COVID-19, oxidative stress, and male reproductive dysfunctions: is vitamin C a potential remedy?
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35043653
PubMed Central
PMC8997673
DOI
10.33549/physiolres.934827
PII: 934827
Knihovny.cz E-zdroje
- MeSH
- farmakoterapie COVID-19 * MeSH
- kyselina askorbová terapeutické užití MeSH
- lidé MeSH
- oxidační stres MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyselina askorbová MeSH
Few peculiarities have been observed in the etiology of coronavirus disease 2019 (COVID-19), one such being its greater prevalence in men than women partly due to the higher expressions of angiotensin-converting enzyme-2 (ACE2) in the male reproductive tissues. Recent scientific reports are in line with some of the evidence-based hypotheses in the initial phase of the COVID-19 pandemic, regarding the involvement of oxidative stress (OS) and oxidant-sensitive pathways in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-mediated male reproductive disruptions. The seminal dissemination of SARS-CoV-2 or its components, testicular disruptions due to viral infection and oxidative damage in the testis have all been evidenced recently. High-dose of antioxidants, such as vitamin C, have been shown to be a useful treatment for COVID-19 patients, to alleviate systemic inflammation and OS. In addition, vitamin C is a major testicular antioxidant that neutralizes excess reactive oxygen species (ROS), prevents sperm agglutination, prevents lipid peroxidation, recycles vitamin E, and protects against DNA damage. Thus, the present review aims to discuss the mechanism of COVID-19-mediated male reproductive dysfunctions, based on the evidence available so far, and explore the possibility of using vitamin C in alleviating testicular OS and associated damage caused by COVID-19.
Zobrazit více v PubMed
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microb. 2020;27:325–328. doi: 10.1016/j.chom.2020.02.001. PubMed DOI PMC
World Health Organization. 2019-nCoV outbreak is an emergency of international concern. 2020.
Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019;11:41. doi: 10.3390/v11010041. PubMed DOI PMC
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94:e00127. doi: 10.1128/JVI.00127-20. PubMed DOI PMC
Stanley KE, Thomas E, Leaver M, Wells D. Coronavirus disease (COVID-19) and fertility: viral host entry protein expression in male and female reproductive tissues. Fertil Steril. 2020;1:33–43. doi: 10.1016/j.fertnstert.2020.05.001. PubMed DOI PMC
Roychoudhury S, Das A, Jha NK, Kesari KK, Roychoudhury S, Jha SK, Kosgi R, Choudhury AP, Lukac N, Madhu NR, Kumar D, Slama P. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health. Open Biol. 2021;11:200347. doi: 10.1098/rsob.200347. PubMed DOI PMC
Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells. 2020;9:920. doi: 10.3390/cells9040920. PubMed DOI PMC
Wambier CG, Goren A. SARS-COV-2 infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83:308–309. doi: 10.1016/j.jaad.2020.04.032. PubMed DOI PMC
Sengupta P, Dutta S. COVID-19 and hypogonadism: Secondary immune responses rule-over endocrine mechanisms. Hum Fertil (Camb) 2021:1–6. doi: 10.1080/14647273.2020.1867902. PubMed DOI
Giagulli VA, Guastamacchia E, Magrone T, Jirillo E, Lisco G, De Pergola G, Triggiani V. Worse progression of COVID-19 in men: Is testosterone a key factor? Andrology. 2021;9:53–64. doi: 10.1111/andr.12836. PubMed DOI PMC
Maggio M, Basaria S, Ceda G, Ble A, Ling S, Bandinelli S, Valenti G, Ferrucci L. The relationship between testosterone and molecular markers of inflammation in older men. J Endocrinol Invest. 2005;28(11 Suppl Proc):116–119. PubMed
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Sem Imunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x. PubMed DOI PMC
Roychoudhury S, Das A, Sengupta P, Dutta S, Roychoudhury S, Choudhury AP, Fuzayel Ahmed AB, Bhattacharjee S, Slama P. Viral pandemics of the last four decades: pathophysiology, health impacts and perspectives. Int J Env Res Pub Health. 2020;17:9411. doi: 10.3390/ijerph17249411. PubMed DOI PMC
Shang W, Dong J, Ren Y, Tian M, Li W, Hu J, Li Y. The value of clinical parameters in predicting the severity of COVID-19. J Med Virol. 2020;92:2188–2192. doi: 10.1002/jmv.26031. PubMed DOI PMC
De Oliveira Toledo SL, Nogueira LS, das Graças Carvalho M, Rios DRA, de Barros Pinheiro M. COVID-19: Review and hematologic impact. Clin Chim Acta. 2020;510:170–76. doi: 10.1016/j.cca.2020.07.016. PubMed DOI PMC
Cheung CY, Poon LL, Ng IH, Luk W, Sia S-F, Wu MHS, Chan K-H, Yuen K-Y, Gordon S, Guan Y, Peiris JSM. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol. 2005;79:7819–7826. doi: 10.1128/JVI.79.12.7819-7826.2005. PubMed DOI PMC
Chu H, Zhou J, Wong BH-Y, Li C, Chan JF-W, Cheng Z-S, Yang D, Wang D, Lee AC-Y, Li C, Yeung M-L, Cai J-P, Chan IH-Y, Ho W-K, To KK-W, Zheng B-J, Yao Y, Qin C, Yuen K-Y. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis. 2016;213:904–914. doi: 10.1093/infdis/jiv380. PubMed DOI PMC
Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J, Meyerholz DK, Ahel I, Perlman S. The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio. 2016;7:e01721–16. doi: 10.1128/mBio.01721-16. PubMed DOI PMC
Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95:834–847. doi: 10.1002/ajh.25829. PubMed DOI PMC
Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microb. 2016;19:181–193. doi: 10.1016/j.chom.2016.01.007. PubMed DOI PMC
Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, Peh S, Gu J. Orchitis: a complication of severe acute respiratory syndrome (SARS) Biol Reprod. 2006;74:410–16. doi: 10.1095/biolreprod.105.044776. PubMed DOI PMC
Li R, Yin T, Fang F, Li Q, Chen J, Wang Y, Hao Y, Wu G, Duan P, Wang Y, Cheng D, Zhou Q, Zafar MI, Xiong C, Li H, Yang J, Qiao J. Potential risks of SARS-Cov-2 infection on reproductive health. Reprod Biomed Online. 2020;41:89–95. doi: 10.1016/j.rbmo.2020.04.018. PubMed DOI PMC
Dutta S, Sengupta P. SARS-CoV-2 and male infertility: possible multifaceted pathology. Reprod Sci. 2021;28:23–26. doi: 10.1007/s43032-020-00261-z. PubMed DOI PMC
Sengupta P, Dutta S. Does SARS-CoV-2 infection cause sperm DNA fragmentation? Possible link with oxidative stress. Eur J Contracep Reprod Health Care. 2020;25:405–406. doi: 10.1080/13625187.2020.1787376. PubMed DOI
Selvam MKP, Sengupta P, Agarwal A. Genetics of Male Infertility. Springer; 2020. Sperm DNA fragmentation and male infertility; pp. 155–172. DOI
Wheatland R. Molecular mimicry of ACTH in SARS-implications for corticosteroid treatment and prophylaxis. Med Hypoth. 2004;63:855–862. doi: 10.1016/j.mehy.2004.04.009. PubMed DOI PMC
Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and-adrenal axes. J Neuroendocrinol. 2002;14:506–513. doi: 10.1046/j.1365-2826.2002.00798.x. PubMed DOI
Dutta S, Sengupta P. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: can testicular-adrenal crosstalk be ruled-out? J Basic Clin Physiol Pharmacol. 2020:31. doi: 10.1515/JBCPP-2020-0205. PubMed DOI
Falahieh FM, Zarabadipour M, Mirani M, Abdiyan M, Dinparvar M, Alizadeh H, Paktinat S, Hosseinirad H. Effects of moderate COVID-19 infection on semen oxidative status and parameters 14 and 120 days after diagnosis. Reprod Fertil Dev. 2021;33:683–690. doi: 10.1071/rd21153. PubMed DOI
Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, Kruessel J-S, Bielfeld AP. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril. 2020;114:233–238. doi: 10.1016/j.fertnstert.2020.05.028. PubMed DOI PMC
Moghimi N, Eslami Farsani B, Ghadipasha M, Mahmoudiasl GR, Piryaei A, Aliaghaei A, Abdi S, Abbaszadeh H-A, Abdollahifar M-A, Forozesh M. COVID-19 disrupts spermatogenesis through the oxidative stress pathway following induction of apoptosis. Apoptosis. 2021;26:415–430. doi: 10.1007/s10495-021-01680-2. PubMed DOI PMC
Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory diseases. Oxidat Med Cell Long. 2019:2019. doi: 10.1155/2019/7090534. PubMed DOI PMC
Nabzdyk CS, Bittner EA. Vitamin C in the critically ill-indications and controversies. World J Crit Care Med. 2018;7:52. doi: 10.5492/wjccm.v7.i5.52. PubMed DOI PMC
Fowler AA, III, Kim C, Lepler L, Malhotra R, Debesa O, Natarajan R, Fisher BJ, Syed A, DeWilde C, Priday A, Kasirajan V. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med. 2017;6:85–90. doi: 10.5492/wjccm.v6.i1.85. PubMed DOI PMC
Li J. Evidence is stronger than you think: A meta-analysis of vitamin C use in patients with sepsis. Crit Care. 2018;22:1–4. doi: 10.1186/s13054-018-2191-x. PubMed DOI PMC
Patel V, Dial K, Wu J, Gauthier AG, Wu W, Lin M, Espey MG, Thomas DD, Ashby CR, Jr, Mantell LL. Dietary antioxidants significantly attenuate hyperoxia-induced acute inflammatory lung injury by enhancing macrophage function via reducing the accumulation of airway HMGB1. Int J Mol Sci. 2020;21:977. doi: 10.3390/ijms21030977. PubMed DOI PMC
Izuka E, Menuba I, Sengupta P, Dutta S, Nwagha U. Antioxidants, anti-inflammatory drugs and antibiotics in the treatment of reproductive tract infections and their association with male infertility. Chem Biol Lett. 2020;7:156–165.
Imamovic Kumalic S, Pinter B. Review of clinical trials on effects of oral antioxidants on basic semen and other parameters in idiopathic oligoasthenoteratozoospermia. BioMed Res Int. 2014;2014:426951. doi: 10.1155/2014/426951. PubMed DOI PMC
Abad C, Amengual M, Gosálvez J, Coward K, Hannaoui N, Benet J, García-Peiró A, Prats J. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia. 2013;45:211–216. doi: 10.1111/and.12003. PubMed DOI
Alahmar AT, Calogero AE, Sengupta P, Dutta S. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J Men’s Health. 2021;39:346. doi: 10.5534/wjmh.190145. PubMed DOI PMC
Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S. Coenzyme Q10, oxidative stress, and male infertility: A review. Clin Exp Reprod Med. 2021;48:97. doi: 10.5653/cerm.2020.04175. PubMed DOI PMC
Alahmar AT, Sengupta P. Impact of coenzyme Q10 and selenium on seminal fluid parameters and antioxidant status in men with idiopathic infertility. Biol Trace Elem Res. 2021;199:1246–1252. doi: 10.1007/s12011-020-02251-3. PubMed DOI
Angulo C, Maldonado R, Pulgar E, Mancilla H, Córdova A, Villarroel F, Castro MA, Concha II. Vitamin C and oxidative stress in the seminiferous epithelium. Biol Res. 2011;44:169–180. PubMed
Sönmez M, Türk G, Yüce A. The effect of ascorbic acid supplementation on sperm quality, lipid peroxidation and testosterone levels of male Wistar rats. Theriogenology. 2005;63:2063–2072. doi: 10.1016/j.theriogenology.2004.10.003. PubMed DOI
Kim TK, Lim H, Byun J. Vitamin C supplementation reduces the odds of developing a common cold in Republic of Korea Army recruits: randomised controlled trial. BMJ Mil Health. 2020 doi: 10.1136/bmjmilitary-2019-001384. PubMed DOI
Gorton HC, Jarvis K. The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J Manipul Physiol Ther. 1999;22:530–33. doi: 10.1016/s0161-4754(99)70005-9. PubMed DOI
Hoang BX, Shaw G, Fang W, Han B. Possible application of high-dose vitamin C in the prevention and therapy of coronavirus infection. J Glob Antimicrob Resist. 2020;23:256–262. doi: 10.1016/j.jgar.2020.09.025. PubMed DOI PMC
National Cancer Institute. High-dose vitamin C (PDQ®)–Health professional version. 2020. Available from: https://www.cancer.gov/about-cancer/treatment/cam/hp/vitamin-c-pdq. PubMed
Stárka L, Dušková M. Androgens in SARS-CoV-2 coronavirus infections. Physiol Res. 2021;70(Suppl 2):S145–S151. doi: 10.33549/physiolres.934724. PubMed DOI PMC
Knížatová N, Massanyi M, Roychoudhury S, Guha P, Greifova H, Tokarova K, Jambor T, Massanyi P, Lukáč N. Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility? Physiol Res. 2021;70(Suppl 2):S161–S175. doi: 10.33549/physiolres.934756. PubMed DOI PMC