal illness and deaths attributable to Shigellae and enterotoxigenic Escherichia coli among older children, adolescents, and adults in South Asia and Africa. PLoS Negl Trop Dis. 8:e2705. PubMed PMC
Langer GG, Cohen SX, Lamzin VS, Perrakis A. 2008. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc. 3:1171–1179. PubMed PMC
Lanne B, Uggla L, Stenhagen G, Karlsson KA. 1995. Enhanced binding of enterotoxigenic Escherichia coli K99 to amide derivatives of the receptor ganglioside NeuGc-GM3. Biochemistry. 34:1845–1850. PubMed
Legrand P. 2017. XDSME: XDS made easier. GitHub Repos. 10.5281/zenodo.837885. DOI
Lowe JB, Marth JD. 1999. Structures common to different types of glycans. In: Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J, editors. Essentials in glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory. p. 211–252.
Macher BA, Klock JC, Fukuda MN, Fukuda M. 1981. Isolation and structural characterization of human lymphocyte and neutrophil gangliosides. J Biol Chem. 256:1968–1974. PubMed
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr. 40:658–674. PubMed PMC
Murshudov GN, Nicholls RA. 2011. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr. 67:355–367. PubMed PMC
Nawar HF, Arce S, Russell MW, Connell TD. 2005. Mucosal adjuvant properties of mutant LT-IIa and LT-IIb enterotoxins that exhibit altered ganglioside-binding activities. 2005. Infect Immun. 73:1330–1342. PubMed PMC
Nawar HF, King-Lyons ND, Hu JC, Pasek RC, Connell TD. 2010. LT-IIc, a new member of the type II heat-labile enterotoxin family encoded by an Escherichia coli strain obtained from a nonmammalian host. Infect Immun. 78:4705–4713. PubMed PMC
Nawar HF, Greene CJ, Lee CH, Mandall LM, Hajishengallis G, Connell TD. 2011. LT-IIc, a new member of the type II heat-labile enterotoxin family, exhibits potent immunomodulatory properties that are different from those induced by LT-IIa or LT-IIb. Vaccine. 29:721–727. PubMed PMC
Orlandi PA, Crithley DR, Fishman PH. 1994. The heat-labile enterotoxin of Escherichia coli binds to polylactosaminoglycan-containing receptors in CaCo-2 human intestinal epithelial cells. Biochemistry. 33:12886–12895. PubMed
Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42:320–324. PubMed PMC
Strömberg N, Nyholm PG, Pascher I, Normark S. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc Natl Acad Sci U S A. 88:9340–9344. PubMed PMC
Stroud MR, Handa K, MEK MS, Ito K, Levery SB, Hakomori S-I, Reinhold BB, Reinhold VN. 1996a. Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 1. Separation of E-selectin binding from nonbinding gangliosides, and absence of sialosyl-Lex having tetraosyl to octaosyl core. Biochemistry. 35:758–769. PubMed
Stroud MR, Handa K, MEK MS, Ito K, Levery SB, Hakomori S-I, Reinhold BB, Reinhold VN. 1996b. Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 2. Characterization of E-selectin binding fractions, and structural requirements for physiological binding to E-selectin. Biochemistry. 35:770–778. PubMed
Svennerholm L, Fredman P. 1980. A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta. 617:97–109. PubMed
Teneberg S, Hirst TR, Ångström J, Karlsson K-A. 1994. Comparison of the glycolipid-binding specificities of cholera toxin and porcine Escherichia coli heat-labile enterotoxin: Identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine. Glycoconj J. 11:533–540. PubMed
Waldi D. 1962. Sprühreagentien für die dünnschicht-chromatographie. In: Stahl E, editor. Dünnschicht-Chromatographie. Berlin (Germany): Springer-Verlag. p. 496–515.
Wands AM, Fujita A, McCombs JE, Cervin J, Dedic B, Rodriguez AC, Nischan N, Bond MR, Mettlen M, Trudgian DC et al. 2015. Fucosylation and protein glycosylation create functional receptors for cholera toxin. elife. 4:e09545. PubMed PMC
Wands AM, Cervin J, Huang H, Zhang Y, Youn G, Brautigam CA, Matson Dzebo M, Björklund P, Wallenius V, Bright DK et al. 2018. Fucosylated molecules competitively interfere with cholera toxin binding to host cells. ACS Infect Dis. 4:758–770. PubMed PMC
Williams C, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deia LN, Verma V, Keedy DA, Hintze BJ, Chen VB et al. 2018. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27:293–315. PubMed PMC
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D Biol Crystallogr. 67:235–242. PubMed PMC
Yohe HC, Wallace PK, Berenson CS, Ye S, Reinhold BB, Reinhold VN. 2001. The major gangliosides of human peripheral blood monocytes/macrophages: Absence of ganglio series structures. Glycobiology. 11:831–841. PubMed
Zalem D, Ribeiro JP, Varrot A, Lebens M, Imberty A, Teneberg S. 2016. Chemical and structural characterization of the novel sialic acid binding site of Escherichia coli heat-labile enterotoxin LT-IIb. Biochem J. 473:3923–3936. PubMed