Nuclear Cytoskeleton in Virus Infection

. 2022 Jan 05 ; 23 (1) : . [epub] 20220105

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009004

Grantová podpora
19-14445S Czech Science Foundation

The nuclear lamina is the main component of the nuclear cytoskeleton that maintains the integrity of the nucleus. However, it represents a natural barrier for viruses replicating in the cell nucleus. The lamina blocks viruses from being trafficked to the nucleus for replication, but it also impedes the nuclear egress of the progeny of viral particles. Thus, viruses have evolved mechanisms to overcome this obstacle. Large viruses induce the assembly of multiprotein complexes that are anchored to the inner nuclear membrane. Important components of these complexes are the viral and cellular kinases phosphorylating the lamina and promoting its disaggregation, therefore allowing virus egress. Small viruses also use cellular kinases to induce lamina phosphorylation and the subsequent disruption in order to facilitate the import of viral particles during the early stages of infection or during their nuclear egress. Another component of the nuclear cytoskeleton, nuclear actin, is exploited by viruses for the intranuclear movement of their particles from the replication sites to the nuclear periphery. This study focuses on exploitation of the nuclear cytoskeleton by viruses, although this is just the beginning for many viruses, and promises to reveal the mechanisms and dynamic of physiological and pathological processes in the nucleus.

Zobrazit více v PubMed

Nowak G., Pestic-Dragovich L., Hozák P., Philimonenko A., Simerly C., Schatten G., de Lanerolle P. Evidence for the presence of myosin I in the nucleus. J. Biol. Chem. 1997;272:17176–17181. doi: 10.1074/jbc.272.27.17176. PubMed DOI

Pestic-Dragovich L., Stojiljkovic L., Philimonenko A.A., Nowak G., Ke Y., Settlage R.E., Shabanowitz J., Hunt D.F., Hozak P., de Lanerolle P. A myosin I isoform in the nucleus. Science. 2000;290:337–341. doi: 10.1126/science.290.5490.337. PubMed DOI

Akoumianaki T., Kardassis D., Polioudaki H., Georgatos S.D., Theodoropoulos P.A. Nucleocytoplasmic shuttling of soluble tubulin in mammalian cells. J. Cell Sci. 2009;122:1111–1118. doi: 10.1242/jcs.043034. PubMed DOI

Ruksha K., Mezheyeuski A., Nerovnya A., Bich T., Tur G., Gorgun J., Luduena R., Portyanko A. Over-expression of ΒII-tubulin and especially its localization in cell nuclei correlates with poorer outcomes in colorectal cancer. Cells. 2019;8:E25. doi: 10.3390/cells8010025. PubMed DOI PMC

Kırlı K., Karaca S., Dehne H.J., Samwer M., Pan K.T., Lenz C., Urlaub H., Görlich D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife. 2015;4:e11466. doi: 10.7554/eLife.11466. PubMed DOI PMC

Aebi U., Cohn J., Buhle L., Gerace L. The Nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323:560–564. doi: 10.1038/323560a0. PubMed DOI

Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC

Gerace L., Burke B. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 1988;4:335–374. doi: 10.1146/annurev.cb.04.110188.002003. PubMed DOI

Nmezi B., Xu J., Fu R., Armiger T.J., Rodriguez-Bey G., Powell J.S., Ma H., Sullivan M., Tu Y., Chen N.Y., et al. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc. Natl. Acad. Sci. USA. 2019;116:4307–4315. doi: 10.1073/pnas.1810070116. PubMed DOI PMC

Wilson K.L., Foisner R. Lamin-binding proteins. Cold Spring Harb. Perspect. Biol. 2010;2:a000554. doi: 10.1101/cshperspect.a000554. PubMed DOI PMC

Simon D.N., Wilson K.L. Partners and post-translational modifications of nuclear lamins. Chromosoma. 2013;122:13–31. doi: 10.1007/s00412-013-0399-8. PubMed DOI PMC

Casey P.J. Biochemistry of protein prenylation. J. Lipid Res. 1992;33:1731–1740. doi: 10.1016/S0022-2275(20)41331-8. PubMed DOI

Casey P.J., Seabra M.C. Protein prenyltransferases. J. Biol. Chem. 1996;271:5289–5292. doi: 10.1074/jbc.271.10.5289. PubMed DOI

Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu. Rev. Biochem. 1992;61:355–386. doi: 10.1146/annurev.bi.61.070192.002035. PubMed DOI

Sinensky M., Fantle K., Trujillo M., McLain T., Kupfer A., Dalton M. The processing pathway of prelamin A. J. Cell Sci. 1994;107:61–67. doi: 10.1242/jcs.107.1.61. PubMed DOI

Young S.G., Fong L.G., Michaelis S. Prelamin A, zmpste24, misshapen cell nuclei, and progeria—New evidence suggesting that protein farnesylation could be important for disease pathogenesis. J. Lipid Res. 2005;46:2531–2558. doi: 10.1194/jlr.R500011-JLR200. PubMed DOI

Liu S.Y., Ikegami K. Nuclear lamin phosphorylation: An emerging role in gene regulation and pathogenesis of laminopathies. Nucleus. 2020;11:299–314. doi: 10.1080/19491034.2020.1832734. PubMed DOI PMC

Naetar N., Ferraioli S., Foisner R. Lamins in the nuclear interior—Life outside the lamina. J. Cell Sci. 2017;130:2087–2096. doi: 10.1242/jcs.203430. PubMed DOI

Prokocimer M., Davidovich M., Nissim-Rafinia M., Wiesel-Motiuk N., Bar D.Z., Barkan R., Meshorer E., Gruenbaum Y. Nuclear lamins: Key regulators of nuclear structure and activities. J. Cell Mol. Med. 2009;13:1059–1085. doi: 10.1111/j.1582-4934.2008.00676.x. PubMed DOI PMC

Sodeik B., Ebersold M.W., Helenius A. Microtubule-mediated transport of incoming herpes simplex Virus 1 capsids to the nucleus. J. Cell Biol. 1997;136:1007–1021. doi: 10.1083/jcb.136.5.1007. PubMed DOI PMC

Döhner K., Cornelius A., Serrero M.C., Sodeik B. The journey of herpesvirus capsids and genomes to the host cell nucleus. Curr. Opin. Virol. 2021;50:147–158. doi: 10.1016/j.coviro.2021.08.005. PubMed DOI

Copeland A.M., Newcomb W.W., Brown J.C. Herpes simplex virus replication: Roles of viral proteins and nucleoporins in capsid-nucleus attachment. J. Virol. 2009;83:1660–1668. doi: 10.1128/JVI.01139-08. PubMed DOI PMC

Abaitua F., O’Hare P. Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein. J. Virol. 2008;82:5234–5244. doi: 10.1128/JVI.02497-07. PubMed DOI PMC

Pasdeloup D., Blondel D., Isidro A.L., Rixon F.J. Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein PUL25. J. Virol. 2009;83:6610–6623. doi: 10.1128/JVI.02655-08. PubMed DOI PMC

Preston V.G., Murray J., Preston C.M., McDougall I.M., Stow N.D. The UL25 gene product of herpes simplex virus type 1 Is Involved in Uncoating of the Viral Genome. J. Virol. 2008;82:6654–6666. doi: 10.1128/JVI.00257-08. PubMed DOI PMC

Jovasevic V., Liang L., Roizman B. Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J. Virol. 2008;82:3311–3319. doi: 10.1128/JVI.01919-07. PubMed DOI PMC

Radsak K.D., Brücher K.H., Georgatos S.D. Focal nuclear envelope lesions and specific nuclear lamin A/C Dephosphorylation during infection with human cytomegalovirus. Eur. J. Cell Biol. 1991;54:299–304. PubMed

Scott E.S., O’Hare P. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J. Virol. 2001;75:8818–8830. doi: 10.1128/JVI.75.18.8818-8830.2001. PubMed DOI PMC

Muranyi W., Haas J., Wagner M., Krohne G., Koszinowski U.H. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science. 2002;297:854–857. doi: 10.1126/science.1071506. PubMed DOI

Dal Monte P., Pignatelli S., Zini N., Maraldi N.M., Perret E., Prevost M.C., Landini M.P. Analysis of Intracellular and Intraviral Localization of the Human Cytomegalovirus UL53 Protein. J. Gen. Virol. 2002;83:1005–1012. doi: 10.1099/0022-1317-83-5-1005. PubMed DOI

Marschall M., Marzi A., aus dem Siepen P., Jochmann R., Kalmer M., Auerochs S., Lischka P., Leis M., Stamminger T. Cellular P32 recruits cytomegalovirus kinase PUL97 to redistribute the nuclear lamina. J. Biol. Chem. 2005;280:33357–33367. doi: 10.1074/jbc.M502672200. PubMed DOI

Sharma M., Kamil J.P., Coughlin M., Reim N.I., Coen D.M. Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells. J. Virol. 2014;88:249–262. doi: 10.1128/JVI.02358-13. PubMed DOI PMC

Camozzi D., Pignatelli S., Valvo C., Lattanzi G., Capanni C., Dal Monte P., Landini M.P. Remodelling of the nuclear lamina during human cytomegalovirus infection: Role of the viral proteins PUL50 and PUL53. J. Gen. Virol. 2008;89:731–740. doi: 10.1099/vir.0.83377-0. PubMed DOI

Kuan M.I., O’Dowd J.M., Fortunato E.A. The absence of P53 during human cytomegalovirus infection leads to decreased UL53 expression, disrupting UL50 localization to the inner nuclear membrane, and thereby inhibiting capsid nuclear egress. Virology. 2016;497:262–278. doi: 10.1016/j.virol.2016.07.020. PubMed DOI PMC

Hamirally S., Kamil J.P., Ndassa-Colday Y.M., Lin A.J., Jahng W.J., Baek M.-C., Noton S., Silva L.A., Simpson-Holley M., Knipe D.M., et al. Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog. 2009;5:e1000275. doi: 10.1371/journal.ppat.1000275. PubMed DOI PMC

Milbradt J., Webel R., Auerochs S., Sticht H., Marschall M. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J. Biol. Chem. 2010;285:13979–13989. doi: 10.1074/jbc.M109.063628. PubMed DOI PMC

Milbradt J., Auerochs S., Marschall M. Cytomegaloviral proteins PUL50 and PUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. J. Gen. Virol. 2007;88:2642–2650. doi: 10.1099/vir.0.82924-0. PubMed DOI

Sonntag E., Hamilton S.T., Bahsi H., Wagner S., Jonjic S., Rawlinson W.D., Marschall M., Milbradt J. Cytomegalovirus PUL50 is the multi-interacting determinant of the core nuclear egress complex (NEC) that recruits cellular accessory NEC components. J. Gen. Virol. 2016;97:1676–1685. doi: 10.1099/jgv.0.000495. PubMed DOI

Kuny C.V., Chinchilla K., Culbertson M.R., Kalejta R.F. Cyclin-dependent kinase-like function is shared by the beta- and gamma-subset of the conserved herpesvirus protein kinases. PLoS Pathog. 2010;6:e1001092. doi: 10.1371/journal.ppat.1001092. PubMed DOI PMC

Milbradt J., Hutterer C., Bahsi H., Wagner S., Sonntag E., Horn A.H.C., Kaufer B.B., Mori Y., Sticht H., Fossen T., et al. The prolyl isomerase pin1 promotes the herpesvirus-induced phosphorylation-dependent disassembly of the nuclear lamina required for nucleocytoplasmic egress. PLoS Pathog. 2016;12:e1005825. doi: 10.1371/journal.ppat.1005825. PubMed DOI PMC

Milbradt J., Sonntag E., Wagner S., Strojan H., Wangen C., Lenac Rovis T., Lisnic B., Jonjic S., Sticht H., Britt W.J., et al. Human cytomegalovirus nuclear capsids associate with the core nuclear egress complex and the viral protein kinase PUL97. Viruses. 2018;10:E35. doi: 10.3390/v10010035. PubMed DOI PMC

Miller M.S., Furlong W.E., Pennell L., Geadah M., Hertel L. RASCAL is a new human cytomegalovirus-encoded protein that localizes to the nuclear lamina and in cytoplasmic vesicles at late times postinfection. J. Virol. 2010;84:6483–6496. doi: 10.1128/JVI.02462-09. PubMed DOI PMC

Murray L.A., Sheng X., Cristea I.M. Orchestration of protein acetylation as a toggle for cellular defense and virus replication. Nat. Commun. 2018;9:4967. doi: 10.1038/s41467-018-07179-w. PubMed DOI PMC

Reynolds A.E., Wills E.G., Roller R.J., Ryckman B.J., Baines J.D. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol. 2002;76:8939–8952. doi: 10.1128/JVI.76.17.8939-8952.2002. PubMed DOI PMC

Simpson-Holley M., Baines J., Roller R., Knipe D.M. Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J. Virol. 2004;78:5591–5600. doi: 10.1128/JVI.78.11.5591-5600.2004. PubMed DOI PMC

Simpson-Holley M., Colgrove R.C., Nalepa G., Harper J.W., Knipe D.M. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J. Virol. 2005;79:12840–12851. doi: 10.1128/JVI.79.20.12840-12851.2005. PubMed DOI PMC

Roller R.J., Zhou Y., Schnetzer R., Ferguson J., DeSalvo D. Herpes simplex virus type 1 U(L)34 gene product is required for viral envelopment. J. Virol. 2000;74:117–129. doi: 10.1128/JVI.74.1.117-129.2000. PubMed DOI PMC

Farina A., Santarelli R., Bloise R., Gonnella R., Granato M., Bei R., Modesti A., Cirone M., Bengtsson L., Angeloni A., et al. KSHV ORF67 encoded lytic protein localizes on the nuclear membrane and alters emerin distribution. Virus Res. 2013;175:143–150. doi: 10.1016/j.virusres.2013.04.001. PubMed DOI

Lee C.-P., Huang Y.-H., Lin S.-F., Chang Y., Chang Y.-H., Takada K., Chen M.-R. Epstein-barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J. Virol. 2008;82:11913–11926. doi: 10.1128/JVI.01100-08. PubMed DOI PMC

Gonnella R., Farina A., Santarelli R., Raffa S., Feederle R., Bei R., Granato M., Modesti A., Frati L., Delecluse H.-J., et al. Characterization and intracellular localization of the epstein-barr virus protein BFLF2: Interactions with BFRF1 and with the nuclear lamina. J. Virol. 2005;79:3713–3727. doi: 10.1128/JVI.79.6.3713-3727.2005. PubMed DOI PMC

Mou F., Forest T., Baines J.D. US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J. Virol. 2007;81:6459–6470. doi: 10.1128/JVI.00380-07. PubMed DOI PMC

Bjerke S.L., Roller R.J. Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology. 2006;347:261–276. doi: 10.1016/j.virol.2005.11.053. PubMed DOI PMC

Kato A., Yamamoto M., Ohno T., Tanaka M., Sata T., Nishiyama Y., Kawaguchi Y. Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J. Virol. 2006;80:1476–1486. doi: 10.1128/JVI.80.3.1476-1486.2006. PubMed DOI PMC

Cano-Monreal G.L., Wylie K.M., Cao F., Tavis J.E., Morrison L.A. Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins. Virology. 2009;392:137–147. doi: 10.1016/j.virol.2009.06.051. PubMed DOI PMC

Park R., Baines J.D. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the Nuclear membrane and increased phosphorylation of lamin B. J. Virol. 2006;80:494–504. doi: 10.1128/JVI.80.1.494-504.2006. PubMed DOI PMC

Wang Y., Yang Y., Wu S., Pan S., Zhou C., Ma Y., Ru Y., Dong S., He B., Zhang C., et al. P32 is a novel target for viral protein ICP34.5 of herpes simplex virus type 1 and facilitates viral nuclear egress. J. Biol. Chem. 2014;289:35795–35805. doi: 10.1074/jbc.M114.603845. PubMed DOI PMC

Leach N.R., Roller R.J. Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina. Virology. 2010;406:127–137. doi: 10.1016/j.virol.2010.07.002. PubMed DOI PMC

Wu S., Pan S., Zhang L., Baines J., Roller R., Ames J., Yang M., Wang J., Chen D., Liu Y., et al. Herpes simplex virus 1 induces phosphorylation and reorganization of lamin A/C through the Γ134.5 protein that facilitates nuclear egress. J. Virol. 2016;90:10414–10422. doi: 10.1128/JVI.01392-16. PubMed DOI PMC

Leach N., Bjerke S.L., Christensen D.K., Bouchard J.M., Mou F., Park R., Baines J., Haraguchi T., Roller R.J. Emerin Is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J. Virol. 2007;81:10792–10803. doi: 10.1128/JVI.00196-07. PubMed DOI PMC

Morris J.B., Hofemeister H., O’Hare P. Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J. Virol. 2007;81:4429–4437. doi: 10.1128/JVI.02354-06. PubMed DOI PMC

Mou F., Wills E.G., Park R., Baines J.D. Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane. J. Virol. 2008;82:8094–8104. doi: 10.1128/JVI.00874-08. PubMed DOI PMC

Turan A., Grosche L., Krawczyk A., Mühl-Zürbes P., Drassner C., Düthorn A., Kummer M., Hasenberg M., Voortmann S., Jastrow H., et al. Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. J. Cell Biol. 2019;218:508–523. doi: 10.1083/jcb.201801151. PubMed DOI PMC

Silva L., Cliffe A., Chang L., Knipe D.M. Role for A-type lamins in herpesviral DNA targeting and heterochromatin modulation. PLoS Pathog. 2008;4:e1000071. doi: 10.1371/journal.ppat.1000071. PubMed DOI PMC

Silva L., Oh H.S., Chang L., Yan Z., Triezenberg S.J., Knipe D.M. Roles of the nuclear lamina in stable nuclear association and assembly of a herpesviral transactivator complex on viral immediate-early genes. mBio. 2012;3:e00300-11. doi: 10.1128/mBio.00300-11. PubMed DOI PMC

Okano K., Vanarsdall A.L., Mikhailov V.S., Rohrmann G.F. Conserved molecular systems of the baculoviridae. Virology. 2006;344:77–87. doi: 10.1016/j.virol.2005.09.019. PubMed DOI

Wilson M.E., Price K.H. Association of autographa californica nuclear polyhedrosis virus (AcMNPV) with the nuclear matrix. Virology. 1988;167:233–241. doi: 10.1016/0042-6822(88)90073-6. PubMed DOI

Wei W., Wang H., Li X., Fang N., Yang S., Liu H., Kang X., Sun X., Ji S. Cloning and characterization of Sf9 cell lamin and the lamin conformational changes during autographa californica multiple nucleopolyhedrovirus infection. Viruses. 2016;8:E126. doi: 10.3390/v8050126. PubMed DOI PMC

Zhang X., Xu K., Wei D., Wu W., Yang K., Yuan M. Baculovirus Infection induces disruption of the nuclear lamina. Sci. Rep. 2017;7:7823. doi: 10.1038/s41598-017-08437-5. PubMed DOI PMC

Wei W., Hu Z., Jia Y., Gu T., Zhao W., Ji S. Characterization of lamin b receptor of Sf9 cells and its fate during autographa californica nucleopolyhedrovirus infection. Cytotechnology. 2020;72:315–325. doi: 10.1007/s10616-020-00380-0. PubMed DOI PMC

Cook L. Polyomaviruses. Microbiol. Spectr. 2016;4:10. doi: 10.1128/microbiolspec.DMIH2-0010-2015. PubMed DOI

Ehlers B., Moens U. Genome analysis of non-human primate polyomaviruses. Infect. Genet. Evol. 2014;26:283–294. doi: 10.1016/j.meegid.2014.05.030. PubMed DOI

Prado J.C.M., Monezi T.A., Amorim A.T., Lino V., Paladino A., Boccardo E. Human polyomaviruses and cancer: An overview. Clinics. 2018;73:e558s. doi: 10.6061/clinics/2018/e558s. PubMed DOI PMC

Gerits N., Moens U. Agnoprotein of mammalian polyomaviruses. Virology. 2012;432:316–326. doi: 10.1016/j.virol.2012.05.024. PubMed DOI PMC

Okada Y., Suzuki T., Sunden Y., Orba Y., Kose S., Imamoto N., Takahashi H., Tanaka S., Hall W.W., Nagashima K., et al. Dissociation of heterochromatin protein 1 from lamin B receptor induced by human polyomavirus agnoprotein: Role in nuclear egress of viral particles. EMBO Rep. 2005;6:452–457. doi: 10.1038/sj.embor.7400406. PubMed DOI PMC

Panou M.-M., Prescott E.L., Hurdiss D.L., Swinscoe G., Hollinshead M., Caller L.G., Morgan E.L., Carlisle L., Müller M., Antoni M., et al. Agnoprotein is an essential egress factor during BK polyomavirus infection. Int. J. Mol. Sci. 2018;19:902. doi: 10.3390/ijms19030902. PubMed DOI PMC

Horníková L., Bruštíková K., Forstová J. Microtubules in polyomavirus infection. Viruses. 2020;12:E121. doi: 10.3390/v12010121. PubMed DOI PMC

Rainey-Barger E.K., Magnuson B., Tsai B. A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J. Virol. 2007;81:12996–13004. doi: 10.1128/JVI.01037-07. PubMed DOI PMC

Huérfano S., Ryabchenko B., Španielová H., Forstová J. Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the ER. FEBS J. 2017;284:883–902. doi: 10.1111/febs.14033. PubMed DOI

Soldatova I., Prilepskaja T., Abrahamyan L., Forstová J., Huérfano S. Interaction of the mouse polyomavirus capsid proteins with importins is required for efficient import of viral DNA into the cell nucleus. Viruses. 2018;10:E165. doi: 10.3390/v10040165. PubMed DOI PMC

Butin-Israeli V., Ben-nun-Shaul O., Kopatz I., Adam S.A., Shimi T., Goldman R.D., Oppenheim A. Simian virus 40 induces lamin A/C fluctuations and nuclear envelope deformation during cell entry. Nucleus. 2011;2:320–330. doi: 10.4161/nucl.2.4.16371. PubMed DOI PMC

Black P.H., Crawford E.M., Crawford L.V. The purification of simian virus 40. Virology. 1964;24:381–387. doi: 10.1016/0042-6822(64)90175-8. PubMed DOI

Ye Q., Worman H.J. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to drosophila HP1. J. Biol. Chem. 1996;271:14653–14656. doi: 10.1074/jbc.271.25.14653. PubMed DOI

Ye Q., Callebaut I., Pezhman A., Courvalin J.C., Worman H.J. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 1997;272:14983–14989. doi: 10.1074/jbc.272.23.14983. PubMed DOI

Cotmore S.F., Agbandje-McKenna M., Canuti M., Chiorini J.A., Eis-Hubinger A.-M., Hughes J., Mietzsch M., Modha S., Ogliastro M., Pénzes J.J., et al. ICTV virus taxonomy profile: Parvoviridae. J. Gen. Virol. 2019;100:367–368. doi: 10.1099/jgv.0.001212. PubMed DOI PMC

Chipman P.R., Agbandje-McKenna M., Kajigaya S., Brown K.E., Young N.S., Baker T.S., Rossmann M.G. Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor. Proc. Natl. Acad. Sci. USA. 1996;93:7502–7506. doi: 10.1073/pnas.93.15.7502. PubMed DOI PMC

Summerford C., Samulski R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 Virions. J. Virol. 1998;72:1438–1445. doi: 10.1128/JVI.72.2.1438-1445.1998. PubMed DOI PMC

Cotmore S.F., Tattersall P. Parvoviruses: Small does not mean simple. Annu. Rev. Virol. 2014;1:517–537. doi: 10.1146/annurev-virology-031413-085444. PubMed DOI

Hansen J., Qing K., Srivastava A. Infection of purified nuclei by adeno-associated virus 2. Mol. Ther. 2001;4:289–296. doi: 10.1006/mthe.2001.0457. PubMed DOI

Cohen S., Panté N. Pushing the envelope: Microinjection of minute virus of mice into xenopus oocytes causes damage to the nuclear envelope. J. Gen. Virol. 2005;86:3243–3252. doi: 10.1099/vir.0.80967-0. PubMed DOI

Cohen S., Behzad A.R., Carroll J.B., Panté N. Parvoviral nuclear import: Bypassing the host nuclear-transport machinery. J. Gen. Virol. 2006;87:3209–3213. doi: 10.1099/vir.0.82232-0. PubMed DOI

Cohen S., Marr A.K., Garcin P., Panté N. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J. Virol. 2011;85:4863–4874. doi: 10.1128/JVI.01999-10. PubMed DOI PMC

Porwal M., Cohen S., Snoussi K., Popa-Wagner R., Anderson F., Dugot-Senant N., Wodrich H., Dinsart C., Kleinschmidt J.A., Panté N., et al. Parvoviruses cause nuclear envelope breakdown by activating key enzymes of mitosis. PLoS Pathog. 2013;9:e1003671. doi: 10.1371/journal.ppat.1003671. PubMed DOI PMC

Shimizu T., Cao C.X., Shao R.G., Pommier Y. Lamin B phosphorylation by protein kinase calpha and proteolysis during apoptosis in human leukemia HL60 cells. J. Biol. Chem. 1998;273:8669–8674. doi: 10.1074/jbc.273.15.8669. PubMed DOI

Jin Y.H., Yoo K.J., Lee Y.H., Lee S.K. Caspase 3-mediated cleavage of P21WAF1/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. J. Biol. Chem. 2000;275:30256–30263. doi: 10.1074/jbc.M001902200. PubMed DOI

Hu B., Mitra J., van den Heuvel S., Enders G.H. S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol. Cell Biol. 2001;21:2755–2766. doi: 10.1128/MCB.21.8.2755-2766.2001. PubMed DOI PMC

Mäntylä E., Niskanen E.A., Ihalainen T.O., Vihinen-Ranta M. Reorganization of nuclear pore complexes and the lamina in late-stage parvovirus infection. J. Virol. 2015;89:11706–11710. doi: 10.1128/JVI.01608-15. PubMed DOI PMC

Tischer I., Gelderblom H., Vettermann W., Koch M.A. A very small porcine virus with circular single-stranded DNA. Nature. 1982;295:64–66. doi: 10.1038/295064a0. PubMed DOI

Breitbart M., Delwart E., Rosario K., Segalés J., Varsani A. ICTV report consortium, null ICTV Virus Taxonomy Profile: Circoviridae. J. Gen. Virol. 2017;98:1997–1998. doi: 10.1099/jgv.0.000871. PubMed DOI PMC

Biagini P. Human circoviruses. Vet. Microbiol. 2004;98:95–101. doi: 10.1016/j.vetmic.2003.10.004. PubMed DOI

Finsterbusch T., Mankertz A. Porcine circoviruses—Small but powerful. Virus Res. 2009;143:177–183. doi: 10.1016/j.virusres.2009.02.009. PubMed DOI

Finsterbusch T., Steinfeldt T., Doberstein K., Rödner C., Mankertz A. Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology. 2009;386:122–131. doi: 10.1016/j.virol.2008.12.039. PubMed DOI

Soltys B.J., Kang D., Gupta R.S. Localization of P32 protein (GC1q-R) in mitochondria and at specific extramitochondrial locations in normal tissues. Histochem. Cell Biol. 2000;114:245–255. doi: 10.1007/s004180000191. PubMed DOI

Wang T., Du Q., Niu Y., Zhang X., Wang Z., Wu X., Yang X., Zhao X., Liu S.-L., Tong D., et al. Cellular P32 is a critical regulator of porcine circovirus type 2 nuclear egress. J. Virol. 2019;93:e00979-19. doi: 10.1128/JVI.00979-19. PubMed DOI PMC

Lane N.J. Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J. Cell Biol. 1969;40:286–291. doi: 10.1083/jcb.40.1.286. PubMed DOI PMC

Douvas A.S., Harrington C.A., Bonner J. Major nonhistone proteins of rat liver chromatin: Preliminary identification of myosin, actin, tubulin, and tropomyosin. Proc. Natl. Acad. Sci. USA. 1975;72:3902–3906. doi: 10.1073/pnas.72.10.3902. PubMed DOI PMC

Fukui Y., Katsumaru H. Nuclear actin bundles in amoeba, dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp. Cell Res. 1979;120:451–455. doi: 10.1016/0014-4827(79)90412-9. PubMed DOI

Zhao K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell. 1998;95:625–636. doi: 10.1016/S0092-8674(00)81633-5. PubMed DOI

Xie X., Almuzzaini B., Drou N., Kremb S., Yousif A., Farrants A.-K.Ö., Gunsalus K., Percipalle P. β-actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32:1296–1314. doi: 10.1096/fj.201700753R. PubMed DOI

Almuzzaini B., Sarshad A.A., Farrants A.-K.Ö., Percipalle P. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol. 2015;13:35. doi: 10.1186/s12915-015-0147-z. PubMed DOI PMC

Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R. Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 2015;290:11209–11216. doi: 10.1074/jbc.M114.627166. PubMed DOI PMC

Gonsior S.M., Platz S., Buchmeier S., Scheer U., Jockusch B.M., Hinssen H. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J. Cell Sci. 1999;112:797–809. doi: 10.1242/jcs.112.6.797. PubMed DOI

Schoenenberger C.-A., Buchmeier S., Boerries M., Sütterlin R., Aebi U., Jockusch B.M. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J. Struct Biol. 2005;152:157–168. doi: 10.1016/j.jsb.2005.09.003. PubMed DOI

Dopie J., Skarp K.-P., Rajakylä E.K., Tanhuanpää K., Vartiainen M.K. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl. Acad. Sci. USA. 2012;109:E544–E552. doi: 10.1073/pnas.1118880109. PubMed DOI PMC

Stüven T., Hartmann E., Görlich D. Exportin 6: A novel nuclear export receptor that is specific for profilin·actin complexes. EMBO J. 2003;22:5928–5940. doi: 10.1093/emboj/cdg565. PubMed DOI PMC

Kapoor P., Shen X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 2014;24:238–246. doi: 10.1016/j.tcb.2013.10.007. PubMed DOI PMC

Serebryannyy L., de Lanerolle P. Nuclear actin: The new normal. Mutat. Res. 2020;821:111714. doi: 10.1016/j.mrfmmm.2020.111714. PubMed DOI

Egly J.M., Miyamoto N.G., Moncollin V., Chambon P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J. 1984;3:2363–2371. doi: 10.1002/j.1460-2075.1984.tb02141.x. PubMed DOI PMC

Scheer U., Hinssen H., Franke W.W., Jockusch B.M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell. 1984;39:111–122. doi: 10.1016/0092-8674(84)90196-X. PubMed DOI

Percipalle P., Zhao J., Pope B., Weeds A., Lindberg U., Daneholt B. Actin bound to the heterogeneous nuclear ribonucleoprotein Hrp36 is associated with balbiani ring MRNA from the gene to polysomes. J. Cell Biol. 2001;153:229–236. doi: 10.1083/jcb.153.1.229. PubMed DOI PMC

Percipalle P., Jonsson A., Nashchekin D., Karlsson C., Bergman T., Guialis A., Daneholt B. Nuclear actin is associated with a specific subset of HnRNP A/B-type proteins. Nucleic Acids Res. 2002;30:1725–1734. doi: 10.1093/nar/30.8.1725. PubMed DOI PMC

Hofmann W.A., Stojiljkovic L., Fuchsova B., Vargas G.M., Mavrommatis E., Philimonenko V., Kysela K., Goodrich J.A., Lessard J.L., Hope T.J., et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 2004;6:1094–1101. doi: 10.1038/ncb1182. PubMed DOI

Hu P., Wu S., Hernandez N. A role for beta-actin in RNA polymerase III transcription. Genes Dev. 2004;18:3010–3015. doi: 10.1101/gad.1250804. PubMed DOI PMC

Philimonenko V.V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozák P., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI

Wu X., Yoo Y., Okuhama N.N., Tucker P.W., Liu G., Guan J.-L. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat. Cell Biol. 2006;8:756–763. doi: 10.1038/ncb1433. PubMed DOI

Galarneau L., Nourani A., Boudreault A.A., Zhang Y., Héliot L., Allard S., Savard J., Lane W.S., Stillman D.J., Côté J. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell. 2000;5:927–937. doi: 10.1016/S1097-2765(00)80258-0. PubMed DOI

Shen X., Mizuguchi G., Hamiche A., Wu C. A chromatin remodelling complex involved in transcription and DNA processing. Nature. 2000;406:541–544. doi: 10.1038/35020123. PubMed DOI

Fenn S., Breitsprecher D., Gerhold C.B., Witte G., Faix J., Hopfner K.-P. Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin. EMBO J. 2011;30:2153–2166. doi: 10.1038/emboj.2011.118. PubMed DOI PMC

Kapoor P., Chen M., Winkler D.D., Luger K., Shen X. Evidence for monomeric actin function in INO80 chromatin remodeling. Nat. Struct. Mol. Biol. 2013;20:426–432. doi: 10.1038/nsmb.2529. PubMed DOI PMC

Serebryannyy L.A., Cruz C.M., de Lanerolle P. A role for nuclear actin in HDAC 1 and 2 regulation. Sci. Rep. 2016;6:28460. doi: 10.1038/srep28460. PubMed DOI PMC

Oza P., Jaspersen S.L., Miele A., Dekker J., Peterson C.L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 2009;23:912–927. doi: 10.1101/gad.1782209. PubMed DOI PMC

Andrin C., McDonald D., Attwood K.M., Rodrigue A., Ghosh S., Mirzayans R., Masson J.-Y., Dellaire G., Hendzel M.J. A requirement for polymerized actin in DNA double-strand break repair. Nucleus. 2012;3:384–395. doi: 10.4161/nucl.21055. PubMed DOI

Schrank B.R., Aparicio T., Li Y., Chang W., Chait B.T., Gundersen G.G., Gottesman M.E., Gautier J. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61–66. doi: 10.1038/s41586-018-0237-5. PubMed DOI PMC

Caridi C.P., D’Agostino C., Ryu T., Zapotoczny G., Delabaere L., Li X., Khodaverdian V.Y., Amaral N., Lin E., Rau A.R., et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559:54–60. doi: 10.1038/s41586-018-0242-8. PubMed DOI PMC

Tsouroula K., Furst A., Rogier M., Heyer V., Maglott-Roth A., Ferrand A., Reina-San-Martin B., Soutoglou E. Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Mol. Cell. 2016;63:293–305. doi: 10.1016/j.molcel.2016.06.002. PubMed DOI

Zastrow M.S., Flaherty D.B., Benian G.M., Wilson K.L. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J. Cell Sci. 2006;119:239–249. doi: 10.1242/jcs.02728. PubMed DOI

Lee K.K., Haraguchi T., Lee R.S., Koujin T., Hiraoka Y., Wilson K.L. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci. 2001;114:4567–4573. doi: 10.1242/jcs.114.24.4567. PubMed DOI

Haque F., Lloyd D.J., Smallwood D.T., Dent C.L., Shanahan C.M., Fry A.M., Trembath R.C., Shackleton S. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell Biol. 2006;26:3738–3751. doi: 10.1128/MCB.26.10.3738-3751.2006. PubMed DOI PMC

Mislow J.M.K., Kim M.S., Davis D.B., McNally E.M. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J. Cell Sci. 2002;115:61–70. doi: 10.1242/jcs.115.1.61. PubMed DOI

Wang N., Tytell J.D., Ingber D.E. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 2009;10:75–82. doi: 10.1038/nrm2594. PubMed DOI

Holaska J.M., Wilson K.L. An emerin “proteome”: Purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, MRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry. 2007;46:8897–8908. doi: 10.1021/bi602636m. PubMed DOI PMC

Lammerding J., Hsiao J., Schulze P.C., Kozlov S., Stewart C.L., Lee R.T. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J. Cell Biol. 2005;170:781–791. doi: 10.1083/jcb.200502148. PubMed DOI PMC

Charlton C.A., Volkman L.E. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected spodoptera frugiperda cells. J. Virol. 1991;65:1219–1227. doi: 10.1128/jvi.65.3.1219-1227.1991. PubMed DOI PMC

Newsome T.P., Marzook N.B. Viruses that ride on the coat-tails of actin nucleation. Semin. Cell Dev. Biol. 2015;46:155–163. doi: 10.1016/j.semcdb.2015.10.008. PubMed DOI

Dowd G.C., Mortuza R., Ireton K. Molecular mechanisms of intercellular dissemination of bacterial pathogens. Trends Microbiol. 2021;29:127–141. doi: 10.1016/j.tim.2020.06.008. PubMed DOI

Ohkawa T., Volkman L.E., Welch M.D. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J. Cell Biol. 2010;190:187–195. doi: 10.1083/jcb.201001162. PubMed DOI PMC

Au S., Wu W., Zhou L., Theilmann D.A., Panté N. A new mechanism for nuclear import by actin-based propulsion used by a baculovirus nucleocapsid. J. Cell Sci. 2016;129:2905–2911. doi: 10.1242/jcs.191668. PubMed DOI

Ohkawa T., Rowe A.R., Volkman L.E. Identification of six autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of G-actin. J. Virol. 2002;76:12281–12289. doi: 10.1128/JVI.76.23.12281-12289.2002. PubMed DOI PMC

Ohkawa T., Volkman L.E. Nuclear F-actin is required for AcMNPV nucleocapsid morphogenesis. Virology. 1999;264:1–4. doi: 10.1006/viro.1999.0008. PubMed DOI

Goley E.D., Ohkawa T., Mancuso J., Woodruff J.B., D’Alessio J.A., Cande W.Z., Volkman L.E., Welch M.D. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science. 2006;314:464–467. doi: 10.1126/science.1133348. PubMed DOI

Volkman L.E., Goldsmith P.A., Hess R.T. Evidence for microfilament involvement in budded autographa californica nuclear polyhedrosis virus production. Virology. 1987;156:32–39. doi: 10.1016/0042-6822(87)90433-8. PubMed DOI

Ohkawa T., Welch M.D. Baculovirus actin-based motility drives nuclear envelope disruption and nuclear egress. Curr. Biol. 2018;28:2153–2159. doi: 10.1016/j.cub.2018.05.027. PubMed DOI PMC

Mu J., Zhang Y., Hu Y., Hu X., Zhou Y., Chen X., Wang Y. The role of viral protein Ac34 in nuclear relocation of subunits of the actin-related protein 2/3 complex. Virol. Sin. 2016;31:480–489. doi: 10.1007/s12250-016-3912-4. PubMed DOI PMC

Li S., Wang Y., Hou D., Guan Z., Shen S., Peng K., Deng F., Chen X., Hu Z., Wang H., et al. Host factor heat-shock protein 90 contributes to baculovirus budded virus morphogenesis via facilitating nuclear actin polymerization. Virology. 2019;535:200–209. doi: 10.1016/j.virol.2019.07.006. PubMed DOI

Zhang J., Li Y., Zhao S., Wu X. Identification of A functional region in bombyx mori nucleopolyhedrovirus VP39 that is essential for nuclear actin polymerization. Virology. 2020;550:37–50. doi: 10.1016/j.virol.2020.06.015. PubMed DOI

Wang Y., Wang Q., Liang C., Song J., Li N., Shi H., Chen X. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein BV/ODV-C42 mediates the nuclear entry of P78/83. J. Virol. 2008;82:4554–4561. doi: 10.1128/JVI.02510-07. PubMed DOI PMC

Marek M., Merten O.-W., Galibert L., Vlak J.M., van Oers M.M. Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery. J. Virol. 2011;85:5350–5362. doi: 10.1128/JVI.00035-11. PubMed DOI PMC

Guan Z., Zhong L., Li C., Wu W., Yuan M., Yang K. The autographa californica multiple nucleopolyhedrovirus Ac54 gene is crucial for localization of the major capsid protein VP39 at the site of nucleocapsid assembly. J. Virol. 2016;90:4115–4126. doi: 10.1128/JVI.02885-15. PubMed DOI PMC

Mu J., Zhang Y., Hu Y., Hu X., Zhou Y., Zhao H., Pei R., Wu C., Chen J., Zhao H., et al. Autographa californica multiple nucleopolyhedrovirus Ac34 protein retains cellular actin-related protein 2/3 complex in the nucleus by subversion of CRM1-dependent nuclear export. PLoS Pathog. 2016;12:e1005994. doi: 10.1371/journal.ppat.1005994. PubMed DOI PMC

Gandhi K.M., Ohkawa T., Welch M.D., Volkman L.E. Nuclear localization of actin requires AC102 in autographa californica multiple nucleopolyhedrovirus-infected cells. J. Gen. Virol. 2012;93:1795–1803. doi: 10.1099/vir.0.041848-0. PubMed DOI PMC

Hepp S.E., Borgo G.M., Ticau S., Ohkawa T., Welch M.D. Baculovirus AC102 is a nucleocapsid protein that is crucial for nuclear actin polymerization and nucleocapsid morphogenesis. J. Virol. 2018;92:e00111-18. doi: 10.1128/JVI.00111-18. PubMed DOI PMC

Zhang Y., Hu X., Mu J., Hu Y., Zhou Y., Zhao H., Wu C., Pei R., Chen J., Chen X., et al. Ac102 participates in nuclear actin polymerization by modulating BV/ODV-C42 ubiquitination during autographa californica multiple nucleopolyhedrovirus infection. J. Virol. 2018;92:e00005-18. doi: 10.1128/JVI.00005-18. PubMed DOI PMC

Feierbach B., Piccinotti S., Bisher M., Denk W., Enquist L.W. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2006;2:e85. doi: 10.1371/journal.ppat.0020085. PubMed DOI PMC

Forest T., Barnard S., Baines J.D. Active intranuclear movement of herpesvirus capsids. Nat. Cell Biol. 2005;7:429–431. doi: 10.1038/ncb1243. PubMed DOI

Wilkie A.R., Lawler J.L., Coen D.M. A role for nuclear F-actin induction in human cytomegalovirus nuclear egress. mBio. 2016;7:e01254-16. doi: 10.1128/mBio.01254-16. PubMed DOI PMC

Wilkie A.R., Sharma M., Pesola J.M., Ericsson M., Fernandez R., Coen D.M. A role for myosin Va in human cytomegalovirus nuclear egress. J. Virol. 2018;92:e01849-17. doi: 10.1128/JVI.01849-17. PubMed DOI PMC

Chang L., Godinez W.J., Kim I.-H., Tektonidis M., de Lanerolle P., Eils R., Rohr K., Knipe D.M. Herpesviral replication compartments move and coalesce at nuclear speckles to enhance export of viral late MRNA. Proc. Natl. Acad. Sci. USA. 2011;108:E136–E144. doi: 10.1073/pnas.1103411108. PubMed DOI PMC

Bosse J.B., Virding S., Thiberge S.Y., Scherer J., Wodrich H., Ruzsics Z., Koszinowski U.H., Enquist L.W. Nuclear herpesvirus capsid motility is not dependent on F-actin. mBio. 2014;5:e01909–e01914. doi: 10.1128/mBio.01909-14. PubMed DOI PMC

Bosse J.B., Hogue I.B., Feric M., Thiberge S.Y., Sodeik B., Brangwynne C.P., Enquist L.W. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion. Proc. Natl. Acad. Sci. USA. 2015;112:E5725–E5733. doi: 10.1073/pnas.1513876112. PubMed DOI PMC

Fuchsova B., Serebryannyy L.A., de Lanerolle P. Nuclear actin and myosins in adenovirus infection. Exp. Cell Res. 2015;338:170–182. doi: 10.1016/j.yexcr.2015.07.025. PubMed DOI PMC

Sankovski E., Abroi A., Ustav M., Ustav M. Nuclear myosin 1 associates with papillomavirus E2 regulatory protein and influences viral replication. Virology. 2018;514:142–155. doi: 10.1016/j.virol.2017.11.013. PubMed DOI

Kimura T., Hashimoto I., Yamamoto A., Nishikawa M., Fujisawa J.I. Rev-dependent association of the intron-containing HIV-1 gag MRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells. 2000;5:289–307. doi: 10.1046/j.1365-2443.2000.00326.x. PubMed DOI

Hofmann W., Reichart B., Ewald A., Müller E., Schmitt I., Stauber R.H., Lottspeich F., Jockusch B.M., Scheer U., Hauber J., et al. Cofactor requirements for nuclear export of rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J. Cell Biol. 2001;152:895–910. doi: 10.1083/jcb.152.5.895. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mouse polyomavirus infection induces lamin reorganisation

. 2024 Dec ; 291 (23) : 5133-5155. [epub] 20240917

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...