Affinity, Specificity, and Cooperativity of DNA Binding by Bacterial Gene Regulatory Proteins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35008987
PubMed Central
PMC8745587
DOI
10.3390/ijms23010562
PII: ijms23010562
Knihovny.cz E-zdroje
- Klíčová slova
- biological constraints, cryptic thermodynamic factors, drug design, gestalt properties of proteins, host–guest chemistry, pre-organization, protein folding coupled to ligand binding,
- MeSH
- bakteriální proteiny metabolismus MeSH
- biologické modely MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA genetika metabolismus MeSH
- fyziologie bakterií * MeSH
- interakce mikroorganismu a hostitele * MeSH
- lidé MeSH
- regulace genové exprese * MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA vazebné proteiny MeSH
- DNA MeSH
Nearly all of biology depends on interactions between molecules: proteins with small molecules, proteins with other proteins, nucleic acids with small molecules, and nucleic acids with proteins that regulate gene expression, our concern in this Special Issue. All those kinds of interactions, and others, constitute the vast majority of biology at the molecular level. An understanding of those interactions requires that we quantify them to learn how they interact: How strongly? With which partners? How-and how well-are different partners distinguished? This review addresses the evolution of our current understanding of the molecular origins of affinity and specificity in regulatory protein-DNA interactions, and suggests that both these properties can be modulated by cooperativity.
Zobrazit více v PubMed
Forsén S., Linse S. Cooperativity: Over the Hill. Trends Biochem. Sci. 1995;20:495–497. doi: 10.1016/S0968-0004(00)89115-X. PubMed DOI
Weber G. Protein Interactions. Chapman and Hall; New York, NY, USA: 1992.
Wigner E.P. The unreasonable effectivenss of mathematics in the natural sciences. Commun. Pure Appl. Math. 1960;13:1–14. doi: 10.1002/cpa.3160130102. DOI
Szwajkajzer D., Carey J. Molecular and biological constraints on ligand-binding affinity and specificity. Biopolymers. 1997;44:181–198. doi: 10.1002/(SICI)1097-0282(1997)44:2<181::AID-BIP5>3.0.CO;2-R. PubMed DOI
Cram D.J. The design of molecular hosts, guests, and their complexes. Science. 1988;240:760–767. doi: 10.1126/science.3283937. PubMed DOI
Akhouri R.R., Öfverstedt L.G., Wilken G., Skoglund U. Antibody complexes. Subcell. Biochem. 2019;93:23–51. PubMed
Bjorkman P.J., Saper M.A., Samraoui B., Bennett W.S., Strominger J.L., Wiley D.C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987;329:506–512. doi: 10.1038/329506a0. PubMed DOI
Fahnestock M.L., Tamir I., Narhi L., Bjorkman P.J. Thermal stability comparison of purified empty and peptide-filled forms of a class I MHC molecule. Science. 1992;258:1658–1662. doi: 10.1126/science.1360705. PubMed DOI
Lakowicz J.R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973;12:4171–4179. doi: 10.1021/bi00745a021. PubMed DOI PMC
Wagner G., Wüthrich K. Dynamic model of globular protein conformations based on NMR studies in solution. Nature. 1978;275:247–248. doi: 10.1038/275247a0. PubMed DOI
Bourgeois S., Cohn M., Orgel L.E. Suppression of and complementation among mutants of the regulatory gene of the lactose operon of Escherichia coli. J. Mol. Biol. 1965;14:300–302. doi: 10.1016/S0022-2836(65)80252-2. PubMed DOI
Crick F.H., Barnett L., Brenner S., Watts-Tobin R.J. General nature of the genetic code for proteins. Nature. 1961;192:1227–1232. doi: 10.1038/1921227a0. PubMed DOI
Jinks J.L. Internal suppressors of the h III and tu45 mutants of bacteriophage T4. Heredity. 1961;16:241–245. doi: 10.1038/hdy.1961.32. DOI
Yanofsky C., Helinski D.R., Maling B.D. The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptophan synthetase. Cold Spring Harb. Symp. Quant. Biol. 1961;26:11–24. doi: 10.1101/SQB.1961.026.01.006. PubMed DOI
Takeda Y., Ross P.D., Mudd C.P. Thermodynamics of Cro protein-DNA interactions. Proc. Natl. Acad. Sci. USA. 1992;89:8180–8184. doi: 10.1073/pnas.89.17.8180. PubMed DOI PMC
Record M.T., Jr., Lohman T., De Haseth P.L. Ion effects on ligand-nucleic acid interactions. J. Mol. Biol. 1976;107:145–158. doi: 10.1016/S0022-2836(76)80023-X. PubMed DOI
Manning G.S. On the application of polyelectrolyte "limiting laws" to the helix-coil transition of DNA. I. Excess univalent cations. Biopolymers. 1972;11:937–949. doi: 10.1002/bip.1972.360110502. PubMed DOI
Wilson R.W., Rau D.C., Bloomfield V.A. Comparison of polyelectrolyte theories of the binding of cations to DNA. Biophys. J. 1980;30:317–325. doi: 10.1016/S0006-3495(80)85097-1. PubMed DOI PMC
Winter R.B., Berg O.G., von Hippel P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: Kinetic measurements and conclusions. Biochemistry. 1981;20:6961–6977. doi: 10.1021/bi00527a030. PubMed DOI
Szwajkajzer D., Dai L., Fukayama J.W., Abramczyk B., Fairman R., Carey J. Quantitative analysis of DNA binding by Escherichia coli arginine repressor. J. Mol. Biol. 2001;312:949–962. doi: 10.1006/jmbi.2001.4941. PubMed DOI
Carey J. Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc. Natl. Acad. Sci. USA. 1988;85:975–979. doi: 10.1073/pnas.85.4.975. PubMed DOI PMC
Carey J., Lindman S., Bauer M., Linse S. Protein fragment reconstitution and three-dimensional domain swapping. Protein Sci. 2007;16:2317–2333. doi: 10.1110/ps.072985007. PubMed DOI PMC
Komeiji Y., Fujita I., Honda N., Tsutsui M., Tamura T., Yamato I. Glycine 85 of the trp-repressor of E. coli is important in forming the hydrophobic tryptophan binding pocket: Experimental and computational approaches. Protein Eng. 1994;7:1239–1247. doi: 10.1093/protein/7.10.1239. PubMed DOI
Pandey S.K., Melichercik M., Réha D., Ettrich R.H., Carey J. Conserved dynamic mechanism of allosteric response to L-arg in divergent bacterial arginine repressors. Molecules. 2020;25:2247–2270. doi: 10.3390/molecules25092247. PubMed DOI PMC
Czaplicki J., Arrowsmith C., Jardetzky O. Segmental differences in the stability of the trp-repressor peptide backbone. J. Biomol. NMR. 1991;1:349–361. doi: 10.1007/BF02192859. PubMed DOI
Jin L., Yang J., Carey J. Thermodynamics of ligand binding to trp repressor. Biochemistry. 1993;32:7302–7309. doi: 10.1021/bi00079a029. PubMed DOI
Harish B., Gurla S., Kornhaber G., Montelione G., Carey J. Multiple helical conformations of the helix-turn-helix region revealed by NOE-restrained MD simulations of tryptophan aporepressor, TrpR. Proteins Struct. Funct. Bioinform. 2017;85:731–740. doi: 10.1002/prot.25252. PubMed DOI PMC
Zhao D., Arrowsmith C.H., Jia X., Jardetzky O. Refined solution structures of the Escherichia coli trp holo- and aporepressor. J. Mol. Biol. 1993;229:735–746. doi: 10.1006/jmbi.1993.1076. PubMed DOI
Gunasekaran K., Ma B., Nussinov R. Is allostery an intrinsic property of all dynamic proteins? Proteins Struct. Funct. Bioinform. 2004;57:433–443. doi: 10.1002/prot.20232. PubMed DOI
Yang J., Gunasekera A., Lavoie T.A., Jin L., Lewis D.E., Carey J. In vivo and in vitro studies of TrpR-DNA interactions. J. Mol. Biol. 1996;258:37–52. doi: 10.1006/jmbi.1996.0232. PubMed DOI
Gorin A.A., Zhurkin V.B., Olson W.K. B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 1995;247:34–48. doi: 10.1006/jmbi.1994.0120. PubMed DOI
Scott S.P., Weber I.T., Harrison R.W., Carey J., Tanaka J.C. A functioning chimera of the cyclic nucleotide-binding domain from the bovine retinal rod ion channel and the DNA-binding domain from catabolite gene-activating protein. Biochemistry. 2001;40:7464–7473. doi: 10.1021/bi002804x. PubMed DOI
Klotz I.M. Ligand-Receptor Energetics: A Guide for the Perplexed. Wiley; New York, NY, USA: 1997.
Carey J. Gel retardation. Methods Enzymol. 1991;208:103–217. PubMed
Ephrussi A., Church G.M., Tonegawa S., Gilbert W. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985;227:134–140. doi: 10.1126/science.3917574. PubMed DOI
Yang J., Carey J. Footprint phenotypes: Structural models of DNA-binding proteins from chemical modification analysis of DNA. Methods Enzymol. 1995;259:452–468. PubMed