Do the total mercury concentrations detected in fish from Czech ponds represent a risk for consumers?
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FVHE/Vecerek/ITA 2020
University of Veterinary Sciences Brno
PubMed
35017608
PubMed Central
PMC8752681
DOI
10.1038/s41598-021-04561-5
PII: 10.1038/s41598-021-04561-5
Knihovny.cz E-zdroje
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- kapři metabolismus MeSH
- kontaminace potravin analýza MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- rtuť * analýza MeSH
- rybníky * MeSH
- ryby * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- rtuť * MeSH
Mercury is one of the important pollutants of the environment. Therefore, it's necessary to monitor quantity of mercury especially in aquatic ecosystems. The main goal of the presented study was to compare the content of total mercury in tissues of fish coming from the Czech Republic, an important carp exporter, with focus on comparison of mercury content between 3 different ponds, its comparison between different fish species and between different tissues of the same species, and estimation whether the mercury content in tissues meets the limit given in the Commission Regulation (EC) No. 1881/2006 or not. Total mercury concentration was measured in 90 fish specimen sampled from three ponds (Velky Kocelovicky, Mysliv and Zehunsky) in autumn 2018. The values of total mercury in fish tissues was measured by atomic absorption spectrometry. The content of total mercury in the tissues decreased as follows: muscle > liver > gonads > scales. The highest average content of total mercury in muscle was 0.1517 ± 0.0176 mg/kg coming from pike caught in Velky Kocelovicky pond. In contrast, the lowest average content of total mercury in muscle 0.0036 ± 0.0003 mg/kg was found in carp tissue coming from the locality of Zehunsky pond. We confirmed that the predatory fish are more exposed to mercury than non-predatory fish. None of the monitored localities exceeded the set regulatory limit. Thus, our study shows that fish coming from these ponds are safe in terms of total mercury content.
Zobrazit více v PubMed
Stein ED, Cohen Y, Winer AM. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 1996;26:1–43. doi: 10.1080/10643389609388485. DOI
Ciccarelli C, et al. Assessment of sampling methods about level of mercury in fish. Ital. J. Food Saf. 2019;8:153–157. PubMed PMC
Ditri FM. Mercury contamination: What we have learned since Minamata. Environ. Monit. Assess. 1991;19:165–182. doi: 10.1007/BF00401309. PubMed DOI
Monteiro LR, Furness RW. Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut. 1995;80:851–870. doi: 10.1007/BF01189736. DOI
Pitter P. In: Hydrochemie. 5. Pitter P, editor. VSCHT Praha; 2015.
Hylander LD, Meili M. 500 years of mercury production: Global annual inventory by region until 2000 and associated emissions. Sci. Total. Environ. 2003;304:13–27. doi: 10.1016/S0048-9697(02)00553-3. PubMed DOI
Pacyna EG, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010;44:2487–2499. doi: 10.1016/j.atmosenv.2009.06.009. DOI
Pai P, Niemi D, Powers B. A North American inventory of anthropogenic mercury emissions. Fuel Process. Technol. 2000;65:101–115. doi: 10.1016/S0378-3820(99)00079-X. DOI
Wang QR, Kim D, Dionysiou DD, Sorial GA, Timberlake D. Sources and remediation for mercury contamination in aquatic systems: A literature review. Environ. Pollut. 2004;131:323–336. doi: 10.1016/j.envpol.2004.01.010. PubMed DOI
Buck DG, et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 2019;687:956–966. doi: 10.1016/j.scitotenv.2019.06.159. PubMed DOI
Gentes S, et al. Application of European water framework directive: Identification reference sites and bioindicator fish species for mercury in tropical freshwater ecosystems (French Guiana) Ecol. Indic. 2019;106:105468. doi: 10.1016/j.ecolind.2019.105468. DOI
Thomas SM, et al. Climate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish size. Environ. Res. 2020;188:109750. doi: 10.1016/j.envres.2020.109750. PubMed DOI
Zupo V, et al. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. Environ. Pollut. 2019;255:112975. doi: 10.1016/j.envpol.2019.112975. PubMed DOI
Zhang JL, et al. Health risk assessment of heavy metals in Cyprinus carpio (Cyprinidae) from the upper Mekong river. Environ. Sci. Pollut. Res. 2019;26:9490–9499. doi: 10.1007/s11356-019-04291-2. PubMed DOI
Cerna M. Opatreni mezinarodnich instituci a Ceske republiky k omezovani rizika znecistovani zivotniho prostredi rtuti. Chem. Listy. 2004;98:916–921.
Janouskova D, Svehla J. Mercury concentrations in fish tissues in the water reservoir Rimov, South Bohemia. Crop Sci. 2002;19:43–48.
Purba JS, Silalahi J, Haro G. Analysis of mercury in fish, North Sumatera, Indonesia by atomic absorption spectrophotometer. Asian J. Pharm. 2020;8:21–25. doi: 10.22270/ajprd.v8i3.728. DOI
Willacker JJ, Eagles-Smith CA, Blazer VS. Mercury bioaccumulation in freshwater fishes of the Chesapeake Bay watershed. Ecotoxicology. 2020;29:459484. doi: 10.1007/s10646-020-02193-5. PubMed DOI
Regulation (EU) 2017/852 of European Parliament and of the council of 17 May 2017 on mercury, and repealing Regulation (EC) No 1102/2008. Official Journal of the European Union.
European Commission. The EU Fish Market. https://www.eumofa.eu/documents/20178/415635/EN_The+EU+fish+market_2020.pdf (2020).
Nebesky V, Policar T, Blecha M, Kristan J, Svacina P. Trends in import and export of fishery products in the Czech Republic during 2010–2015. Aquacult. Int. 2016;24:1657–1668. doi: 10.1007/s10499-016-0066-1. DOI
FAO. Fisheries & Aquaculture—National Aquaculture Sector Overview—Czech Republic. http://www.fao.org/fishery/countrysector/naso_czechrepublic/en (accessed April 24 April 2021) (2021).
Rakmanikhah Z, Esmaili-Sari A, Bahramifar N. Total mercury and methylmercury concentrations in native and invasive fish species in Shadegan International Wetland, Iran, and health risk assessment. Environ. Sci. Pollut. Res. 2020;27:6765–6773. doi: 10.1007/s11356-019-07218-z. PubMed DOI
Celechovska O, Svobodova Z, Zlabek V, Macharackova B. Distribution of metals in tissues of the common carp (Cyprinus carpio L.) Acta Vet. Brno. 2007;76:93–100. doi: 10.2754/avb200776S8S093. DOI
Cerveny D, et al. Fish fin-clips as non-lethal approach for biomonitoring of mercury contamination in aquatic environments and human health risk assessment. Chemosphere. 2016;163:290–295. doi: 10.1016/j.chemosphere.2016.08.045. PubMed DOI
WHO. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA).https://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx. PubMed
Kannan K, et al. Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Arch. Environ. Con. Tox. 1998;34:109–118. doi: 10.1007/s002449900294. PubMed DOI
US EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories Documents. Volume 2: Risk Assessment and Fish Consumption Limits, Third Edition.https://www.epa.gov/fish-tech/guidance-assessing-chemical-contaminant-data-use-fish-advisories-documents (accessed 8 May 2021) (2000).
Ministry of Agriculture of the Czech Republic. Situacni a vyhledova zprava—Ryby. http://eagri.cz/public/web/file/666957/Ryby_2020_web.pdf (accessed 8 May 2021, in Czech) (2020).
Novotna K, Svobodova Z, Harustiakova D, Mikula P. Spatial and temporal trends in contamination of the Czech part of the Elbe River by mercury between 1991 and 2016. Bull. Environ. Contam. Toxicol. 2020;105:750–757. doi: 10.1007/s00128-020-03005-6. PubMed DOI
Raldua D, Diez S, Bayona JM, Barcelo D. Mercury levels and liver pathology in feral fish living in the vicinity of a mercury cell chlor-alkali factory. Chemosphere. 2007;66:1217–1225. doi: 10.1016/j.chemosphere.2006.07.053. PubMed DOI
Squadrone S, et al. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian rivers. Chemosphere. 2013;90:358–365. doi: 10.1016/j.chemosphere.2012.07.028. PubMed DOI
Cerveny D, et al. Contamination of fish in important fishing grounds of the Czech Republic. Ecotoxicol. Environ. Saf. 2014;109:101–109. doi: 10.1016/j.ecoenv.2014.07.034. PubMed DOI
Marsalek P, Svobodova Z, Randak T. The content of total mercury and methylmercury in common carp from selected Czech ponds. Aquac. Int. 2007;15:299–304. doi: 10.1007/s10499-007-9076-3. DOI
Vicarova P, Docekalova H, Ridoskova A, Pelcova P. Heavy metals in the common carp (Cyprinus carpio L.) from three reservoirs in the Czech Republic. Czech J. Food Sci. 2016;34:422–428. doi: 10.17221/100/2016-CJFS. DOI
Akerblom S, Bignert A, Meili M, Sonesten L, Sundbom M. Half a century of changing mercury levels in Swedish freshwater fish. Ambio. 2014;43:91–103. doi: 10.1007/s13280-014-0564-1. PubMed DOI PMC
Dvorak P, Andreji J, Mraz J, Dvorakova Liskova Z. Concentration of heavy and toxic metals in fish and sediments from the Morava river basin, Czech Republic. Neuroendocrinol. Lett. 2015;36:126–132. PubMed
Dusek L, et al. Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): Maultispecies monitoring study 1991–1996. Ecotoxicol. Environ. Saf. 2005;61:256–267. doi: 10.1016/j.ecoenv.2004.11.007. PubMed DOI
Marsalek P, Svobodova Z, Randak T. Total mercury and methylmercury contamination in fish from various sites along the Elbe River. Acta Vet. Brno. 2006;75:579–585. doi: 10.2754/avb200675040579. DOI
Wang X, Wang WX. The three ‘B’ of mercury in China: Bioaccumulation, biodynamics and biotransformation. Environ. Pollut. 2019;250:216–232. doi: 10.1016/j.envpol.2019.04.034. PubMed DOI
Jankovska I, et al. Importance of fish gender as a factor in environmental monitoring of mercury. Environ. Sci. Pollut. Res. 2014;21:6239–6242. doi: 10.1007/s11356-013-2459-2. PubMed DOI
Carrasco L, et al. Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain) Chemosphere. 2011;84:1642–1649. doi: 10.1016/j.chemosphere.2011.05.022. PubMed DOI
Havelkova M, Dusek L, Nemethova D, Poleszczuk G, Svobodova Z. Comparison of mercury distribution between liver and muscle: A biomonitoring of fish from lightly and heavily contaminated localities. Sensors. 2008;8:4095–4109. doi: 10.3390/s8074095. PubMed DOI PMC
Kruzikova K, et al. The correlation between fish mercury liver/muscle ratio and high and low levels of mercury contamination in Czech localities. Int. J. Electrochem. Sc. 2013;8:45–56.
Kensova R, Kruzikova K, Svobodova Z. Mercury speciation and safety of fish from important fishing locations in the Czech Republic. Czech J. Food Sci. 2012;30:276–284. doi: 10.17221/239/2011-CJFS. DOI
European Commission. Commission Regulation 1881/2006 Setting Maximum Levels of Certain Contaminants in Foodstuffs. https://eur-lex.europa.eu/ (accessed 2 May 2021) (2006).