Effect of Conditioning on PU Foam Matrix Materials Properties

. 2021 Dec 28 ; 15 (1) : . [epub] 20211228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009340

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867 Technical University of Ostrava
IGA_PrF_2021_031 Palacký University, Olomouc

This article deals with the characterization of the thermal-induced aging of soft polyurethane (PU) foams. There are studied thermal and mechanical properties by means of thermal analysis, tensile, compression and dynamic mechanical vibration testing. It was found in this study, that the increasing relative humidity of the surrounding atmosphere leads to the initiation of the degradation processes. This is reflected in the observed decreased mechanical stiffness. It is attributed to the plasticization of the PU foams wall material. It is in agreement with the observed increase of the permanent deformation accompanied simultaneously with the decrease of Young's modulus of elasticity. The latter phenomenon is studied by the novel non-destructive forced oscillations vibration-damping testing, which is confirmed by observed lower mechanical stiffness thus indicating the loss of the elasticity induced by samples conditioning. In parallel, observed decreasing of the matrix hardness is confirming the loss of elastic mechanical performance as well. The effect of conditioning leads to the significant loss of the PU foam's thermal stability.

Zobrazit více v PubMed

Krol P. Polyurethanes—A Review of 60 Years of their Syntheses and Applications. Polimery. 2009;54:489–500. doi: 10.14314/polimery.2009.489. DOI

Stachak P., Lukaszewska I., Hebda E., Pielichowski K. Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials. Materials. 2021;14:3497. doi: 10.3390/ma14133497. PubMed DOI PMC

Lapcik L., Cetkovsky V., Lapcikova B., Vasut S. Materials for noise and vibration attenuation. Chem. Listy. 2000;94:117–122.

Shaw S.D., Harris J.H., Berger M.L., Subedi B., Kannan K. Toxicants in Food Packaging and Household Plastics: Exposure and Health Risks to Consumers. Springer; London, UK: 2014. Brominated Flame Retardants and Their Replacements in Food Packaging and Household Products: Uses, Human Exposure, and Health Effects; pp. 61–93. DOI

Song H.Y., Cheng X.X., Chu L. Effect of Density and Ambient Temperature on Coefficient of Thermal Conductivity of Heat-Insulated EPS and PU Materials for Food Packaging. Res. Food Packag. Technol. 2014;469:152–155. doi: 10.4028/www.scientific.net/AMM.469.152. DOI

Volcik V., Lapcikova B., Lapcik L., Asuquo R. Uses of polyurethane matrixes in the environmental field. Plasty Kauc. 2002;39:164–169.

Tomin M., Kmetty A. Polymer foams as advanced energy absorbing materials for sports applications-A review. J. Appl. Polym. Sci. 2022;139:51714. doi: 10.1002/app.51714. DOI

Lapcikova B., Lapcik L., Jr. TG and DTG Study of Decomposition of Commercial PUR Cellular Materials. J. Polym. Mater. 2011;28:353–366.

Scholz P., Wachtendorf V., Panne U., Weidner S.M. Degradation of MDI-based polyether and polyester-polyurethanes in various environments—Effects on molecular mass and crosslinking. Polym. Test. 2019;77:105881. doi: 10.1016/j.polymertesting.2019.04.028. DOI

Oprea S., Oprea V. Mechanical behavior during different weathering tests of the polyurethane elastomers films. Eur. Polym. J. 2002;38:1205–1210. doi: 10.1016/S0014-3057(01)00280-4. DOI

Scholz P., Wachtendorf V., Elert A.-M., Falkenhagen J., Becker R., Hoffmann K., Resch-Genger U., Tschiche H., Reinsch S., Weidner S. Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions. [(accessed on 14 December 2021)];Polym. Test. 2019 78:105996. doi: 10.1016/j.polymertesting.2019.105996. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069503515&doi=10.1016%2fj.polymertesting.2019.105996&partnerID=40&md5=5d3e6a62259aeed6cdeb3912a2ec95d6. DOI

Kuranska M., Pinto J.A., Salach K., Barreiro M.F., Prociak A. Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols: A comparative study. Ind. Crops Prod. 2020;143:111882. doi: 10.1016/j.indcrop.2019.111882. DOI

Mort R., Vorst K., Curtzwiler G., Jiang S. Biobased foams for thermal insulation: Material selection, processing, modelling, and performance. RSC Adv. 2021;11:4375–4394. doi: 10.1039/D0RA09287H. PubMed DOI PMC

Jonjaroen V., Ummartyotin S., Chittapun S. Algal cellulose as a reinforcement in rigid polyurethane foam. Algal Res. Biomass Biofuels Bioprod. 2020;51:102057. doi: 10.1016/j.algal.2020.102057. DOI

Cornille A., Auvergne R., Figovsky O., Boutevin B., Caillol S. A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur. Polym. J. 2017;87:535–552. doi: 10.1016/j.eurpolymj.2016.11.027. DOI

Rodrigues J.D.O., Andrade C.K.Z., Quirino R.L., Sales M.J.A. Non-isocyanate poly(acyl-urethane) obtained from urea and castor (Ricinus communis L.) oil. Prog. Org. Coat. 2022;162:106557. doi: 10.1016/j.porgcoat.2021.106557. DOI

Wilhelm C., Rivaton A., Gardette J.-L. Infrared analysis of the photochemical behaviour of segmented polyurethanes: 3. Aromatic diisocyanate based polymers. [(accessed on 14 December 2021)];Polymer. 1998 39:1223–1232. doi: 10.1016/S0032-3861(97)00353-4. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032028577&doi=10.1016%2fS0032-3861%2897%2900353-4&partnerID=40&md5=4ffb65e5dd9477d91e7672f4dff2de01. DOI

Wilhelm C., Gardette J.-L. Infrared analysis of the photochemical behaviour of segmented polyurethanes: Aliphatic poly(ether-urethane)s. [(accessed on 14 December 2021)];Polymer. 1998 39:5973–5980. doi: 10.1016/S0032-3861(97)10065-9. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032210353&doi=10.1016%2fS0032-3861%2897%2910065-9&partnerID=40&md5=71595238af20bfe5abd9a439287d94e8. DOI

Weise N.K., Bertocchi M.J., Wynne J.H., Long I., Mera A.E. High performance vibrational damping poly(urethane) coatings: Blending ‘soft’ macrodiols for improved mechanical stability under weathering. [(accessed on 14 December 2021)];Prog. Org. Coat. 2019 136:105240. doi: 10.1016/j.porgcoat.2019.105240. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071912699&doi=10.1016%2fj.porgcoat.2019.105240&partnerID=40&md5=aeb9c93665d568497d6faf5157645215. DOI

Lapcik L., Manas D., Lapcikova B., Vasina M., Stanek M., Cepe K., Vlcek J., Waters K.E., Greenwood R.W., Rowson N.A. Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites. Compos. Part B Eng. 2018;141:92–99. doi: 10.1016/j.compositesb.2017.12.035. DOI

Rao S.S. Mechanical Vibrations. 5th ed. Prentice Hall; Upper Saddle River, NJ, USA: 2010. p. 1105.

Liu K., Liu J. The damped dynamic vibration absorbers: Revisited and new result. J. Sound Vib. 2005;284:1181–1189. doi: 10.1016/j.jsv.2004.08.002. DOI

Hadas Z., Ondrusek C. Nonlinear spring-less electromagnetic vibration energy harvesting system. Eur. Phys. J.-Spec. Top. 2015;224:2881–2896. doi: 10.1140/epjst/e2015-02595-3. DOI

Carrella A., Brennan M.J., Waters T.P., Lopes V., Jr. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 2012;55:22–29. doi: 10.1016/j.ijmecsci.2011.11.012. DOI

Dupuis R., Duboeuf O., Kirtz B., Aubry E. Characterization of Vibrational Mechanical Properties of Polyurethane Foam. Dyn. Behav. Mater. 2016;1:123–128. doi: 10.1007/978-3-319-22452-7_18. DOI

Lapcik L., Vasina M., Lapcikova B., Stanek M., Ovsik M., Murtaja Y. Study of the material engineering properties of high-density poly(ethylene)/perlite nanocomposite materials. Nanotechnol. Rev. 2020;9:1491–1499. doi: 10.1515/ntrev-2020-0113. DOI

Platonova E., Chechenov I., Pavlov A., Solodilov V., Afanasyev E., Shapagin A., Polezhaev A. Thermally Remendable Polyurethane Network Cross-Linked via Reversible Diels-Alder Reaction. Polymers. 2021;13:1935. doi: 10.3390/polym13121935. PubMed DOI PMC

Nemade A.M., Mishra S., Zope V.S. Kinetics and Thermodynamics of Neutral Hydrolytic Depolymerization of Polyurethane Foam Waste Using Different Catalysts at Higher Temperature and Autogenious Pressures. Polym. Plast. Technol. Eng. 2010;49:83–89. doi: 10.1080/03602550903283083. DOI

Casati F., Herrington R., Broos R., Miyazaki Y. Tailoring the performance of molded flexible polyurethane foams for car seats (Reprinted from Polyurethanes World Congress ′97, 29 September–1 October 1997) J. Cell. Plast. 1998;34:430–466. doi: 10.1177/0021955X9803400504. DOI

Suh K., Park C., Maurer M., Tusim M., De Genova R., Broos R., Sophiea D. Lightweight cellular plastics. Adv. Mater. 2000;12:1779–1789. doi: 10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.0.CO;2-3. DOI

Vakil A.U., Petryk N.M., Shepherd E., Beaman H.T., Ganesh P.S., Dong K.S., Monroe M.B.B. Shape Memory Polymer Foams with Tunable Degradation Profiles. ACS Appl. Bio. Mater. 2021;4:6769–6779. doi: 10.1021/acsabm.1c00516. PubMed DOI PMC

Zahedifar P., Pazdur L., Vande Velde C.M.L., Billen P. Multistage Chemical Recycling of Polyurethanes and Dicarbamates: A Glycolysis-Hydrolysis Demonstration. Sustainability. 2021;13:3583. doi: 10.3390/su13063583. DOI

Gaboriaud F., Vantelon J.P. Thermal-Degradation of Polyurethane Based on Mdi and Propoxylated Trimethylol Propane. J. Polym. Sci. Part A Polym. Chem. 1981;19:139–150. doi: 10.1002/pol.1981.170190114. DOI

Ballistreri A., Foti S., Maravigna P., Montaudo G., Scamporrino E. Mechanism of Thermal-Degradation of Polyurethanes Investigated by Direct Pyrolysis in the Mass-Spectrometer. J. Polym. Sci. Part A Polym. Chem. 1980;18:1923–1931. doi: 10.1002/pol.1980.170180628. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advanced Materials Structures for Sound and Vibration Damping

. 2022 Feb 10 ; 15 (4) : . [epub] 20220210

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...