Functional dissection of inherited non-coding variation influencing multiple myeloma risk
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
K08 CA252174
NCI NIH HHS - United States
P01 CA155258
NCI NIH HHS - United States
R01 HL146500
NHLBI NIH HHS - United States
K12 CA087723
NCI NIH HHS - United States
P50 CA100707
NCI NIH HHS - United States
R01 DK103794
NIDDK NIH HHS - United States
17761
Cancer Research UK - United Kingdom
C1298/A8362
Cancer Research UK - United Kingdom
PubMed
35013207
PubMed Central
PMC8748989
DOI
10.1038/s41467-021-27666-x
PII: 10.1038/s41467-021-27666-x
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční genetika imunologie MeSH
- B-lymfocyty imunologie patologie MeSH
- chromatin chemie imunologie MeSH
- chromozomální proteiny, nehistonové genetika imunologie MeSH
- genetická predispozice k nemoci * MeSH
- hodnocení rizik MeSH
- intergenová DNA genetika imunologie MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- mnohočetný myelom farmakoterapie genetika imunologie patologie MeSH
- nádorové proteiny genetika imunologie MeSH
- plazmatické buňky imunologie patologie MeSH
- polymorfismus genetický MeSH
- primární buněčná kultura MeSH
- proteiny buněčného cyklu genetika imunologie MeSH
- protokoly protinádorové kombinované chemoterapie MeSH
- regulace genové exprese u nádorů MeSH
- represorové proteiny genetika imunologie MeSH
- sekvence nukleotidů MeSH
- transkripční elongační faktory genetika imunologie MeSH
- typy dědičnosti MeSH
- výměnné faktory guaninnukleotidů genetika imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- CDCA7L protein, human MeSH Prohlížeč
- CEP120 protein, human MeSH Prohlížeč
- chromatin MeSH
- chromozomální proteiny, nehistonové MeSH
- ELL2 protein, human MeSH Prohlížeč
- intergenová DNA MeSH
- nádorové proteiny MeSH
- PREX1 protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- represorové proteiny MeSH
- SMARCD3 protein, human MeSH Prohlížeč
- transkripční elongační faktory MeSH
- výměnné faktory guaninnukleotidů MeSH
- WAC protein, human MeSH Prohlížeč
Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.
Dana Farber Cancer Institute Harvard Medical School Boston MA USA
Department of Internal Medicine 5 University Hospital of Heidelberg 69120 Heidelberg Germany
Division of Hematology Oncology Boston Children's Hospital Harvard Medical School Boston MA USA
eCODE Genetics Amgen Inc Sturlugata 8 101 Reykjavik Iceland
German Cancer Research Center Im Neuenheimer Feld 580 D 69120 Heidelberg Germany
Harvard Stem Cell Institute Cambridge MA USA
Hematology and Transfusion Medicine Department of Laboratory Medicine BMC B13 221 84 Lund Sweden
Zobrazit více v PubMed
Welter D, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–D1006. doi: 10.1093/nar/gkt1229. PubMed DOI PMC
Gusev A, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 2014;95:535–552. doi: 10.1016/j.ajhg.2014.10.004. PubMed DOI PMC
Roadmap Epigenomics C, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–330. doi: 10.1038/nature14248. PubMed DOI PMC
Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22:1748–1759. doi: 10.1101/gr.136127.111. PubMed DOI PMC
Pertesi, M. et al. Genetic predisposition for multiple myeloma. Leukemia10.1038/s41375-019-0703-6 (2020). PubMed
Broderick P, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 2012;44:58–61. doi: 10.1038/ng.993. PubMed DOI PMC
Chubb D, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat. Genet. 2013;45:1221–1225. doi: 10.1038/ng.2733. PubMed DOI PMC
Swaminathan B, et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat. Commun. 2015;6:7213. doi: 10.1038/ncomms8213. PubMed DOI PMC
Mitchell JS, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 2016;7:12050. doi: 10.1038/ncomms12050. PubMed DOI PMC
Halvarsson BM, et al. Direct evidence for a polygenic etiology in familial multiple myeloma. Blood Adv. 2017;1:619–623. doi: 10.1182/bloodadvances.2016003111. PubMed DOI PMC
Went M, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 2018;9:3707. doi: 10.1038/s41467-018-04989-w. PubMed DOI PMC
Ali M, et al. The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression. Nat. Commun. 2018;9:1649. doi: 10.1038/s41467-018-04082-2. PubMed DOI PMC
Li N, et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression. Nat. Commun. 2016;7:13656. doi: 10.1038/ncomms13656. PubMed DOI PMC
Ulirsch JC, et al. Systematic functional dissection of common genetic variation affecting red blood cell traits. Cell. 2016;165:1530–1545. doi: 10.1016/j.cell.2016.04.048. PubMed DOI PMC
Chen, X. F. et al. Multiomics dissection of molecular regulatory mechanisms underlying autoimmune-associated noncoding SNPs. JCI Insight10.1172/jci.insight.136477 (2020). PubMed PMC
Choi J, et al. Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nat. Commun. 2020;11:2718. doi: 10.1038/s41467-020-16590-1. PubMed DOI PMC
Mulvey, B., Lagunas, T., Jr. & Dougherty, J. D. Massively parallel reporter assays: defining functional psychiatric genetic variants across biological contexts. Biol Psychiatry10.1016/j.biopsych.2020.06.011 (2020). PubMed PMC
Castaldi PJ, et al. Identification of functional variants in the FAM13A chronic obstructive pulmonary disease genome-wide association study locus by massively parallel reporter assays. Am. J. Respir. Crit. Care Med. 2019;199:52–61. doi: 10.1164/rccm.201802-0337OC. PubMed DOI PMC
Tewhey R, et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell. 2016;165:1519–1529. doi: 10.1016/j.cell.2016.04.027. PubMed DOI PMC
Melnikov A, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 2012;30:271–277. doi: 10.1038/nbt.2137. PubMed DOI PMC
Kheradpour P, et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 2013;23:800–811. doi: 10.1101/gr.144899.112. PubMed DOI PMC
Jonsson S, et al. Identification of sequence variants influencing immunoglobulin levels. Nat. Genet. 2017;49:1182–1191. doi: 10.1038/ng.3897. PubMed DOI
Ulirsch JC, et al. Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat. Genet. 2019;51:683–693. doi: 10.1038/s41588-019-0362-6. PubMed DOI PMC
Novershtern N, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011;144:296–309. doi: 10.1016/j.cell.2011.01.004. PubMed DOI PMC
Boyd KD, et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin. Cancer Res. 2011;17:7776–7784. doi: 10.1158/1078-0432.CCR-11-1791. PubMed DOI PMC
Broyl A, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116:2543–2553. doi: 10.1182/blood-2009-12-261032. PubMed DOI
Chapman MA, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–472. doi: 10.1038/nature09837. PubMed DOI PMC
Zhan F, et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood. 2007;109:1692–1700. doi: 10.1182/blood-2006-07-037077. PubMed DOI PMC
Weinhold, N. et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells. Haematologica100, e110–e113 (2015). PubMed PMC
Samur MK, et al. Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia. 2018;32:2626–2635. doi: 10.1038/s41375-018-0116-y. PubMed DOI PMC
Manojlovic Z, et al. Comprehensive molecular profiling of 718 Multiple Myelomas reveals significant differences in mutation frequencies between African and European descent cases. PLoS Genet. 2017;13:e1007087. doi: 10.1371/journal.pgen.1007087. PubMed DOI PMC
Niroula, A., Ajore, R. & Nilsson, B. MPRAscore: robust and non-parametric analysis of massively parallel reporter assays. Bioinformatics10.1093/bioinformatics/btz591 (2019). PubMed
Salzer U, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat. Genet. 2005;37:820–828. doi: 10.1038/ng1600. PubMed DOI
Flajollet S, Lefebvre B, Cudejko C, Staels B, Lefebvre P. The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol. Cell Endocrinol. 2007;270:23–32. doi: 10.1016/j.mce.2007.02.004. PubMed DOI
Wang W, et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 1996;10:2117–2130. doi: 10.1101/gad.10.17.2117. PubMed DOI
Mashtalir N, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272–1288 e1220. doi: 10.1016/j.cell.2018.09.032. PubMed DOI PMC
Puri PL, Mercola M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev. 2012;26:2673–2683. doi: 10.1101/gad.207415.112. PubMed DOI PMC
Shaffer AL, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454:226–231. doi: 10.1038/nature07064. PubMed DOI PMC
DeSanto C, et al. WAC loss-of-function mutations cause a recognisable syndrome characterised by dysmorphic features, developmental delay and hypotonia and recapitulate 10p11.23 microdeletion syndrome. J. Med Genet. 2015;52:754–761. doi: 10.1136/jmedgenet-2015-103069. PubMed DOI
Vanegas S, Ramirez-Montano D, Candelo E, Shinawi M, Pachajoa H. DeSanto-Shinawi syndrome: first case in South America. Mol. Syndromol. 2018;9:154–158. doi: 10.1159/000488815. PubMed DOI PMC
Vazquez-Arreguin K, Tantin D. The Oct1 transcription factor and epithelial malignancies: old protein learns new tricks. Biochim. Biophys. Acta. 2016;1859:792–804. doi: 10.1016/j.bbagrm.2016.02.007. PubMed DOI PMC
Park, K. S. et al. Transcription elongation factor ELL2 drives Ig secretory-specific mRNA production and the unfolded protein response. J. Immunol.10.4049/jimmunol.1401608 (2014). PubMed PMC
Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat. Immunol. 2009;10:1102–1109. doi: 10.1038/ni.1786. PubMed DOI PMC
Benson MJ, et al. Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators ofmRNA processing in plasma cells. Proc. Natl Acad. Sci. USA. 2012;109:16252–16257. doi: 10.1073/pnas.1214414109. PubMed DOI PMC
Milcarek C, Albring M, Langer C, Park KS. The eleven-nineteen lysine-rich leukemia gene (ELL2) influences the histone H3 protein modifications accompanying the shift to secretory immunoglobulin heavy chain mRNA production. J. Biol. Chem. 2011;286:33795–33803. doi: 10.1074/jbc.M111.272096. PubMed DOI PMC
Ou XM, Chen K, Shih JC. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc. Natl Acad. Sci. USA. 2006;103:10923–10928. doi: 10.1073/pnas.0601515103. PubMed DOI PMC
Comartin D, et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Curr. Biol. 2013;23:1360–1366. doi: 10.1016/j.cub.2013.06.002. PubMed DOI
McCarthy N. Signalling: REX rules. Nat. Rev. Cancer. 2011;11:83. doi: 10.1038/nrc3013. PubMed DOI
Srijakotre N, et al. P-Rex1 and P-Rex2 RacGEFs and cancer. Biochemical Soc. Trans. 2017;45:963–977. doi: 10.1042/BST20160269. PubMed DOI
Ciofani M, et al. A validated regulatory network for Th17 cell specification. Cell. 2012;151:289–303. doi: 10.1016/j.cell.2012.09.016. PubMed DOI PMC
Kurachi M, et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 2014;15:373–383. doi: 10.1038/ni.2834. PubMed DOI PMC
Karwacz K, et al. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation. Nat. Immunol. 2017;18:412–421. doi: 10.1038/ni.3683. PubMed DOI PMC
Shaffer AL, Emre NC, Romesser PB, Staudt LM. IRF4: immunity. malignancy! therapy? Clin. Cancer Res. 2009;15:2954–2961. doi: 10.1158/1078-0432.CCR-08-1845. PubMed DOI PMC
Christophersen MK, et al. SMIM1 variants rs1175550 and rs143702418 independently modulate Vel blood group antigen expression. Sci. Rep. 2017;7:40451. doi: 10.1038/srep40451. PubMed DOI PMC
Bao EL, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586:769–775. doi: 10.1038/s41586-020-2786-7. PubMed DOI PMC
Weinhold N, et al. The CCND1 c.870 G > A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat. Genet. 2013;45:522–525. doi: 10.1038/ng.2583. PubMed DOI PMC
Johnson DC, et al. Genome-wide association study identifies variation at 6q25.1 associated with survival in multiple myeloma. Nat. Commun. 2016;7:10290. doi: 10.1038/ncomms10290. PubMed DOI PMC
Ali M, et al. Sequence variation at the MTHFD1L-AKAP12 and FOPNL loci does not influence multiple myeloma survival in Sweden. Blood Cancer J. 2019;9:57. doi: 10.1038/s41408-019-0222-8. PubMed DOI PMC
Morgan GJ, et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet. 2010;376:1989–1999. doi: 10.1016/S0140-6736(10)62051-X. PubMed DOI PMC
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate illumina paired-end reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Corces MR, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 2016;48:1193–1203. doi: 10.1038/ng.3646. PubMed DOI PMC
Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 2007;81:208–227. doi: 10.1086/519024. PubMed DOI PMC
Jackson GH, et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019;20:57–73. doi: 10.1016/S1470-2045(18)30687-9. PubMed DOI PMC
Morris TJ, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30:428–430. doi: 10.1093/bioinformatics/btt684. PubMed DOI PMC
Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 2012;7:500–507. doi: 10.1038/nprot.2011.457. PubMed DOI PMC
Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics. 2016;32:1479–1485. doi: 10.1093/bioinformatics/btv722. PubMed DOI PMC
Li N, et al. Genetic predisposition to multiple myeloma at 5q15 is mediated by an ELL2 enhancer polymorphism. Cell Rep. 2017;20:2556–2564. doi: 10.1016/j.celrep.2017.08.062. PubMed DOI PMC
Orlando, G., Kinnersley, B. & Houlston, R. S. Capture Hi-C library generation and analysis to detect chromatin interactions. Curr. Protoc. Hum. Genet. 10.1002/cphg.63 (2018). PubMed
Cairns J, et al. CHiCAGO: robust detection of DNA looping interactions in capture Hi-C data. Genome Biol. 2016;17:127. doi: 10.1186/s13059-016-0992-2. PubMed DOI PMC
Lawrence M, et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 2013;9:e1003118. doi: 10.1371/journal.pcbi.1003118. PubMed DOI PMC
Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25:1841–1842. doi: 10.1093/bioinformatics/btp328. PubMed DOI PMC
Andrews NC, Faller DV. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991;19:2499. doi: 10.1093/nar/19.9.2499. PubMed DOI PMC
Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015;109:21 29 21–21 29 29. doi: 10.1002/0471142727.mb2129s109. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods. 2013;10:1213–1218. doi: 10.1038/nmeth.2688. PubMed DOI PMC
Nilsson B, Johansson M, Al-Shahrour F, Carpenter AE, Ebert BL. Ultrasome: efficient aberration caller for copy number studies of ultra-high resolution. Bioinformatics. 2009;25:1078–1079. doi: 10.1093/bioinformatics/btp091. PubMed DOI
Jarvstrat L, Johansson M, Gullberg U, Nilsson B. Ultranet: efficient solver for the sparse inverse covariance selection problem in gene network modeling. Bioinformatics. 2013;29:511–512. doi: 10.1093/bioinformatics/bts717. PubMed DOI
Nilsson B, Johansson M, Heyden A, Nelander S, Fioretos T. An improved method for detecting and delineating genomic regions with altered gene expression in cancer. Genome Biol. 2008;9:R13. doi: 10.1186/gb-2008-9-1-r13. PubMed DOI PMC
Nilsson B, Hakansson P, Johansson M, Nelander S, Fioretos T. Threshold-free high-power methods for the ontological analysis of genome-wide gene-expression studies. Genome Biol. 2007;8:R74. doi: 10.1186/gb-2007-8-5-r74. PubMed DOI PMC
Taslaman L, Nilsson B. A framework for regularized non-negative matrix factorization, with application to the analysis of gene expression data. PLoS ONE. 2012;7:e46331. doi: 10.1371/journal.pone.0046331. PubMed DOI PMC
Niroula, A. & Nilsson, B. Source code for caQTLseg. GitHub10.5281/zenodo.5239301 (2021).