Effect of Conditioning on PU Foam Matrix Materials Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867
Technical University of Ostrava
IGA_PrF_2021_031
Palacký University, Olomouc
PubMed
35009340
PubMed Central
PMC8746296
DOI
10.3390/ma15010195
PII: ma15010195
Knihovny.cz E-zdroje
- Klíčová slova
- compression testing, mechanical vibrations, open-cell foams, polyurethanes, tensile testing, thermal analysis,
- Publikační typ
- časopisecké články MeSH
This article deals with the characterization of the thermal-induced aging of soft polyurethane (PU) foams. There are studied thermal and mechanical properties by means of thermal analysis, tensile, compression and dynamic mechanical vibration testing. It was found in this study, that the increasing relative humidity of the surrounding atmosphere leads to the initiation of the degradation processes. This is reflected in the observed decreased mechanical stiffness. It is attributed to the plasticization of the PU foams wall material. It is in agreement with the observed increase of the permanent deformation accompanied simultaneously with the decrease of Young's modulus of elasticity. The latter phenomenon is studied by the novel non-destructive forced oscillations vibration-damping testing, which is confirmed by observed lower mechanical stiffness thus indicating the loss of the elasticity induced by samples conditioning. In parallel, observed decreasing of the matrix hardness is confirming the loss of elastic mechanical performance as well. The effect of conditioning leads to the significant loss of the PU foam's thermal stability.
Zobrazit více v PubMed
Krol P. Polyurethanes—A Review of 60 Years of their Syntheses and Applications. Polimery. 2009;54:489–500. doi: 10.14314/polimery.2009.489. DOI
Stachak P., Lukaszewska I., Hebda E., Pielichowski K. Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials. Materials. 2021;14:3497. doi: 10.3390/ma14133497. PubMed DOI PMC
Lapcik L., Cetkovsky V., Lapcikova B., Vasut S. Materials for noise and vibration attenuation. Chem. Listy. 2000;94:117–122.
Shaw S.D., Harris J.H., Berger M.L., Subedi B., Kannan K. Toxicants in Food Packaging and Household Plastics: Exposure and Health Risks to Consumers. Springer; London, UK: 2014. Brominated Flame Retardants and Their Replacements in Food Packaging and Household Products: Uses, Human Exposure, and Health Effects; pp. 61–93. DOI
Song H.Y., Cheng X.X., Chu L. Effect of Density and Ambient Temperature on Coefficient of Thermal Conductivity of Heat-Insulated EPS and PU Materials for Food Packaging. Res. Food Packag. Technol. 2014;469:152–155. doi: 10.4028/www.scientific.net/AMM.469.152. DOI
Volcik V., Lapcikova B., Lapcik L., Asuquo R. Uses of polyurethane matrixes in the environmental field. Plasty Kauc. 2002;39:164–169.
Tomin M., Kmetty A. Polymer foams as advanced energy absorbing materials for sports applications-A review. J. Appl. Polym. Sci. 2022;139:51714. doi: 10.1002/app.51714. DOI
Lapcikova B., Lapcik L., Jr. TG and DTG Study of Decomposition of Commercial PUR Cellular Materials. J. Polym. Mater. 2011;28:353–366.
Scholz P., Wachtendorf V., Panne U., Weidner S.M. Degradation of MDI-based polyether and polyester-polyurethanes in various environments—Effects on molecular mass and crosslinking. Polym. Test. 2019;77:105881. doi: 10.1016/j.polymertesting.2019.04.028. DOI
Oprea S., Oprea V. Mechanical behavior during different weathering tests of the polyurethane elastomers films. Eur. Polym. J. 2002;38:1205–1210. doi: 10.1016/S0014-3057(01)00280-4. DOI
Scholz P., Wachtendorf V., Elert A.-M., Falkenhagen J., Becker R., Hoffmann K., Resch-Genger U., Tschiche H., Reinsch S., Weidner S. Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions. [(accessed on 14 December 2021)];Polym. Test. 2019 78:105996. doi: 10.1016/j.polymertesting.2019.105996. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069503515&doi=10.1016%2fj.polymertesting.2019.105996&partnerID=40&md5=5d3e6a62259aeed6cdeb3912a2ec95d6. DOI
Kuranska M., Pinto J.A., Salach K., Barreiro M.F., Prociak A. Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols: A comparative study. Ind. Crops Prod. 2020;143:111882. doi: 10.1016/j.indcrop.2019.111882. DOI
Mort R., Vorst K., Curtzwiler G., Jiang S. Biobased foams for thermal insulation: Material selection, processing, modelling, and performance. RSC Adv. 2021;11:4375–4394. doi: 10.1039/D0RA09287H. PubMed DOI PMC
Jonjaroen V., Ummartyotin S., Chittapun S. Algal cellulose as a reinforcement in rigid polyurethane foam. Algal Res. Biomass Biofuels Bioprod. 2020;51:102057. doi: 10.1016/j.algal.2020.102057. DOI
Cornille A., Auvergne R., Figovsky O., Boutevin B., Caillol S. A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur. Polym. J. 2017;87:535–552. doi: 10.1016/j.eurpolymj.2016.11.027. DOI
Rodrigues J.D.O., Andrade C.K.Z., Quirino R.L., Sales M.J.A. Non-isocyanate poly(acyl-urethane) obtained from urea and castor (Ricinus communis L.) oil. Prog. Org. Coat. 2022;162:106557. doi: 10.1016/j.porgcoat.2021.106557. DOI
Wilhelm C., Rivaton A., Gardette J.-L. Infrared analysis of the photochemical behaviour of segmented polyurethanes: 3. Aromatic diisocyanate based polymers. [(accessed on 14 December 2021)];Polymer. 1998 39:1223–1232. doi: 10.1016/S0032-3861(97)00353-4. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032028577&doi=10.1016%2fS0032-3861%2897%2900353-4&partnerID=40&md5=4ffb65e5dd9477d91e7672f4dff2de01. DOI
Wilhelm C., Gardette J.-L. Infrared analysis of the photochemical behaviour of segmented polyurethanes: Aliphatic poly(ether-urethane)s. [(accessed on 14 December 2021)];Polymer. 1998 39:5973–5980. doi: 10.1016/S0032-3861(97)10065-9. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032210353&doi=10.1016%2fS0032-3861%2897%2910065-9&partnerID=40&md5=71595238af20bfe5abd9a439287d94e8. DOI
Weise N.K., Bertocchi M.J., Wynne J.H., Long I., Mera A.E. High performance vibrational damping poly(urethane) coatings: Blending ‘soft’ macrodiols for improved mechanical stability under weathering. [(accessed on 14 December 2021)];Prog. Org. Coat. 2019 136:105240. doi: 10.1016/j.porgcoat.2019.105240. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071912699&doi=10.1016%2fj.porgcoat.2019.105240&partnerID=40&md5=aeb9c93665d568497d6faf5157645215. DOI
Lapcik L., Manas D., Lapcikova B., Vasina M., Stanek M., Cepe K., Vlcek J., Waters K.E., Greenwood R.W., Rowson N.A. Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites. Compos. Part B Eng. 2018;141:92–99. doi: 10.1016/j.compositesb.2017.12.035. DOI
Rao S.S. Mechanical Vibrations. 5th ed. Prentice Hall; Upper Saddle River, NJ, USA: 2010. p. 1105.
Liu K., Liu J. The damped dynamic vibration absorbers: Revisited and new result. J. Sound Vib. 2005;284:1181–1189. doi: 10.1016/j.jsv.2004.08.002. DOI
Hadas Z., Ondrusek C. Nonlinear spring-less electromagnetic vibration energy harvesting system. Eur. Phys. J.-Spec. Top. 2015;224:2881–2896. doi: 10.1140/epjst/e2015-02595-3. DOI
Carrella A., Brennan M.J., Waters T.P., Lopes V., Jr. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 2012;55:22–29. doi: 10.1016/j.ijmecsci.2011.11.012. DOI
Dupuis R., Duboeuf O., Kirtz B., Aubry E. Characterization of Vibrational Mechanical Properties of Polyurethane Foam. Dyn. Behav. Mater. 2016;1:123–128. doi: 10.1007/978-3-319-22452-7_18. DOI
Lapcik L., Vasina M., Lapcikova B., Stanek M., Ovsik M., Murtaja Y. Study of the material engineering properties of high-density poly(ethylene)/perlite nanocomposite materials. Nanotechnol. Rev. 2020;9:1491–1499. doi: 10.1515/ntrev-2020-0113. DOI
Platonova E., Chechenov I., Pavlov A., Solodilov V., Afanasyev E., Shapagin A., Polezhaev A. Thermally Remendable Polyurethane Network Cross-Linked via Reversible Diels-Alder Reaction. Polymers. 2021;13:1935. doi: 10.3390/polym13121935. PubMed DOI PMC
Nemade A.M., Mishra S., Zope V.S. Kinetics and Thermodynamics of Neutral Hydrolytic Depolymerization of Polyurethane Foam Waste Using Different Catalysts at Higher Temperature and Autogenious Pressures. Polym. Plast. Technol. Eng. 2010;49:83–89. doi: 10.1080/03602550903283083. DOI
Casati F., Herrington R., Broos R., Miyazaki Y. Tailoring the performance of molded flexible polyurethane foams for car seats (Reprinted from Polyurethanes World Congress ′97, 29 September–1 October 1997) J. Cell. Plast. 1998;34:430–466. doi: 10.1177/0021955X9803400504. DOI
Suh K., Park C., Maurer M., Tusim M., De Genova R., Broos R., Sophiea D. Lightweight cellular plastics. Adv. Mater. 2000;12:1779–1789. doi: 10.1002/1521-4095(200012)12:23<1779::AID-ADMA1779>3.0.CO;2-3. DOI
Vakil A.U., Petryk N.M., Shepherd E., Beaman H.T., Ganesh P.S., Dong K.S., Monroe M.B.B. Shape Memory Polymer Foams with Tunable Degradation Profiles. ACS Appl. Bio. Mater. 2021;4:6769–6779. doi: 10.1021/acsabm.1c00516. PubMed DOI PMC
Zahedifar P., Pazdur L., Vande Velde C.M.L., Billen P. Multistage Chemical Recycling of Polyurethanes and Dicarbamates: A Glycolysis-Hydrolysis Demonstration. Sustainability. 2021;13:3583. doi: 10.3390/su13063583. DOI
Gaboriaud F., Vantelon J.P. Thermal-Degradation of Polyurethane Based on Mdi and Propoxylated Trimethylol Propane. J. Polym. Sci. Part A Polym. Chem. 1981;19:139–150. doi: 10.1002/pol.1981.170190114. DOI
Ballistreri A., Foti S., Maravigna P., Montaudo G., Scamporrino E. Mechanism of Thermal-Degradation of Polyurethanes Investigated by Direct Pyrolysis in the Mass-Spectrometer. J. Polym. Sci. Part A Polym. Chem. 1980;18:1923–1931. doi: 10.1002/pol.1980.170180628. DOI
Advanced Materials Structures for Sound and Vibration Damping