Microdialysis techniques and microdialysis-based patient-near diagnostics
Language English Country Germany Media print-electronic
Document type Journal Article, Review
PubMed
35028692
DOI
10.1007/s00216-021-03830-6
PII: 10.1007/s00216-021-03830-6
Knihovny.cz E-resources
- Keywords
- Microdialysis, Point-of-care testing, Sensors,
- MeSH
- Humans MeSH
- Microdialysis * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
This article will debate the usefulness of POCT measurements and the contribution microdialysis can make to generating valuable information. A particular theme will be the rarely considered difference between ex vivo sampling, which typically generates only a static measure of concentration, and in vivo measurements that are subject to dynamic changes due to mass transfer. Those dynamic changes provide information about the patients' physiological state.
BVT Technologies a S Strážek 206 592 53 Strážek Czechia
Cornel Medical Limited CAMBS 17 Church Walk St Neots PE19 1JH UK
See more in PubMed
Eerdekens G-J, Rex S, Mesotten D. Accuracy of blood glucose measurement and blood glucose targets. J Diabetes Sci Technol. 2020;14(3):553–9. https://doi.org/10.1177/1932296820905581 . PubMed DOI PMC
Patsalos PN, Lascelles PT. Effect of sodium valproate on plasma protein binding of diphenylhydantoin. J Neurol Neurosurg Psychiatry. 1977;40(6):570. https://doi.org/10.1136/jnnp.40.6.570 . PubMed DOI PMC
Dean M, Stock B, Patterson RJ, Levy G. Serum protein binding of drugs during and after pregnancy in humans. Clin Pharm Ther. 1980;28(2):253–61. https://doi.org/10.1038/clpt.1980.158 . DOI
Brodtkorb E, Reimers A. Seizure control and pharmacokinetics of antiepileptic drugs in pregnant women with epilepsy. Seizure. 2008;17(2):160–5. https://doi.org/10.1016/j.seizure.2007.11.015 . PubMed DOI
FDA. Guidance for industry. Bioavailability and bioequivalence studies for orally administered drug products- general considerations.2002. https://www.fda.gov/files/drugs/published/Guidance-for-Industry-Bioavailability-and-Bioequivalence-Studies-for-Orally-Administered-Drug-Products---General-Considerations.PDF . Accessed 10 Aug 2021.
Shichiri M, Yamasaki Y, Kawamori R, Hakui N, Abe H. Wearable Artificial endocrine pancreas with needle-type glucose sensor. Lancet. 1982;320(8308):1129–31. https://doi.org/10.1016/S0140-6736(82)92788-X . DOI
Fischer U, Ertle R, Abel P, Rebrin K, Brunstein E, Hahn von Dorshe H, et al. Assessment of subcutaneous glucose concentration: validation of the wick technique as a reference for implanted electrochemical sensors in normal and diabetic dogs. Diabetologia. 1987;30(12):940–945. https://doi.org/10.1007/bf00295878
Van den Berghe G, Wouters P, Weekers F, Verwast C, Bruyninckx F, Schetz D, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67. https://doi.org/10.1056/NEJMoa011300 . PubMed DOI
Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30(1–3):44–55. PubMed
Zetterström T, Sharp T, Marsden CA, Ungerstedt U. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem. 1983;41(6):1769–73. https://doi.org/10.1111/j.1471-4159.1983.tb00893.x . PubMed DOI
Ungerstedt U. Dialysis problem, intended for information in biological tissues. Patent SE434214B, Sweden, 1982. https://patents.google.com/patent/SE434214B/en?oq=SE434214B , Accessed 10 Aug 2021.
Ungerstedt U. Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA, editor. Measurement of neurotransmitter release in vivo. Methods in neurosciences, vol 6. New York: Wiley; 1984. pp 81–105.
Hutson PH, Sarna GS, Kantamaneni BD, Curzon G. Monitoring the effect of a tryptophan load on brain indole metabolism in freely moving rats by simultaneous cerebrospinal fluid sampling and brain dialysis. J Neurochem. 1985;44(4):1266–73. https://doi.org/10.1111/j.1471-4159.1985.tb08753.x . PubMed DOI
Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46(4):301–8. https://doi.org/10.1016/0024-3205(90)90037-R . PubMed DOI
Hillered L, Persson L, Pontén U, Ungerstedt U. Neurometabolic monitoring of the ischaemic human brain using microdialysis. Acta Neurochir. 1990;102(3):91–7. https://doi.org/10.1007/BF01405420 . PubMed DOI
Ungerstedt U. Microdialysis—principles and applications for studies in animals and man. J Int Med. 1991;230(4):365–73. https://doi.org/10.1111/j.1365-2796.1991.tb00459.x . DOI
Lonnroth P, Jansson PA, Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol. 1987;253(2):E228–31. https://doi.org/10.1152/ajpendo.1987.253.2.E228 . PubMed DOI
Damsma G, Biessels PTM, Westerink BHC, De Vries JB, Horn AS. Differential effects of 4-aminopyridine and 2,4-diaminopyridine on the in vivo release of acetylcholine and dopamine in freely moving rats measured by intrastriatal dialysis. Eur J Pharmacol. 1988;145(1):15–20. https://doi.org/10.1016/0014-2999(88)90343-3 . PubMed DOI
Damsma G, Westerink BHC, de Vries JB, Horn AS. The effect of systemically applied cholinergic drugs on the striatal release of dopamine and its metabolites, as determined by automated brain dialysis in conscious rats. Neurosci Lett. 1988;89(3):349–54. https://doi.org/10.1016/0304-3940(88)90551-4 . PubMed DOI
Hutson PH, Sarna GS, O’Connell MT, Curzon G. Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OHDPAT into the nucleus raphe dorsalis. Neurosci Lett. 1989;100(1):276–80. https://doi.org/10.1016/0304-3940(89)90698-8 . PubMed DOI
Westerink BHC, de Vries JB. On the origin of extracellular GABA collected by brain microdialysis and assayed by a simplified on-line method. Naunyn-Schmiedeberg’s Arch Pharmacol. 1989;339(6):603–7. https://doi.org/10.1007/BF00168650 . DOI
Patsalos PN, Abed WT, Alavijeh MS, O’Connell MT. The use of microdialysis for the study of drug kinetics: some methodological considerations illustrated with antipyrine in rat frontal cortex. Br J Pharmacol. 1995;115(3):503–9. https://doi.org/10.1111/j.1476-5381.1995.tb16362.x . PubMed DOI PMC
Keck FS, Kerner W, Meyerhoff C, Zier H, Pfeiffer EF. Combination of microdialysis and glucosensor permits continuous (on line) s. c. glucose monitoring in a patient operated device: I in vitro evaluation. Horm Metab Res. 2008;23(12):617–8. DOI
Pfeiffer EF, Meyerhoff C, Bischof F, Keck FS, Kerner W. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis. Horm Metab Res. 2008;25(02):121–4. DOI
Pfeiffer EF. The “Ulm Zucker Uhr System” and its consequences. Horm Metab Res. 2008;26(11):510–4. DOI
Meyerhoff C, Mennel FJ, Bischof F, Sternberg F, Pfeiffer EF. Combination of microdialysis and glucose sensor for continuous on line measurement of the subcutaneous glucose concentration: theory and practical application. Horm Metab Res. 2008;26(11):538–43. DOI
Sternberg F, Meyerhoff C, Mennel FJ, Hoss U, Mayer H, Bischof F, et al. Calibration problems of subcutaneous glucosensors when applied “in-situ” in man. Horm Metab Res. 2008;26(11):523–5. DOI
Sternberg F, Meyerhoff C, Mennel FJ, Bischof F, Pfeiffer EF. Subcutaneous glucose concentration in humans: real estimation and continuous monitoring. Diabetes Care. 1995;18(9):1266. https://doi.org/10.2337/diacare.18.9.1266 . PubMed DOI
Obrenovitch TP, Koshy A, Bennetto HP, ZilkhaE. Electrochemical throughflow enzyme biosensor. Patent GB2259771A, UK, 1991. https://patents.google.com/patent/GB2259771A/en?oq=GB2259771A . Accessed 10 Aug 2021.
Zilkha E, Obrenovitch TP, Koshy A, Kusakabe H, Bennetto HP. Extracellular glutamate: on-line monitoring using microdialysis coupled to enzyme-amperometric analysis. J Neurosci Methods. 1995;60(1):1–9. https://doi.org/10.1016/0165-0270(94)00214-2 . PubMed DOI
Chlup R, Krejci J, O’Connell M, Sebestova B, Plicka R, Jezova L, et al. Glucose concentrations in blood and tissue - a pilot study on variable time lag. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(4):527–34. https://doi.org/10.5507/bp.2015.007 . PubMed DOI
Schiavon M, Dalla Man C, Dube S, Slama M, Kudva YC, Peyser T, et al. Modeling Plasma-to-interstitium glucose kinetics from multitracer plasma and microdialysis data. Diabetes Technol Ther. 2015;17(11):825–31. https://doi.org/10.1089/dia.2015.0119 . PubMed DOI PMC
Cobelli C, Schiavon M, Dalla Man C, Basu A, Basu R. Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: insight from an in silico study. Diabetes Technol Ther. 2016;18(8):505–11. https://doi.org/10.1089/dia.2016.0112 . PubMed DOI PMC
Hurd YL, Kehr J, Ungerstedt U. In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow in the rat brain. J Neurochem. 1988;51(4):1314–6. https://doi.org/10.1111/j.1471-4159.1988.tb03103.x . PubMed DOI
Dubey RK, McAllister CB, Inoue M, Wilkinson GR. Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation. J Clin Invest. 1989;84(4):1155–9. https://doi.org/10.1172/JCI114279 . PubMed DOI PMC
Scott DO, Sorensen LR, Lunte CE. In vivo microdialysis sampling coupled to liquid chromatography for the study of acetaminophen metabolism. J Chromatogr. 1990;506:461–9. https://doi.org/10.1016/S0021-9673(01)91600-0 . PubMed DOI
Ståhle L. Drug distribution studies with microdialysis: I. Tissue dependent difference in recovery between caffeine and theophylline. Life Sci. 1991;49(24):1835–42. https://doi.org/10.1016/0024-3205(91)90486-U . PubMed DOI
Arner P, Bolinder J, Eliasson A, Lundin A, Ungerstedt U. Microdialysis of adipose tissue and blood for in vivo lipolysis studies. Am J Physiol. 1988;255(5):E737–42. https://doi.org/10.1152/ajpendo.1988.255.5.E737 . PubMed DOI
Hallström Å, Carlsson A, Hillered L, Uncerstedt U. Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatography. J Pharmacol Methods. 1989;22(2):113–24. https://doi.org/10.1016/0160-5402(89)90040-5 . PubMed DOI
Roda A, Girotti S, Grigolo B, Ghini S, Carrea G, Bovara R, et al. Microdialysis and luminescent probe: analytical and clinical aspects. Biosens Bioelectron. 1991;6(1):21–9. https://doi.org/10.1016/0956-5663(91)85004-G . PubMed DOI
Rada P, Parada M, Hernandez L. Flexible intravenous microdialysis probe for blood sampling in freely moving rats. J Appl Physiol. 1993;74(1):466–9. https://doi.org/10.1152/jappl.1993.74.1.466 . PubMed DOI
Larsson CI. The use of an “internal standard” for control of the recovery in microdialysis. Life Sci. 1991;49(13):PL73-PL78. https://doi.org/10.1016/0024-3205(91)90082-M
Yokel RA, Allen DD, Burgio DE, McNamara PJ. Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. J Pharmacol Toxicol Methods. 1992;27(3):135–42. https://doi.org/10.1016/1056-8719(92)90034-X . PubMed DOI
Stenken JA, Topp EM, Southard MZ, Lunte CE. Examination of microdialysis sampling in a well-characterized hydrodynamic system. Anal Chem. 1993;65(17):2324–8. https://doi.org/10.1021/ac00065a026 . PubMed DOI
Telting-Diaz Martin, Scott DO, Lunte CE. Intravenous microdialysis sampling in awake, freely-moving rats. Anal Chem. 1992;64(7):806–810. https://doi.org/10.1021/ac00031a019
Nolting A, Costa TD, Vistelle R, Rand KH, Derendorf H. Determination of free extracellular concentrations of piperacillin by microdialysis. J Pharm Sci. 1996;85(4):369–72. https://doi.org/10.1021/js950304x . PubMed DOI
Kovar A, Costa TD, Derendorf H. Comparison of plasma and free tissue levels of ceftriaxone in rats by microdialysis. J Pharm Sci. 1997;86(1):52–6. https://doi.org/10.1021/js960244a . PubMed DOI
Müller M, Rohde B, Kovar A, Georgopoulos A, Eichler H-G, Derendorf H. Relationship Between serum and free interstitial concentrations of cefodizime and cefpirome in muscle and subcutaneous adipose tissue of healthy volunteers measured by microdialysis. J Clin Pharmacol. 1997;37(12):1108–13. https://doi.org/10.1002/j.1552-4604.1997.tb04294.x . PubMed DOI
Dalla Costa T, Nolting A, Kovar A, Derendorf H. Determination of free interstitial concentrations of piperacillin-tazobactam combinations by microdialysis. J Antimicrob Chemother. 1998;42(6):769–78. https://doi.org/10.1093/jac/42.6.769 . PubMed DOI
Baldini F. Microdialysis-based sensing in clinical applications. Anal Bioanal Chem. 2010;397(3):909–16. https://doi.org/10.1007/s00216-010-3626-7 . PubMed DOI
Stjernström H, Karlsson T, Ungerstedt U, Hillered L. Chemical monitoring of intensive care patients using intravenous microdialysis. Intensive Care Med. 1993;19(7):423–8. https://doi.org/10.1007/BF01724886 . PubMed DOI
Patsalos PN, O'Connel MT. Dialysis probes. WO1994013195. UK 1992. https://patents.google.com/patent/WO1994013195A1/en?oq=WO1994013195A1 . Accessed 10 Aug 2021.
O’Connell MT, Tison F, Quinn NP, Patsalos PN. Clinical drug monitoring by microdialysis: application to levodopa therapy in Parkinson’s disease. Br J Clin Pharmacol. 1996;42(6):765–9. https://doi.org/10.1046/j.1365-2125.1996.00505.x . PubMed DOI PMC
Rooyackers O, Blixt C, Mattsson P, Wernerman J. Continuous glucose monitoring by intravenous microdialysis. Acta Anaesthesiol Scand. 2010;54(7):841–7. https://doi.org/10.1111/j.1399-6576.2010.02264.x . PubMed DOI
Páez X, Hernández L. Blood microdialysis in humans: a new method for monitoring plasma compounds. Life Sci. 1997;61(9):847–56. https://doi.org/10.1016/S0024-3205(97)00586-9 . PubMed DOI
Castejon AM, Paez X, Hernandez L, Cubeddu LX. Use of intravenous microdialysis to monitor changes in serotonin release and metabolism induced by cisplatin in cancer patients: comparative effects of granisetron and ondansetron. J Pharmacol Exp Ther. 1999;291(3):960. PubMed
Liska J, Franco-Cerceda A. Catheter to be inserted into a blood vessel, and a method for detection of substances and metabolic changes in a heart. Patent US6264627, USA, 1998. https://patents.google.com/patent/US6264627B1/en?oq=US6264627 . Accessed 10 Aug 2021.
Liska J, Franco-Cerceda. Microdialysis catheter for insertion into a blood vessel. Patent .US6346090, USA,1999. https://patents.google.com/patent/WO1994013195A1/en?oq=WO1994013195A1 . Accessed 10 Aug 2021.
Schierenbeck F, Franco-Cereceda A, Liska J. Evaluation of a continuous blood glucose monitoring system using central venous microdialysis. J Diabetes Sci Technol. 2012;6(6):1365–71. https://doi.org/10.1177/193229681200600615 . PubMed DOI PMC
Schierenbeck F, Öwall A, Franco-Cereceda A, Liska J. Evaluation of a continuous blood glucose monitoring system using a central venous catheter with an integrated microdialysis function. Diabetes Technol Ther. 2013;15(1):26–31. https://doi.org/10.1089/dia.2012.0169 . PubMed DOI
Leopold JH, van Hooijdonk RTM, Boshuizen M, Winters T, Bos LD, Abu-Hanna A, et al. Point and trend accuracy of a continuous intravenous microdialysis-based glucose-monitoring device in critically ill patients: a prospective study. Ann Intensive Care. 2016;6(1):68. https://doi.org/10.1186/s13613-016-0171-3 . PubMed DOI PMC
Schierenbeck F, Franco-Cereceda A, Liska J. Accuracy of 2 different continuous glucose monitoring systems in patients undergoing cardiac surgery: intravascular microdialysis versus subcutaneous tissue monitoring. J Diabetes Sci Technol. 2017;11(1):108–16. https://doi.org/10.1177/1932296816651632 . PubMed DOI
Zijlstra E, Hertlep M, O’Connell M, Heise T, Könnecke. Accuracy of a novel continuous glucose monitoring system (CGMS) using intravenous (iv). Presented at: 70
Schaller-Ammann R, Greiner H, Huber A, O’Connell M, Krejci J, Porro G et al. Continuous blood glucose monitoring system using intravenous microdialysis and glucose sensing. Presented at: 6th International Conference on Advanced Technologies & Treatments for Diabetes, February 27–March 2, 2013; Paris, France. https://doi.org/10.1515/bmt-2013-4224
Ricci F, Caprio F, Poscia A, Valgimigli F, Messeri D, Lepori E, et al. Toward continuous glucose monitoring with planar modified biosensors and microdialysis: study of temperature, oxygen dependence and in vivo experiment. Biosens Bioelectron. 2007;22(9):2032–9. https://doi.org/10.1016/j.bios.2006.08.041 . PubMed DOI
Valgimigli F, Lucarelli F, Scuffi C, Morandi S, Sposato I. Evaluating the clinical accuracy of GlucoMen®Day: a novel microdialysis-based continuous glucose monitor. J Diabetes Sci Technol. 2010;4(5):1182–92. https://doi.org/10.1177/193229681000400517 . PubMed DOI PMC
Lucarelli F, Ricci F, Caprio F, Valgimigli F, Scuffi C, Moscone D, et al. GlucoMen Day continuous glucose monitoring system: a screening for enzymatic and electrochemical interferents. J Diabetes Sci Technol. 2012;6(5):1172–81. https://doi.org/10.1177/193229681200600522 . PubMed DOI PMC
Scuffi C, Lucarelli F, Valgimigli F. Minimizing the impact of time lag variability on accuracy evaluation of continuous glucose monitoring systems. J Diabetes Sci Technol. 2012;6(6):1383–91. https://doi.org/10.1177/193229681200600618 . PubMed DOI PMC
Lucarelli F, Scuffi C, Mader JK, Aberer F, Korsatko S, Valgimigli F, Pieber TR. Optimising the glucose sampling performance of an intravascular microdialysis-based continuous glucose monitoring device for use in hospital settings. Presented at: The 6th International Conference on Advanced Technologies & Treatments for Diabetes, 2013, Paris.
Mader JK, Lucarelli F, Scuffi C, Aberer F, Korsatko S, Valgimigli F, et al. Optimising the glucose sampling performance of an intravascular microdialysis based continuous glucose monitoring device for use in hospital settings. 2013;58(SI-1-Track-F). https://doi.org/10.1515/bmt-2013-4142
Schierenbeck F, Nijsten MWN, Franco-Cereceda A, Liska J. Introducing intravascular microdialysis for continuous lactate monitoring in patients undergoing cardiac surgery: a prospective observational study. Crit Care. 2014;18(2):R56. https://doi.org/10.1186/cc13808 . PubMed DOI PMC
Lenkin PI, Smetkin AA, Hussain A, Lenkin AI, Paromov KV, Ushakov AA, et al. Continuous monitoring of lactate using intravascular microdialysis in high-risk cardiac surgery: a prospective observational study. J Cardiothorac Vasc Anesth. 2017;31(1):37–44. https://doi.org/10.1053/j.jvca.2016.04.013 . PubMed DOI
Daurat A, Dick M, Louart B, Lefrant J-Y, Muller L, Roger C. Continuous lactate monitoring in critically ill patients using microdialysis. Anaesth Crit Care Pain Med. 2020;39(4):513–7. https://doi.org/10.1016/j.accpm.2020.05.018 . PubMed DOI
Chavez J, Glaser S, Krom Z. Continuous lactate measurement devices and implications for critical care: a literature review. Crit Care Nursing Q. 2020;43(3). https://journals.lww.com/ccnq/Fulltext/2020/07000/Continuous_Lactate_Measurement_Devices_and.2.aspx . Accesed 10 Aug 2021.
DeJournett J, Nekludov M, DeJournett L, Wallin M. Performance of a closed-loop glucose control system, comprising a continuous glucose monitoring system and an AI-based controller in swine during severe hypo- and hyperglycemic provocations. J Clin Monit Comput. 2021;35(2):317–25. https://doi.org/10.1007/s10877-020-00474-2 . PubMed DOI
Weber S, Tombelli S, Giannetti A, Trono C, O’Connell M, Wen M, et al. Immunosuppressant quantification in intravenous microdialysate – towards novel quasi-continuous therapeutic drug monitoring in transplanted patients. Clin Chem Lab Med. 2021;59(5):935–45. https://doi.org/10.1515/cclm-2020-1542 . PubMed DOI
Bittersohl H, Herbinger J, Wen M, Renders L, Steimer W, Luppa PB. Simultaneous determination of protein-unbound cyclosporine A and mycophenolic acid in kidney transplant patients using liquid chromatography–tandem mass spectrometry. Ther Drug Monit. 2017;39(3). https://doi.org/10.1097/FTD.0000000000000392
Jacquez JA. Compartmental analysis in biology and medicine. 2nd ed. Ann Arbor: The University of Michigan Press; 1985. pp. 560.
Schlichting H, Gersten K. Boundary-layer theory. 8th ed. Berlin: Springer; 2000. p. 811. DOI
Koryta J, Dvorak J. Principles of electrochemistry. New York: Wiley; 1987. p. 447.
Katchalsky A, Curran PF. Nonequilibrium thermodynamics in biophysics. United States: Harvard University Press; 2013. https://doi.org/10.4159/harvard.9780674494121
Gyarmati I. Nonequilibrium thermodynamics: field theory and variational principles. Berlin: Springer; 1970. p. 184.
Lakshminarayanaiah N. Transport phenomena in membranes. New York and London: Academica Press; 1969. p. 517.
Bungay PM, Wang T, Yang H, Elmquist WF. Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: theory and in vitro validation. J Membr Sci. 2010;348(1):131–49. https://doi.org/10.1016/j.memsci.2009.10.050 . DOI
Bungay PM, Wang T, Yang H, Elmquist WF. Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: theory and in vitro validation. J Memb Sci. Author manuscript; available in PMC 2011 Feb 15. pp.1–61.
Bungay PM, Morrison PF, Dedrick RL, Chefer VI, Zapata A. Principles of quantitative microdialysis. In: Westerink BHC, Cremers TIFH, editors. Handbook of behavioral neuroscience. Vol 16. Amsterdam: Elsevier; 2006. pp.131–167. https://doi.org/10.1016/S1569-7339(06)16008-7 .
Bungay PM. Quantitative microdialysis: theoretical aspects. Presented at: AAPS-FDA workshop, November 4–5, 2005, Nashville.
Bungay PM, Morrison PF, Dedrick RL. Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci. 1990;46(2):105–19. https://doi.org/10.1016/0024-3205(90)90043-Q . PubMed DOI
Morrison PF, Bungay PM, Hsiao JK, Mefford IN, Dykstra KH, Dedrick R. Quantitative microdialysis. In: Robinson TE, Justice JB, editors. Microdialysis in the neurosciences, vol. 7. Amsterdam: Elsevier; 1991. p. 47–80. DOI
Tuma R, Thomas GJ. Theory, design, and characterization of a microdialysis flow cell for Raman spectroscopy. Biophys J. 1996;71(6):3454–66. https://doi.org/10.1016/S0006-3495(96)79541-3 . PubMed DOI PMC
Clough GF, Boutsiouki P, Church MK, Michel CC. Effects of blood flow on the in vivo recovery of a small diffusible molecule by microdialysis in human Skin. J Pharmacol Exp Ther. 2002;302(2):681. https://doi.org/10.1124/jpet.102.035634 . PubMed DOI
de Lange ECM, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood–brain barrier. Brain Res Rev. 1997;25(1):27–49. https://doi.org/10.1016/S0165-0173(97)00014-3 . PubMed DOI
Westerink BH, De Vries JB. Characterization of in vivo dopamine release as determined by brain microdialysis after acute and subchronic implantations: methodological aspects. J Neurochem. 1988;51(3):683–7. https://doi.org/10.1111/j.1471-4159.1988.tb01798.x . PubMed DOI