Phage therapy of wound-associated infections
Language English Country United States Media print-electronic
Document type Journal Article, Review
PubMed
35028881
PubMed Central
PMC8933295
DOI
10.1007/s12223-021-00946-1
PII: 10.1007/s12223-021-00946-1
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents therapeutic use MeSH
- Bacteria MeSH
- Bacterial Infections * therapy MeSH
- Bacteriophages * MeSH
- Phage Therapy * methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
Phages are viruses which can specifically infect bacteria, resulting in their destruction. Bacterial infections are a common complication of wound healing, and experimental evidence from animal models demonstrates promising potential for phage-dependent eradication of wound-associated infections. The studies discussed suggest that phage therapy may be an effective treatment, with important advantages over some current antibacterial treatments. Phage cocktails, as well as co-administration of phages and antibiotics, have been reported to minimise bacterial resistance. Further, phage-antibiotic synergism has been reported in some studies. The ideal dose of phages is still subject to debate, with evidence for both high and low doses to yield therapeutic effects. Novel delivery methods, such as hydrogels, are being explored for their advantages in topical wound healing. There are more and more Good Manufacturing Practice facilities dedicated to manufacturing phage products and phage therapy units across the world, showing the changing perception of phages which is occurring. However, further research is needed to secure the place of phages in modern medicine, with some scientists calling upon the World Health Organisation to help promote phage therapy.
See more in PubMed
Botka T, Pantucek R, Maslanova I, Benesik M, Petras P, Ruzickova V, Havlickova P, Varga M, Zemlickova H, Kolackova I, Florianova M, Jakubu V, Karpiskova R, Doskar J. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci Rep. 2019;9:5475. doi: 10.1038/s41598-019-41868-w. PubMed DOI PMC
Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14:244–269. doi: 10.1128/CMR.14.2.244-269.2001. PubMed DOI PMC
Camens S, Liu S, Hon K, Bouras GS, Psaltis AJ, Wormald PJ, Vreugde S. Preclinical development of a bacteriophage cocktail for treating multidrug resistant Pseudomonas aeruginosa Infections. Microorganisms. 2021;9:2001. doi: 10.3390/microorganisms9092001. PubMed DOI PMC
Chang RYK, Morales S, Okamoto Y, Chan HK. Topical application of bacteriophages for treatment of wound infections. Transl Res. 2020;220:153–166. doi: 10.1016/j.trsl.2020.03.010. PubMed DOI PMC
Chanishvili N. Phage therapy–history from Twort and d'Herelle through Soviet experience to current approaches. Adv Virus Res. 2012;83:3–40. doi: 10.1016/B978-0-12-394438-2.00001-3. PubMed DOI
Chhibber S, Kaur J, Kaur S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol. 2018;9:561. doi: 10.3389/fmicb.2018.00561. PubMed DOI PMC
Danis-Wlodarczyk K, Dabrowska K, Abedon ST. Phage therapy: the pharmacology of antibacterial viruses. Curr Issues Mol Biol. 2021;40:81–164. doi: 10.21775/cimb.040.081. PubMed DOI
Duplessis CA, Biswas B. A review of topical phage therapy for chronically infected wounds and preparations for a randomized adaptive clinical trial evaluating topical phage therapy in chronically infected diabetic foot ulcers. Antibiotics (basel) 2020;9:377. doi: 10.3390/antibiotics9070377. PubMed DOI PMC
Engeman E, Freyberger HR, Corey BW, Ward AM, He Y, Nikolich MP, Filippov AA, Tyner SD, Jacobs AC. Synergistic killing and re-sensitization of Pseudomonas aeruginosa to antibiotics by phage-antibiotic combination treatment. Pharmaceuticals (basel) 2021;14:184. doi: 10.3390/ph14030184. PubMed DOI PMC
Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care. 2016;25:S27–S33. doi: 10.12968/jowc.2016.25.7.S27. PubMed DOI
Gorski A, Miedzybrodzki R, Zaczek M, Borysowski J. Phages in the fight against COVID-19? Future Microbiol. 2020;15:1095–1100. doi: 10.2217/fmb-2020-0082. PubMed DOI PMC
Gu Liu C, Green SI, Min L, Clark JR, Salazar KC, Terwilliger AL, Kaplan HB, Trautner BW, Ramig RF, Maresso AW (2020) Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio 11:e01462–01420. 10.1128/mBio.01462-20 PubMed PMC
Gupta P, Singh HS, Shukla VK, Nath G, Bhartiya SK. Bacteriophage therapy of chronic nonhealing wound: clinical study. Int J Low Extrem Wounds. 2019;18:171–175. doi: 10.1177/1534734619835115. PubMed DOI
Huon JF, Montassier E, Leroy AG, Gregoire M, Vibet MA, Caillon J, Boutoille D, Navas D (2020) Phages versus antibiotics to treat infected diabetic wounds in a mouse model: a microbiological and microbiotic evaluation. mSystems 5:e00542–00520. 10.1128/mSystems.00542-20 PubMed PMC
Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Rousseau AF, Ravat F, Carsin H, Le Floch R, Schaal JV, Soler C, Fevre C, Arnaud I, Bretaudeau L, Gabard J. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19:35–45. doi: 10.1016/S1473-3099(18)30482-1. PubMed DOI
Kifelew LG, Warner MS, Morales S, Vaughan L, Woodman R, Fitridge R, Mitchell JG, Speck P. Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol. 2020;20:204. doi: 10.1186/s12866-020-01891-8. PubMed DOI PMC
Kim HY, Chang RYK, Morales S, Chan HK. Bacteriophage-delivering hydrogels: current progress in combating antibiotic resistant bacterial infection. Antibiotics (basel) 2021;10:130. doi: 10.3390/antibiotics10020130. PubMed DOI PMC
Knezevic P, Hoyle NS, Matsuzaki S, Gorski A. Editorial: advances in phage therapy: present challenges and future perspectives. Front Microbiol. 2021;12:701898. doi: 10.3389/fmicb.2021.701898. PubMed DOI PMC
Lusiak-Szelachowska M, Zaczek M, Weber-Dabrowska B, Miedzybrodzki R, Letkiewicz S, Fortuna W, Rogoz P, Szufnarowski K, Jonczyk-Matysiak E, Olchawa E, Walaszek KM, Gorski A. Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol. 2017;12:109–117. doi: 10.2217/fmb-2016-0156. PubMed DOI
Macdonald KE, Stacey HJ, Harkin G, Hall LML, Young MJ, Jones JD. Patient perceptions of phage therapy for diabetic foot infection. PLoS ONE. 2020;15:e0243947. doi: 10.1371/journal.pone.0243947. PubMed DOI PMC
Mendes JJ, Leandro C, Corte-Real S, Barbosa R, Cavaco-Silva P, Melo-Cristino J, Gorski A, Garcia M. Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds. Wound Repair Regen. 2013;21:595–603. doi: 10.1111/wrr.12056. PubMed DOI
Nadareishvili L, Hoyle N, Nakaidze N, Nizharadze D, Kutateladze M, Balarjishvili N, Kutter E, Pruidze N. Bacteriophage therapy as a potential management option for surgical wound infections. Phage. 2020;1:158–165. doi: 10.1089/phage.2020.0010. PubMed DOI PMC
O’Neill J (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. https://wellcomecollection.org/works/rdpck35v
Oliveira A, Sousa JC, Silva AC, Melo LDR, Sillankorva S. Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo Wound Model. Front Microbiol. 2018;9:1725. doi: 10.3389/fmicb.2018.01725. PubMed DOI PMC
Oliveira VC, Macedo AP, Melo LDR, Santos SB, Hermann PRS, Silva-Lovato CH, Paranhos HFO, Andrade D, Watanabe E. Bacteriophage cocktail-mediated inhibition of Pseudomonas aeruginosa biofilm on endotracheal tube surface. Antibiotics (basel) 2021;10:78. doi: 10.3390/antibiotics10010078. PubMed DOI PMC
Ooi ML, Drilling AJ, Morales S, Fong S, Moraitis S, Macias-Valle L, Vreugde S, Psaltis AJ, Wormald PJ. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 2019;145:723–729. doi: 10.1001/jamaoto.2019.1191. PubMed DOI PMC
Pinto AM, Cerqueira MA, Banobre-Lopes M, Pastrana LM, Sillankorva S. Bacteriophages for chronic wound treatment: from traditional to novel delivery systems. Viruses. 2020;12:235. doi: 10.3390/v12020235. PubMed DOI PMC
Pinto AM, Faustino A, Pastrana LM, Banobre-Lopez M, Sillankorva S. Pseudomonas aeruginosa PAO 1 in vitro time-kill kinetics using single phages and phage formulations-modulating death, adaptation, and resistance. Antibiotics (basel) 2021;10:877. doi: 10.3390/antibiotics10070877. PubMed DOI PMC
Pirnay JP, Ferry T, Resch G. Recent progress towards the implementation of phage therapy in Western medicine. FEMS Microbiol Rev. 2021 doi: 10.1093/femsre/fuab040. PubMed DOI
Shen HY, Liu ZH, Hong JS, Wu MS, Shiue SJ, Lin HY. Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release. 2021;331:154–163. doi: 10.1016/j.jconrel.2021.01.024. PubMed DOI
Shetru MN, Karched M, Agsar D. Locally isolated broad host-range bacteriophage kills methicillin-resistant Staphylococcus aureus in an in vivo skin excisional wound model in mice. Microb Pathog. 2021;152:104744. doi: 10.1016/j.micpath.2021.104744. PubMed DOI
Siddiqui AR, Bernstein JM. Chronic wound infection: facts and controversies. Clin Dermatol. 2010;28:519–526. doi: 10.1016/j.clindermatol.2010.03.009. PubMed DOI
Soothill JS. Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. Burns. 1994;20:209–211. doi: 10.1016/0305-4179(94)90184-8. PubMed DOI
Steele A, Stacey HJ, de Soir S, Jones JD. The safety and efficacy of phage therapy for superficial bacterial infections: a systematic review. Antibiotics (basel) 2020;9:754. doi: 10.3390/antibiotics9110754. PubMed DOI PMC
Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, Masjedian Jazi F. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45–61. doi: 10.2147/IDR.S234353. PubMed DOI PMC
Tacconelli E, Margrini N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organisation. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1. Accessed 10 November 2021
Vaitekenas A, Tai AS, Ramsay JP, Stick SM, Kicic A. Pseudomonas aeruginosa resistance to bacteriophages and its prevention by strategic therapeutic cocktail formulation. Antibiotics (basel) 2021;10:145. doi: 10.3390/antibiotics10020145. PubMed DOI PMC
Yan W, Banerjee P, Liu Y, Mi Z, Bai C, Hu H, To KKW, Duong HTT, Leung SSY. Development of thermosensitive hydrogel wound dressing containing Acinetobacter baumannii phage against wound infections. Int J Pharm. 2021;602:120508. doi: 10.1016/j.ijpharm.2021.120508. PubMed DOI
Zaczek M, Gorski A, Skaradzinska A, Lusiak-Szelachowska M, Weber-Dabrowska B. Phage penetration of eukaryotic cells: practical implications. Future Virol. 2019;14:745–760. doi: 10.2217/fvl-2019-0110. DOI
Zaczek M, Lusiak-Szelachowska M, Weber-Dabrowska B, Miedzybrodzki R, Fortuna W, Rogoz P, Letkiewicz S, Gorski A. Humoral immune response to phage-based therapeutics. In: Gorski A, Miedzybrodzki R, Borysowski J, editors. Phage Therapy: A Practical Approach. Cham: Springer; 2019. pp. 123–143.