Small non-coding RNA profiling in breast cancer: plasma U6 snRNA, miR-451a and miR-548b-5p as novel diagnostic and prognostic biomarkers
Language English Country Netherlands Media print-electronic
Document type Journal Article
Grant support
Progres Q28/LF1
Charles University, Prague
Progres Q25/LF1
Charles University, Prague
RVO-VFN 64165
Ministry of Health of the Czech Republic
CZ-DRO FNBr 65269705
Ministry of Health of the Czech Republic
SSD2018\100022
Avast Foundation
1410002385
ČEPS, a.s.
1410002088
ČEPS, a.s.
1410002640
ČEPS, a.s.
PubMed
34993725
DOI
10.1007/s11033-021-07010-8
PII: 10.1007/s11033-021-07010-8
Knihovny.cz E-resources
- Keywords
- Biomarker, Breast cancer, U6 snRNA, miR-451a, miR-548b-5p, microRNA,
- MeSH
- Biomarkers MeSH
- Humans MeSH
- MicroRNAs * metabolism MeSH
- Biomarkers, Tumor genetics MeSH
- Breast Neoplasms * diagnosis genetics pathology MeSH
- Prognosis MeSH
- Prospective Studies MeSH
- Gene Expression Regulation, Neoplastic genetics MeSH
- RNA, Small Nuclear MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- MicroRNAs * MeSH
- Biomarkers, Tumor MeSH
- RNA, Small Nuclear MeSH
- U6 small nuclear RNA MeSH Browser
BACKGROUND: Breast cancer is a leading cause of cancer-related death in women. Most cases are invasive ductal carcinomas of no special type (NST breast carcinomas). METHODS AND RESULTS: In this prospective, multicentric biomarker discovery study, we analyzed the expression of small non-coding RNAs (mainly microRNAs) in plasma by qPCR and evaluated their association with NST breast cancer. Large-scale expression profiling and subsequent validations have been performed in patient and control groups and compared with clinicopathological data. Small nuclear U6 snRNA, miR-548b-5p and miR-451a have been identified as candidate biomarkers. U6 snRNA was remarkably overexpressed in all the validations, miR-548b-5p levels were generally elevated and miR-451a expression was mostly downregulated in breast cancer groups. Combined U6 snRNA/miR-548b-5p signature demonstrated the best diagnostic performance based on the ROC curve analysis with AUC of 0.813, sensitivity 73.1% and specificity 82.6%. There was a trend towards increased expression of both miR-548b-5p and U6 snRNA in more advanced stages. Further, increased miR-548b-5p levels have been partially associated with higher grades, multifocality, Ki-67 positivity, and luminal B rather than luminal A samples. On the other hand, an association has been observed between high miR-451a expression and progesterone receptor positivity, lower grade, unifocal samples, Ki-67-negativity, luminal A rather than luminal B samples as well as improved progression-free survival and overall survival. CONCLUSIONS: Our results indicated that U6 snRNA and miR-548b-5p may have pro-oncogenic functions, while miR-451a may act as tumor suppressor in breast cancer.
See more in PubMed
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660 PubMed DOI PMC
Reis-Filho JS, Lakhani SR (2008) Breast cancer special types: why bother? J Pathol. https://doi.org/10.1002/path.2419 PubMed DOI
Shea EKH, Koh VCY, Tan PH (2020) Invasive breast cancer: current perspectives and emerging views. Pathol Int. https://doi.org/10.1111/pin.12910 PubMed DOI
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L et al (2018) Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. https://doi.org/10.1016/j.gendis.2018.05.001 PubMed DOI PMC
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. https://doi.org/10.1093/annonc/mdt303 PubMed DOI PMC
Burstein HJ, Curigliano G, Loibl S, Dubsky P, Gnant M, Poortmans P et al (2019) Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann Oncol. https://doi.org/10.1093/annonc/mdz235 PubMed DOI PMC
Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu YC, Liu CY (2020) Systematic characterization of non-coding RNAs in triple-negative breast cancer. Cell Prolif. https://doi.org/10.1111/cpr.12801 PubMed DOI PMC
Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. https://doi.org/10.1002/emmm.201100209 PubMed DOI PMC
Bahrami A, Aledavood A, Anvari K, Hassanian SM, Maftouh M, Yaghobzade A et al (2018) The prognostic and therapeutic application of microRNAs in breast cancer: tissue and circulating microRNAs. J Cell Physiol. https://doi.org/10.1002/jcp.25813 PubMed DOI
Dvorska D, Brany D, Nachajova M et al (2021) Breast cancer and the other non-coding RNAs. Int J Mol Sci 22(6):3280. https://doi.org/10.3390/ijms22063280 PubMed DOI PMC
Erbes T, Hirschfeld M, Rucker G, Jaeger M, Boas J, Iborra S et al (2015) Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer. https://doi.org/10.1186/s12885-015-1190-4 PubMed DOI PMC
Kashyap D, Kaur H (2020) Cell-free miRNAs as non-invasive biomarkers in breast cancer: significance in early diagnosis and metastasis prediction. Life Sci. https://doi.org/10.1016/j.lfs.2020.117417 PubMed DOI
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. https://doi.org/10.1186/gb-2007-8-2-r19 PubMed DOI PMC
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034 PubMed DOI PMC
DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. https://doi.org/10.2307/2531595 PubMed DOI
Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577 DOI
Sheskin DJ (2011) Handbook of parametric and nonparametric statistical procedures, 5th edn. Chapman & Hall/CRC, Boca Raton
Hill DA, Barry M, Wiggins C, Nibbe A, Royce M et al (2017) Estrogen receptor quantitative measures and breast cancer survival. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-017-4439-6 PubMed DOI PMC
Purdie CA, Quinlan P, Jordan LB, Ashfield A, Ogston S (2014) Progesterone receptor expression is an independent prognostic variable in early breast cancer: a population-based study. Br J Cancer 110(3):565–572. https://doi.org/10.1038/bjc.2013.756 PubMed DOI
Lombardi A, Lazzeroni R, Bersigotti L, Vitale V, Amanti C (2021) The proper Ki-67 cut-off in hormone responsive breast cancer: a monoinstitutional analysis with long-term follow-up. Breast Cancer 13:213–217. https://doi.org/10.2147/BCTT.S305440 PubMed DOI PMC
Nielsen TO, Leung SCY, Rimm DL, Dodson A, Badve S et al (2021) Assessment of Ki67 in breast cancer: updated recommendations from the international Ki67 in Breast Cancer Working Group. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/djaa201 PubMed DOI
Kanyilmaz G, Yavuz BB, Aktan M, Karaagac M, Uyar M, Findik S (2019) Prognostic importance of Ki-67 in Breast Cancer and its relationship with other prognostic factors. Eur J Breast Health. https://doi.org/10.5152/ejbh.2019.4778 PubMed DOI PMC
Hennigs A, Riedel F, Gondos A, Sinn P, Schirmacher P, Marmé F et al (2016) Prognosis of breast cancer molecular subtypes in routine clinical care: a large prospective cohort study. BMC Cancer. https://doi.org/10.1186/s12885-016-2766-3 PubMed DOI PMC
Soliman NA, Yussif SM (2016) Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med 13(4):496–504. https://doi.org/10.20892/j.issn.2095-3941.2016.0066 PubMed DOI PMC
Zhu W, Liu M, Fan Y, Ma F, Xu N, Xu B (2018) Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med 7(9):4420–4433. https://doi.org/10.1002/cam4.1723 PubMed DOI PMC
De Mattos-Arruda L, Bottai G, Nuciforo PG, Di Tommaso L, Giovannetti E et al (2015) MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. https://doi.org/10.18632/oncotarget.5495 PubMed DOI PMC
Ilhan-Mutlu A, Tezcan G, Schoppmann SF, Preusser M, Spyridoula K et al (2015) microRNA-21 expression is elevated in esophageal adenocarcinoma after neoadjuvant chemotherapy. Cancer Investig 33(6):246–250. https://doi.org/10.3109/07357907.2015.1024319 DOI
McGuire A, Casey MC, Waldron RM, Heneghan H, Kalinina O et al (2020) Prospective assessment of systemic microRNAs as markers of response to neoadjuvant chemotherapy in breast cancer. Cancers 12(7):1820. https://doi.org/10.3390/cancers12071820
Di Cosimo S, Appierto V, Pizzamiglio S, Silvestri M, Baselga J et al (2020) Early modulation of circulating microRNAs levels in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Int J Mol Sci. https://doi.org/10.3390/ijms21041386
Gezer U, Keskin S, Iğci A, Tükenmez M, Tiryakioğlu D et al (2014) Abundant circulating microRNAs in breast cancer patients fluctuate considerably during neoadjuvant chemotherapy. Oncol Lett. https://doi.org/10.3892/ol.2014.2188
Lindholm EM, Aure MR, Haugen MH, Sahlberg KK, Kristensen VN et al (2019) miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol Oncol. https://doi.org/10.1002/1878-0261.12561
Gulyaeva LF, Kushlinskiy NE (2016) Regulatory mechanisms of microRNA expression. J Transl Med. https://doi.org/10.1186/s12967-016-0893-x PubMed DOI PMC
Qin XG, Zeng JH, Lin P, Mo WJ, Li Q, Feng ZB, Luo DZ, Yang H, Chen G, Zeng JJ (2019) Prognostic value of small nuclear RNAs (snRNAs) for digestive tract panadenocarcinomas identified by RNA sequencing data. Pathol Res Pract. https://doi.org/10.1016/j.prp.2018.11.004 PubMed DOI
Mroczek S, Dziembowski A (2013) U6 RNA biogenesis and disease association. Wiley Interdiscip Rev RNA. https://doi.org/10.1002/wrna.1181 PubMed DOI
Dvinge H, Guenthoer J, Porter PL, Bradley RK (2019) RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing. Genome Res. https://doi.org/10.1101/gr.246678.118 PubMed DOI PMC
Chiam K, Wang T, Watson DI, Mayne GC, Irvine TS, Bright T et al (2015) Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. https://doi.org/10.1007/s11605-015-2829-9 PubMed DOI
Kitamura K, Nimura K (2021) Regulation of RNA splicing: aberrant splicing regulation and therapeutic targets in cancer. Cells 10(4):923. https://doi.org/10.3390/cells10040923 PubMed DOI PMC
Appaiah HN, Goswami CP, Mina LA, Badve S, Sledge GW, Liu YL, Nakshatri H (2011) Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res. https://doi.org/10.1186/bcr2943 PubMed DOI PMC
Lou G, Ma N, Xu Y, Jiang L, Yang J, Wang CX et al (2015) Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int J Mol Med. https://doi.org/10.3892/ijmm.2015.2338 PubMed DOI
Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M et al (2011) The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. https://doi.org/10.1038/sj.bjc.6606076 PubMed DOI PMC
Xiang M, Zeng Y, Yang R, Xu H, Chen Z, Zhong J et al (2014) U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2014.10.064 PubMed DOI
Rehbein G, Schmidt B, Fleischhacker M (2015) Extracellular microRNAs in bronchoalveolar lavage samples from patients with lung diseases as predictors for lung cancer. Clin Chim Acta. https://doi.org/10.1016/j.cca.2015.07.027 PubMed DOI
Yan C, Hu J, Yang Y, Hu H, Zhou DX, Ma M, Xu N (2019) Plasma extracellular vesicle-packaged microRNAs as candidate diagnostic biomarkers for early-stage breast cancer. Mol Med Rep. https://doi.org/10.3892/mmr.2019.10669 PubMed DOI PMC
Hsieh TH, Hsu CY, Tsai CF, Long CY, Wu CH, Wu DC, Lee JN, Chang WC, Tsai EM (2015) HDAC inhibitors target HDAC5, upregulate MicroRNA-125a-5p, and induce apoptosis in breast cancer cells. Mol Ther. https://doi.org/10.1038/mt.2014.247 PubMed DOI PMC
Yang C, Wang C, Chen X, Chen SD, Zhang YN, Zhi F, Wang JJ, Li LM, Zhou XJ, Li NY (2013) Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. https://doi.org/10.1002/ijc.27657 PubMed DOI PMC
Moustafa AA, Ziada M, Elshaikh A, Datta A, Kim H, Moroz K, Srivastav S, Thomas R, Silberstein JL, Moparty K (2017) Identification of microRNA signature and potential pathway targets in prostate cancer. Exp Biol Med. https://doi.org/10.1177/1535370216681554 DOI
Bergamaschi A, Katzenellenbogen BS (2012) Tamoxifen downregulation of miR-451 increases 14–3-3 zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene. https://doi.org/10.1038/onc.2011.223 PubMed DOI
Wang W, Zhang L, Wang Y, Ding Y, Chen T, Wang Y (2017) Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis. https://doi.org/10.1038/cddis.2017.460 PubMed DOI PMC
Shao B, Wang X, Zhang L, Li D, Liu X, Song G, Cao H, Zhu J, Li H (2019) Plasma microRNAs predict chemoresistance in patients with metastatic breast cancer. Technol Cancer Res Treat. https://doi.org/10.1177/1533033819828709 PubMed DOI PMC
Xing AY, Wang B, Li YH, Chen X, Wang YW et al (2021) Identification of miRNA signature in breast cancer to predict neoadjuvant chemotherapy response. Pathol Oncol Res 27:1609753. https://doi.org/10.3389/pore.2021.1609753 PubMed DOI PMC
Gu X, Xue JQ, Han SJ, Qian SY, Zhang WH (2016) Circulating microRNA-451 as a predictor of resistance to neoadjuvant chemotherapy in breast cancer. Cancer Biomark 16(3):395–403. https://doi.org/10.3233/CBM-160578 PubMed DOI
Zhang H, Chen P, Yang J (2020) miR-451a suppresses the development of breast cancer via targeted inhibition of CCND2. Mol Cell Probes. https://doi.org/10.1016/j.mcp.2020.101651 PubMed DOI PMC
Fang R, Zhu Y, Hu L, Khadka VS, Ai J, Zou H, Ju D, Jiang B, Deng Y, Hu X (2019) Plasma microRNA pair panels as novel biomarkers for detection of early stage breast cancer. Front Physiol. https://doi.org/10.3389/fphys.2018.01879 PubMed DOI PMC
Luo J, Zhao Q, Zhang W, Zhang Z, Gao J, Zhang C, Li Y, Tian Y (2014) A novel panel of microRNAs provides a sensitive and specific tool for the diagnosis of breast cancer. Mol Med Rep. https://doi.org/10.3892/mmr.2014.2274 PubMed DOI PMC
Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, Chang G, Li X, Li Q, Wang S, Wang W (2014) MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0096228 PubMed DOI PMC
Liu B, Su F, Chen M, Li Y, Qi X, Xiao J, Li X, Liu X, Liang W, Zhang Y, Zhang J (2017) Serum miR-21 and miR-125b as markers predicting neoadjuvant chemotherapy response and prognosis in stage II/III breast cancer. Hum Pathol. https://doi.org/10.1016/j.humpath.2017.03.016 PubMed DOI PMC
Motamedi M, Chaleshtori MH, Ghasemi S, Mokarian F (2019) Plasma level of mir-21 and mir-451 in primary and recurrent breast cancer patients. Breast Cancer Targets Ther. https://doi.org/10.2147/BCTT.S224333 DOI
Al-Khanbashi M, Caramuta S, Alajmi AM, Al-Haddabi I, Al-Riyami M, Lui WO, Al-Moundhri MS (2016) Tissue and serum miRNA profile in locally advanced breast cancer (LABC) in response to neo-adjuvant chemotherapy (NAC) treatment. PLoS ONE. https://doi.org/10.1371/journal.pone.0152032 PubMed DOI PMC
Ng EKO, Li R, Shin VY, Jin HC, Leung CPH, Ma ESK, Pang R, Chua D (2013) Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE. https://doi.org/10.1371/journal.pone.0053141 PubMed DOI PMC
Pan X, Wang R, Wang ZX (2013) The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-12-0802 PubMed DOI PMC
Khordadmehr M, Jigari-Asl F, Ezzati H, Shahbazi R, Sadreddini S, Safaei S, Baradaran B (2019) A comprehensive review on miR-451: a promising cancer biomarker with therapeutic potential. J Cell Physiol. https://doi.org/10.1002/jcp.28888 PubMed DOI
Ozawa PMM, Jucoski TS, Vieira E, Carvalho TM, Malheiros D, Ribeiro EMDS (2020) Liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers. Transl Res. https://doi.org/10.1016/j.trsl.2020.04.002 PubMed DOI
Aggarwal V, Priyanka K, Tuli HS (2020) Emergence of circulating MicroRNAs in breast cancer as diagnostic and therapeutic efficacy biomarkers. Mol Diagn Ther. https://doi.org/10.1007/s40291-020-00447-w PubMed DOI