Anticonvulsive Effects and Pharmacokinetic Profile of Cannabidiol (CBD) in the Pentylenetetrazol (PTZ) or N-Methyl-D-Aspartate (NMDA) Models of Seizures in Infantile Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1611
Ministry of Education Youth and Sports
RVO: 67985823
Ministry of Health
No. CZ.02.1.01/0.0/0.0/16_025/0007444
Ministry of Education Youth and Sports
PubMed
35008517
PubMed Central
PMC8744811
DOI
10.3390/ijms23010094
PII: ijms23010094
Knihovny.cz E-zdroje
- Klíčová slova
- NMDA, PTZ, cannabidiol, epilepsy, immature rats, pentylentetrazole, seizures,
- MeSH
- antikonvulziva farmakologie MeSH
- epilepsie farmakoterapie MeSH
- kanabidiol farmakokinetika farmakologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- mozek účinky léků MeSH
- N-methylaspartát farmakologie MeSH
- pentylentetrazol farmakologie MeSH
- potkani Wistar MeSH
- záchvaty farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antikonvulziva MeSH
- kanabidiol MeSH
- N-methylaspartát MeSH
- pentylentetrazol MeSH
In spite of use of cannabidiol (CBD), a non-psychoactive cannabinoid, in pediatric patients with epilepsy, preclinical studies on its effects in immature animals are very limited. In the present study we investigated anti-seizure activity of CBD (10 and 60 mg/kg administered intraperitoneally) in two models of chemically induced seizures in infantile (12-days old) rats. Seizures were induced either with pentylenetetrazol (PTZ) or N-methyl-D-aspartate (NMDA). In parallel, brain and plasma levels of CBD and possible motor adverse effects were assessed in the righting reflex and the bar holding tests. CBD was ineffective against NMDA-induced seizures, but in a dose 60 mg/kg abolished the tonic phase of PTZ-induced generalized seizures. Plasma and brain levels of CBD were determined up to 24 h after administration. Peak CBD levels in the brain (996 ± 128 and 5689 ± 150 ng/g after the 10- and 60-mg/kg doses, respectively) were reached 1-2 h after administration and were still detectable 24 h later (120 ± 12 and 904 ± 63 ng/g, respectively). None of the doses negatively affected motor performance within 1 h after administration, but CBD in both doses blocked improvement in the bar holding test with repeated exposure to this task. Taken together, anti-seizure activity of CBD in infantile animals is dose and model dependent, and at therapeutic doses CBD does not cause motor impairment. The potential risk of CBD for motor learning seen in repeated motor tests has to be further examined.
Zobrazit více v PubMed
Alexander S.P.H. Therapeutic potential of cannabis-related drugs. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2016;64:157–166. doi: 10.1016/j.pnpbp.2015.07.001. PubMed DOI
Bhattacharyya S., Morrison P.D., Fusar-Poli P., Martin-Santos R., Borgwardt S., Wintonbrown T.T., Nosarti C., Carroll C.M.O., Seal M.L., Allen P., et al. Opposite effects of δ-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 2010;35:764–774. doi: 10.1038/npp.2009.184. PubMed DOI PMC
Englund A., Morrison P.D., Nottage J.F., Hague D., Kane F., Bonaccorso S., Stone J.M., Reichenberg A., Brenneisen R., Holt D., et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J. Psychopharmacol. 2013;27:19–27. doi: 10.1177/0269881112460109. PubMed DOI
Hayakawa K., Mishima K., Fujiwara M. Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke. Pharmaceuticals. 2010;3:2197–2212. doi: 10.3390/ph3072197. PubMed DOI PMC
McGuire P., Robson P., Cubała W., Vasile D., Morrison P.D., Barron R., Taylor A., Wright S. Cannabidiol (CBD) as an Adjunctive Therapy in Schizophrenia: A Multicenter Randomized Controlled Trial. Am. J. Psychiatry. 2018;175:225–231. doi: 10.1176/appi.ajp.2017.17030325. PubMed DOI
Resstel L.B.M., Joca S.R.L., Moreira F.A., Correa F.M.A., Guimaraes F.S. Effects of cannabidiol and diazepam on behavioral and cardiovascular responses induced by contextual conditioned fear in rats. Behav. Brain Res. 2006;172:294–298. doi: 10.1016/j.bbr.2006.05.016. PubMed DOI
Schiavon A.P., Bonato J.M., Milani H., Guimaraes F.S., de Oliveira R.M.W. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2016;64:27–34. doi: 10.1016/j.pnpbp.2015.06.017. PubMed DOI
Devinsky O., Cross H., Laux L., Marsh E., Miller I., Nabbout R., Scheffer I., Thiele E.A., Wright S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017;376:2011–2020. doi: 10.1056/NEJMoa1611618. PubMed DOI
Devinsky O., Patel A.D., Cross H., Villanueva V., Wirrell E.C., Privitera M., Greenwood S.M., Roberts C., Checketts D., VanLandingham K.E., et al. Effect of Cannabidiol on Drop Seizures in the Lennox–Gastaut Syndrome. N. Engl. J. Med. 2018;378:1888–1897. doi: 10.1056/NEJMoa1714631. PubMed DOI
Corroon J., Kight R. Regulatory Status of Cannabidiol in the United States: A Perspective. Cannabis Cannabinoid Res. 2018;3:190–194. doi: 10.1089/can.2018.0030. PubMed DOI PMC
Izquierdo I., Tannhauser M. Letter: The effect of cannabidiol on maximal electroshock seizures in rats. J. Pharm. Pharmacol. 1973;25:916–917. doi: 10.1111/j.2042-7158.1973.tb09976.x. PubMed DOI
Chesher G.B., Dahl C.J., Everingham M., Jackson D.M., Marchant-Williams H., Starmer G.A. The effect of cannabinoids on intestinal motility and their antinociceptive effect in mice. Br. J. Pharmacol. 1973;49:588–594. doi: 10.1111/j.1476-5381.1973.tb08534.x. PubMed DOI PMC
Franco V., Perucca E. Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy. Drugs. 2019;79:1435–1454. doi: 10.1007/s40265-019-01171-4. PubMed DOI
Franco V., Bialer M., Perucca E. Cannabidiol in the treatment of epilepsy: Current evidence and perspectives for further research. Neuropharmacology. 2021;185:108442. doi: 10.1016/j.neuropharm.2020.108442. PubMed DOI
Rosenberg E.C., Tsien R.W., Whalley B.J., Devinsky O. Cannabinoids and Epilepsy. Neurotherapeutics. 2015;12:747–768. doi: 10.1007/s13311-015-0375-5. PubMed DOI PMC
Senn L., Cannazza G., Biagini G. Receptors and channels possibly mediating the effects of phytocannabinoids on seizures and epilepsy. Pharmaceuticals. 2020;13:174. doi: 10.3390/ph13080174. PubMed DOI PMC
Benn E.K., Hauser W.A., Shih T., Leary L., Bagiella E., Dayan P., Green R., Andrews H., Thurman D.J., Hesdorffer D.C. Estimating the incidence of first unprovoked seizure and newly diagnosed epilepsy in the low-income urban community of Northern Manhattan, New York City. Epilepsia. 2008;49:1431–1439. doi: 10.1111/j.1528-1167.2008.01564.x. PubMed DOI
Cowan L.D. The epidemiology of the epilepsies in children. Ment. Retard. Dev. Disabil. Res. Rev. 2002;8:171–181. doi: 10.1002/mrdd.10035. PubMed DOI
Clancy B., Darlington R.B., Finlay B.L. Translating developmental time across mammalian species. Neuroscience. 2001;105:7–17. doi: 10.1016/S0306-4522(01)00171-3. PubMed DOI
Workman A.D., Charvet C.J., Clancy B., Darlington R.B., Finlay B.L. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 2013;33:7368–7383. doi: 10.1523/JNEUROSCI.5746-12.2013. PubMed DOI PMC
Ellingson R.J. Studies of the Electrical Activity of the Developing Human Brain. Prog. Brain Res. 1964;9:26–53. doi: 10.1016/S0079-6123(08)63130-1. DOI
Mares P., Velisek L. N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. Dev. Brain Res. 1992;65:185–189. doi: 10.1016/0165-3806(92)90178-Y. PubMed DOI
Klein B.D., Jacobson C.A., Metcalf C.S., Smith M.D., Wilcox K.S., Hampson A.J., Kehne J.H. Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP) Neurochem. Res. 2017;42:1939–1948. doi: 10.1007/s11064-017-2287-8. PubMed DOI
Huizenga M.N., Sepulveda-Rodriguez A., Forcelli P.A. Preclinical safety and efficacy of cannabidivarin for early life seizures. Neuropharmacology. 2019;148:189–198. doi: 10.1016/j.neuropharm.2019.01.002. PubMed DOI PMC
Staňková L., Kubová H., Mareš P. Anticonvulsant action of lamotrigine during ontogenesis in rats. Epilepsy Res. 1992;13:17–22. doi: 10.1016/0920-1211(92)90003-C. PubMed DOI
Kubová H., Maresš P. Anticonvulsant Action of Oxcarbazepine, Hydroxycarbamazepine, and Carbamazepine Against Metrazol-Induced Motor Seizures in Developing Rats. Epilepsia. 1993;34:188–192. doi: 10.1111/j.1528-1157.1993.tb02397.x. PubMed DOI
Haugvicová R., Kubová H., Mareš P. Qualitative changes of anticonvulsant action of felbamate during development in rats. Brain Dev. 1998;20:222–226. doi: 10.1016/S0387-7604(98)00030-8. PubMed DOI
Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20:359–368. doi: 10.1016/j.seizure.2011.01.003. PubMed DOI
Kabova R., Liptakova S., Slamberova R., Pometlova M., Velisek L. Age-specific N-methyl-D-aspartate-induced seizures: Perspectives for the West syndrome model. Epilepsia. 1999;40:1357–1369. doi: 10.1111/j.1528-1157.1999.tb02006.x. PubMed DOI
Herlopian A., Hess E.J., Barnett J., Geffrey A.L., Pollack S.F., Skirvin L., Bruno P., Sourbron J., Thiele E.A. Cannabidiol in treatment of refractory epileptic spasms: An open-label study. Epilepsy Behav. 2020;106:106988. doi: 10.1016/j.yebeh.2020.106988. PubMed DOI
Rodríguez-Muñoz M., Onetti Y., Cortés-Montero E., Garzón J., Sánchez-Blázquez P. Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor 11 Medical and Health Sciences 1109 Neurosciences 11 Medical and Health Sciences 1115 Pharmacology and Pharmaceutical Scien. Mol. Brain. 2018;11:1–12. doi: 10.1186/s13041-018-0395-2. PubMed DOI PMC
Macdonald R.L., Barker J.L. Specific antagonism of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: A common mode of convulsant action. Neurology. 1978;28:325–330. doi: 10.1212/WNL.28.4.325. PubMed DOI
Kubová H., Folbergrová J., Mares P. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia. 1995;36:750–756. doi: 10.1111/j.1528-1157.1995.tb01611.x. PubMed DOI
Mares P., Folbergrová J., Langmeier M., Haugvicová R., Kubová H. Convulsant action of D,L-homocysteic acid and its stereoisomers in immature rats. Epilepsia. 1997;38:767–776. doi: 10.1111/j.1528-1157.1997.tb01463.x. PubMed DOI
Insel T.R., Miller L.P., Gelhard R.E. The ontogeny of excitatory amino acid receptors in rat forebrain—I. N-methyl-D-aspartate and quisqualate receptors. Neuroscience. 1990;35:31–43. doi: 10.1016/0306-4522(90)90117-m. PubMed DOI
Tsumoto T., Hagihara K., Sato H., Hata Y. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature. 1987;327:513–514. doi: 10.1038/327513a0. PubMed DOI
Hamon B., Heinemann U. Developmental changes in neuronal sensitivity to excitatory amino acids in area CA1 of the rat hippocampus. Brain Res. 1988;466:286–290. doi: 10.1016/0165-3806(88)90054-5. PubMed DOI
Kubová H. Ontogenesis and treatment efficacy: Prevention of seizures in the immature brain. Adv. Neurol. 1999;81:357–361. PubMed
Kubová H., Mares P. Vigabatrin but not valproate prevents development of age-specific flexion seizures induced by N-methyl-D-aspartate (NMDA) in immature rats. Epilepsia. 2010;51:469–472. doi: 10.1111/j.1528-1167.2009.02305.x. PubMed DOI
Bittigau P., Sifringer M., Genz K., Reith E., Pospischil D., Govindarajalu S., Dzietko M., Pesditschek S., Mai I., Dikranian K., et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. USA. 2002;99:15089–15094. doi: 10.1073/pnas.222550499. PubMed DOI PMC
Ikonomidou C., Turski L. Antiepileptic drugs and brain development. Epilepsy Res. 2010;88:11–22. doi: 10.1016/j.eplepsyres.2009.09.019. PubMed DOI
Altman J., Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim. Behav. 1975;23:896–920. doi: 10.1016/0003-3472(75)90114-1. PubMed DOI
Jänicke B., Schulze G., Coper H. Motor performance achievements in rats of different ages. Exp. Gerontol. 1983;18:393–407. doi: 10.1016/0531-5565(83)90018-9. PubMed DOI
Deiana S., Watanabe A., Yamasaki Y., Amada N., Arthur M., Fleming S., Woodcock H., Dorward P., Pigliacampo B., Close S., et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ 9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behav. Psychopharmacology. 2012;219:859–873. doi: 10.1007/s00213-011-2415-0. PubMed DOI
McPhail B.T., White C.A., Cummings B.S., Muralidhara S., Wilson J.T., Bruckner J.V. The immature rat as a potential model for chemical risks to children: Ontogeny of selected hepatic P450s. Chem. Biol. Interact. 2016;256:167–177. doi: 10.1016/j.cbi.2016.07.005. PubMed DOI
Hložek T., Uttl L., Kadeřábek L., Balíková M., Lhotková E., Horsley R.R., Nováková P., Šíchová K., Štefková K., Tylš F., et al. Pharmacokinetic and behavioural profile of THC, CBD, and THC + CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur. Neuropsychopharmacol. 2017;27:1223–1237. doi: 10.1016/j.euroneuro.2017.10.037. PubMed DOI
Vacek J., Papouskova B., Polanska H., Hönigova K., Storch J., Babula P., Masarik M. CBD is not converted to THC in rats: A framework interpretation and discussion. Eur. Neuropsychopharmacol. 2021;50:135–136. doi: 10.1016/j.euroneuro.2021.04.003. PubMed DOI
Velisek L., Kubova H., Pohl M., Stankova L., Mareš P., Schickerova R. Pentylenetetrazol-induced seizures in rats: An ontogenetic study. Naunyn Schmiedeberg’s Arch. Pharmacol. 1992;346:588–591. doi: 10.1007/BF00169017. PubMed DOI
Pohl M., Mares P. Effects of flunarizine on Metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1:302–305. doi: 10.1016/0920-1211(87)90006-4. PubMed DOI