Affinity, Specificity, and Cooperativity of DNA Binding by Bacterial Gene Regulatory Proteins

. 2022 Jan 05 ; 23 (1) : . [epub] 20220105

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35008987

Nearly all of biology depends on interactions between molecules: proteins with small molecules, proteins with other proteins, nucleic acids with small molecules, and nucleic acids with proteins that regulate gene expression, our concern in this Special Issue. All those kinds of interactions, and others, constitute the vast majority of biology at the molecular level. An understanding of those interactions requires that we quantify them to learn how they interact: How strongly? With which partners? How-and how well-are different partners distinguished? This review addresses the evolution of our current understanding of the molecular origins of affinity and specificity in regulatory protein-DNA interactions, and suggests that both these properties can be modulated by cooperativity.

Zobrazit více v PubMed

Forsén S., Linse S. Cooperativity: Over the Hill. Trends Biochem. Sci. 1995;20:495–497. doi: 10.1016/S0968-0004(00)89115-X. PubMed DOI

Weber G. Protein Interactions. Chapman and Hall; New York, NY, USA: 1992.

Wigner E.P. The unreasonable effectivenss of mathematics in the natural sciences. Commun. Pure Appl. Math. 1960;13:1–14. doi: 10.1002/cpa.3160130102. DOI

Szwajkajzer D., Carey J. Molecular and biological constraints on ligand-binding affinity and specificity. Biopolymers. 1997;44:181–198. doi: 10.1002/(SICI)1097-0282(1997)44:2<181::AID-BIP5>3.0.CO;2-R. PubMed DOI

Cram D.J. The design of molecular hosts, guests, and their complexes. Science. 1988;240:760–767. doi: 10.1126/science.3283937. PubMed DOI

Akhouri R.R., Öfverstedt L.G., Wilken G., Skoglund U. Antibody complexes. Subcell. Biochem. 2019;93:23–51. PubMed

Bjorkman P.J., Saper M.A., Samraoui B., Bennett W.S., Strominger J.L., Wiley D.C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987;329:506–512. doi: 10.1038/329506a0. PubMed DOI

Fahnestock M.L., Tamir I., Narhi L., Bjorkman P.J. Thermal stability comparison of purified empty and peptide-filled forms of a class I MHC molecule. Science. 1992;258:1658–1662. doi: 10.1126/science.1360705. PubMed DOI

Lakowicz J.R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973;12:4171–4179. doi: 10.1021/bi00745a021. PubMed DOI PMC

Wagner G., Wüthrich K. Dynamic model of globular protein conformations based on NMR studies in solution. Nature. 1978;275:247–248. doi: 10.1038/275247a0. PubMed DOI

Bourgeois S., Cohn M., Orgel L.E. Suppression of and complementation among mutants of the regulatory gene of the lactose operon of Escherichia coli. J. Mol. Biol. 1965;14:300–302. doi: 10.1016/S0022-2836(65)80252-2. PubMed DOI

Crick F.H., Barnett L., Brenner S., Watts-Tobin R.J. General nature of the genetic code for proteins. Nature. 1961;192:1227–1232. doi: 10.1038/1921227a0. PubMed DOI

Jinks J.L. Internal suppressors of the h III and tu45 mutants of bacteriophage T4. Heredity. 1961;16:241–245. doi: 10.1038/hdy.1961.32. DOI

Yanofsky C., Helinski D.R., Maling B.D. The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptophan synthetase. Cold Spring Harb. Symp. Quant. Biol. 1961;26:11–24. doi: 10.1101/SQB.1961.026.01.006. PubMed DOI

Takeda Y., Ross P.D., Mudd C.P. Thermodynamics of Cro protein-DNA interactions. Proc. Natl. Acad. Sci. USA. 1992;89:8180–8184. doi: 10.1073/pnas.89.17.8180. PubMed DOI PMC

Record M.T., Jr., Lohman T., De Haseth P.L. Ion effects on ligand-nucleic acid interactions. J. Mol. Biol. 1976;107:145–158. doi: 10.1016/S0022-2836(76)80023-X. PubMed DOI

Manning G.S. On the application of polyelectrolyte "limiting laws" to the helix-coil transition of DNA. I. Excess univalent cations. Biopolymers. 1972;11:937–949. doi: 10.1002/bip.1972.360110502. PubMed DOI

Wilson R.W., Rau D.C., Bloomfield V.A. Comparison of polyelectrolyte theories of the binding of cations to DNA. Biophys. J. 1980;30:317–325. doi: 10.1016/S0006-3495(80)85097-1. PubMed DOI PMC

Winter R.B., Berg O.G., von Hippel P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: Kinetic measurements and conclusions. Biochemistry. 1981;20:6961–6977. doi: 10.1021/bi00527a030. PubMed DOI

Szwajkajzer D., Dai L., Fukayama J.W., Abramczyk B., Fairman R., Carey J. Quantitative analysis of DNA binding by Escherichia coli arginine repressor. J. Mol. Biol. 2001;312:949–962. doi: 10.1006/jmbi.2001.4941. PubMed DOI

Carey J. Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc. Natl. Acad. Sci. USA. 1988;85:975–979. doi: 10.1073/pnas.85.4.975. PubMed DOI PMC

Carey J., Lindman S., Bauer M., Linse S. Protein fragment reconstitution and three-dimensional domain swapping. Protein Sci. 2007;16:2317–2333. doi: 10.1110/ps.072985007. PubMed DOI PMC

Komeiji Y., Fujita I., Honda N., Tsutsui M., Tamura T., Yamato I. Glycine 85 of the trp-repressor of E. coli is important in forming the hydrophobic tryptophan binding pocket: Experimental and computational approaches. Protein Eng. 1994;7:1239–1247. doi: 10.1093/protein/7.10.1239. PubMed DOI

Pandey S.K., Melichercik M., Réha D., Ettrich R.H., Carey J. Conserved dynamic mechanism of allosteric response to L-arg in divergent bacterial arginine repressors. Molecules. 2020;25:2247–2270. doi: 10.3390/molecules25092247. PubMed DOI PMC

Czaplicki J., Arrowsmith C., Jardetzky O. Segmental differences in the stability of the trp-repressor peptide backbone. J. Biomol. NMR. 1991;1:349–361. doi: 10.1007/BF02192859. PubMed DOI

Jin L., Yang J., Carey J. Thermodynamics of ligand binding to trp repressor. Biochemistry. 1993;32:7302–7309. doi: 10.1021/bi00079a029. PubMed DOI

Harish B., Gurla S., Kornhaber G., Montelione G., Carey J. Multiple helical conformations of the helix-turn-helix region revealed by NOE-restrained MD simulations of tryptophan aporepressor, TrpR. Proteins Struct. Funct. Bioinform. 2017;85:731–740. doi: 10.1002/prot.25252. PubMed DOI PMC

Zhao D., Arrowsmith C.H., Jia X., Jardetzky O. Refined solution structures of the Escherichia coli trp holo- and aporepressor. J. Mol. Biol. 1993;229:735–746. doi: 10.1006/jmbi.1993.1076. PubMed DOI

Gunasekaran K., Ma B., Nussinov R. Is allostery an intrinsic property of all dynamic proteins? Proteins Struct. Funct. Bioinform. 2004;57:433–443. doi: 10.1002/prot.20232. PubMed DOI

Yang J., Gunasekera A., Lavoie T.A., Jin L., Lewis D.E., Carey J. In vivo and in vitro studies of TrpR-DNA interactions. J. Mol. Biol. 1996;258:37–52. doi: 10.1006/jmbi.1996.0232. PubMed DOI

Gorin A.A., Zhurkin V.B., Olson W.K. B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 1995;247:34–48. doi: 10.1006/jmbi.1994.0120. PubMed DOI

Scott S.P., Weber I.T., Harrison R.W., Carey J., Tanaka J.C. A functioning chimera of the cyclic nucleotide-binding domain from the bovine retinal rod ion channel and the DNA-binding domain from catabolite gene-activating protein. Biochemistry. 2001;40:7464–7473. doi: 10.1021/bi002804x. PubMed DOI

Klotz I.M. Ligand-Receptor Energetics: A Guide for the Perplexed. Wiley; New York, NY, USA: 1997.

Carey J. Gel retardation. Methods Enzymol. 1991;208:103–217. PubMed

Ephrussi A., Church G.M., Tonegawa S., Gilbert W. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985;227:134–140. doi: 10.1126/science.3917574. PubMed DOI

Yang J., Carey J. Footprint phenotypes: Structural models of DNA-binding proteins from chemical modification analysis of DNA. Methods Enzymol. 1995;259:452–468. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...