4-PBA Treatment Improves Bone Phenotypes in the Aga2 Mouse Model of Osteogenesis Imperfecta
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DE019567
NIDCR NIH HHS - United States
GA19-20123S
Czech Science Foundation
NV18-08-00567
Agency for Healthcare Research of the Czech Republic
UMA18-FEDERJA-177
Junta de Andalucia FEDER
GA17-09525S
Czech Science Foundation
P01 HD070394
NICHD NIH HHS - United States
Geisman Award
Osteogenesis Imperfecta Foundation
AHUCE foundation
R01 AR066124
NIAMS NIH HHS - United States
R01 AR071342
NIAMS NIH HHS - United States
PubMed
34997935
PubMed Central
PMC9018561
DOI
10.1002/jbmr.4501
Knihovny.cz E-zdroje
- Klíčová slova
- 4-PBA, Aga2, Bip+/−, Chop−/−, ER stress, bone, osteogenesis imperfecta,
- MeSH
- butylaminy MeSH
- fenotyp MeSH
- kolagen typu I metabolismus MeSH
- modely nemocí na zvířatech MeSH
- molekulární chaperony metabolismus MeSH
- mutace MeSH
- myši MeSH
- osteoblasty metabolismus MeSH
- osteogenesis imperfecta * farmakoterapie genetika metabolismus MeSH
- osteogeneze MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 4-phenylbutylamine MeSH Prohlížeč
- butylaminy MeSH
- kolagen typu I MeSH
- molekulární chaperony MeSH
Osteogenesis imperfecta (OI) is a genetically heterogenous disorder most often due to heterozygosity for mutations in the type I procollagen genes, COL1A1 or COL1A2. The disorder is characterized by bone fragility leading to increased fracture incidence and long-bone deformities. Although multiple mechanisms underlie OI, endoplasmic reticulum (ER) stress as a cellular response to defective collagen trafficking is emerging as a contributor to OI pathogenesis. Herein, we used 4-phenylbutiric acid (4-PBA), an established chemical chaperone, to determine if treatment of Aga2+/- mice, a model for moderately severe OI due to a Col1a1 structural mutation, could attenuate the phenotype. In vitro, Aga2+/- osteoblasts show increased protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation protein levels, which improved upon treatment with 4-PBA. The in vivo data demonstrate that a postweaning 5-week 4-PBA treatment increased total body length and weight, decreased fracture incidence, increased femoral bone volume fraction (BV/TV), and increased cortical thickness. These findings were associated with in vivo evidence of decreased bone-derived protein levels of the ER stress markers binding immunoglobulin protein (BiP), CCAAT/-enhancer-binding protein homologous protein (CHOP), and activating transcription factor 4 (ATF4) as well as increased levels of the autophagosome marker light chain 3A/B (LC3A/B). Genetic ablation of CHOP in Aga2+/- mice resulted in increased severity of the Aga2+/- phenotype, suggesting that the reduction in CHOP observed in vitro after treatment is a consequence rather than a cause of reduced ER stress. These findings suggest the potential use of chemical chaperones as an adjunct treatment for forms of OI associated with ER stress. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
Department of Pediatrics Harvard Medical School Boston MA USA
Divisions of Endocrinology and Genetics and Genomics Boston Children's Hospital Boston MA USA
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Laboratory of Bioengineering and Tissue Regeneration Málaga Spain
Networking Biomedical Research Center in Bioengineering Biomaterials and Nanomedicine Málaga Spain
Zobrazit více v PubMed
Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540‐557. PubMed PMC
Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377‐1385. PubMed
Marini JC, Forlino A, Bachinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052. PubMed
Jacobsen CM, Schwartz MA, Roberts HJ, et al. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I osteogenesis imperfecta. Bone. 2016;90:127‐132. PubMed PMC
Kaupp S, Horan DJ, Lim KE, et al. Combination therapy in the Col1a2(G610C) mouse model of osteogenesis imperfecta reveals an additive effect of enhancing LRP5 signaling and inhibiting TGFbeta signaling on trabecular bone but not on cortical bone. Bone. 2020;131:115084. PubMed PMC
Zimmerman SM, Dimori M, Heard‐Lipsmeyer ME, Morello R. The osteocyte transcriptome is extensively dysregulated in mouse models of osteogenesis imperfecta. JBMR Plus. 2019;3(7):e10171. PubMed PMC
Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11(4):381‐389. PubMed
Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev. 2006;86(4):1133‐1149. PubMed
Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519‐529. PubMed
Nakayama H, Hamada M, Fujikake N, et al. ER stress is the initial response to polyglutamine toxicity in PC12 cells. Biochem Biophys Res Commun. 2008;377(2):550‐555. PubMed
Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 2006;13(3):363‐373. PubMed
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends. J Biol Chem. 2019;294(6):2098‐2108. PubMed PMC
Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci. 2019;6:11. PubMed PMC
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89‐102. PubMed
Ron D, Harding HP. Protein‐folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol. 2012;4(12):a013177. PubMed PMC
Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress‐induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099‐1108. PubMed
Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B. Transcription factor C/EBP homologous protein in health and diseases. Front Immunol. 2017;8:1612. PubMed PMC
Guo Q, Xu L, Li H, Sun H, Wu S, Zhou B. 4‐PBA reverses autophagic dysfunction and improves insulin sensitivity in adipose tissue of obese mice via Akt/mTOR signaling. Biochem Biophys Res Commun. 2017;484(3):529‐535. PubMed
Ricobaraza A, Cuadrado‐Tejedor M, Perez‐Mediavilla A, Frechilla D, Del Rio J, Garcia‐Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model. Neuropsychopharmacology. 2009;34(7):1721‐1732. PubMed
Zeng M, Sang W, Chen S, et al. 4‐PBA inhibits LPS‐induced inflammation through regulating ER stress and autophagy in acute lung injury models. Toxicol Lett. 2017;271:26‐37. PubMed
Andersen E, Chollet ME, Baroni M, et al. The effect of the chemical chaperone 4‐phenylbutyrate on secretion and activity of the p.Q160R missense variant of coagulation factor FVII. Cell Biosci. 2019;9:69. PubMed PMC
Pena‐Quintana L, Llarena M, Reyes‐Suarez D, Aldamiz‐Echevarria L. Profile of sodium phenylbutyrate granules for the treatment of urea‐cycle disorders: patient perspectives. Patient Prefer Adherence. 2017;11:1489‐1496. PubMed PMC
Lichter‐Konecki U, Diaz GA, Merritt JL 2nd, et al. Ammonia control in children with urea cycle disorders (UCDs); phase 2 comparison of sodium phenylbutyrate and glycerol phenylbutyrate. Mol Genet Metab. 2011;103(4):323‐329. PubMed PMC
Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid‐induced insulin resistance and beta‐cell dysfunction in humans. Diabetes. 2011;60(3):918‐924. PubMed PMC
Brose RD, Shin G, McGuinness MC, et al. Activation of the stress proteome as a mechanism for small molecule therapeutics. Hum Mol Genet. 2012;21(19):4237‐4252. PubMed PMC
Miller AC, Cohen S, Stewart M, Rivas R, Lison P. Radioprotection by the histone deacetylase inhibitor phenylbutyrate. Radiat Environ Biophys. 2011;50(4):585‐596. PubMed
Koyama M, Furuhashi M, Ishimura S, et al. Reduction of endoplasmic reticulum stress by 4‐phenylbutyric acid prevents the development of hypoxia‐induced pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2014;306(9):H1314‐H1323. PubMed
Zhu M, Guo M, Fei L, Pan XQ, Liu QQ. 4‐phenylbutyric acid attenuates endoplasmic reticulum stress‐mediated pancreatic beta‐cell apoptosis in rats with streptozotocin‐induced diabetes. Endocrine. 2014;47(1):129‐137. PubMed
Mimori S, Ohtaka H, Koshikawa Y, et al. 4‐Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor. Bioorg Med Chem Lett. 2013;23(21):6015‐6018. PubMed
Lisse TS, Thiele F, Fuchs H, et al. ER stress‐mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet. 2008;4(2):e7. PubMed PMC
Scheiber AL, Guess AJ, Kaito T, et al. Endoplasmic reticulum stress is induced in growth plate hypertrophic chondrocytes in G610C mouse model of osteogenesis imperfecta. Biochem Biophys Res Commun. 2019;509(1):235‐240. PubMed PMC
Besio R, Iula G, Garibaldi N, et al. 4‐PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1642‐1652. PubMed PMC
Lindert U, Weis MA, Rai J, et al. Molecular consequences of the SERPINH1/HSP47 mutation in the dachshund natural model of osteogenesis imperfecta. J Biol Chem. 2015;290(29):17679‐17689. PubMed PMC
Forlino A, Tani C, Rossi A, et al. Differential expression of both extracellular and intracellular proteins is involved in the lethal or nonlethal phenotypic variation of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics. 2007;7(11):1877‐1891. PubMed
Kasamatsu A, Uzawa K, Hayashi F, et al. Deficiency of lysyl hydroxylase 2 in mice causes systemic endoplasmic reticulum stress leading to early embryonic lethality. Biochem Biophys Res Commun. 2019;512(3):486‐491. PubMed
Besio R, Garibaldi N, Leoni L, et al. Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4‐phenylbutyrate. Dis Model Mech. 2019;12(6):dmm038521. PubMed PMC
Gioia R, Tonelli F, Ceppi I, et al. The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta. Hum Mol Genet. 2017;26(15):2897‐2911. PubMed PMC
Hrabe de Angelis MH, Flaswinkel H, Fuchs H, et al. Genome‐wide, large‐scale production of mutant mice by ENU mutagenesis. Nat Genet. 2000;25(4):444‐447. PubMed
Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol. 2006;26(15):5688‐5697. PubMed PMC
Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595‐608. PubMed
Wang XZ, Lawson B, Brewer JW, et al. Signals from the stressed endoplasmic reticulum induce C/EBP‐homologous protein (CHOP/GADD153). Mol Cell Biol. 1996;16(8):4273‐4280. PubMed PMC
Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta. 2004;1699(1‐2):35‐44. PubMed
Goldberger RF, Epstein CJ, Anfinsen CB. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem. 1963;238:628‐635. PubMed
Ishida Y, Yamamoto A, Kitamura A, et al. Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. Mol Biol Cell. 2009;20(11):2744‐2754. PubMed PMC
Luo S, Baumeister P, Yang S, Abcouwer SF, Lee AS. Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem. 2003;278(39):37375‐37385. PubMed
Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982‐995. PubMed PMC
Pereira RC, Delany AM, Canalis E. CCAAT/enhancer binding protein homologous protein (DDIT3) induces osteoblastic cell differentiation. Endocrinology. 2004;145(4):1952‐1960. PubMed
Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032‐1045. PubMed PMC
Hasegawa K, Inoue M, Seino Y, Morishima T, Tanaka H. Growth of infants with osteogenesis imperfecta treated with bisphosphonate. Pediatr Int. 2009;51(1):54‐58. PubMed
Orwoll ES, Shapiro J, Veith S, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491‐498. PubMed PMC
McClung MR, Lewiecki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821‐831. PubMed
Lacey DL, Tan HL, Lu J, et al. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol. 2000;157(2):435‐448. PubMed PMC
Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis‐inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597‐3602. PubMed PMC
Glorieux FH, Devogelaer JP, Durigova M, et al. BPS804 anti‐sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J Bone Miner Res. 2017;32(7):1496‐1504. PubMed
Tauer JT, Abdullah S, Rauch F. Effect of anti‐TGF‐beta treatment in a mouse model of severe osteogenesis imperfecta. J Bone Miner Res. 2019;34(2):207‐214. PubMed
Grafe I, Yang T, Alexander S, et al. Excessive transforming growth factor‐beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20(6):670‐675. PubMed PMC
Mirigian LS, Makareeva E, Mertz EL, et al. Osteoblast malfunction caused by cell stress response to procollagen misfolding in alpha2(I)‐G610C mouse model of osteogenesis imperfecta. J Bone Miner Res. 2016;31(8):1608‐1616. PubMed PMC
Alanay Y, Avaygan H, Camacho N, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal‐recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(4):551‐559. PubMed PMC
Christiansen HE, Schwarze U, Pyott SM, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(3):389‐398. PubMed PMC
Duran I, Nevarez L, Sarukhanov A, et al. HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet. 2015;24(7):1918‐1928. PubMed PMC
Kelley BP, Malfait F, Bonafe L, et al. Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res. 2011;26(3):666‐672. PubMed PMC
Kolb PS, Ayaub EA, Zhou W, Yum V, Dickhout JG, Ask K. The therapeutic effects of 4‐phenylbutyric acid in maintaining proteostasis. Int J Biochem Cell Biol. 2015;61:45‐52. PubMed
Iannitti T, Palmieri B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R D. 2011;11(3):227‐249. PubMed PMC
Wang Z, Zheng S, Gu Y, Zhou L, Lin B, Liu W. 4‐PBA enhances autophagy by inhibiting endoplasmic reticulum stress in recombinant human Beta nerve growth factor‐induced PC12 cells after mechanical injury via PI3K/AKT/mTOR signaling pathway. World Neurosurg. 2020;138:e659‐e664. PubMed
Bateman JF, Sampurno L, Maurizi A, et al. Effect of rapamycin on bone mass and strength in the alpha2(I)‐G610C mouse model of osteogenesis imperfecta. J Cell Mol Med. 2019;23(3):1735‐1745. PubMed PMC
Pereira RC, Stadmeyer L, Marciniak SJ, Ron D, Canalis E. C/EBP homologous protein is necessary for normal osteoblastic function. J Cell Biochem. 2006;97(3):633‐640. PubMed
Pereira RC, Stadmeyer LE, Smith DL, Rydziel S, Canalis E. CCAAT/enhancer‐binding protein homologous protein (CHOP) decreases bone formation and causes osteopenia. Bone. 2007;40(3):619‐626. PubMed PMC
Li A, Song NJ, Riesenberg BP, Li Z. The emerging roles of endoplasmic reticulum stress in balancing immunity and tolerance in health and diseases: mechanisms and opportunities. Front Immunol. 2019;10:3154. PubMed PMC
Almanza A, Carlesso A, Chintha C, et al. Endoplasmic reticulum stress signalling ‐ from basic mechanisms to clinical applications. FEBS J. 2019;286(2):241‐278. PubMed PMC