Viral Pandemics of the Last Four Decades: Pathophysiology, Health Impacts and Perspectives
Language English Country Switzerland Media electronic
Document type Historical Article, Journal Article, Review
PubMed
33333995
PubMed Central
PMC7765415
DOI
10.3390/ijerph17249411
PII: ijerph17249411
Knihovny.cz E-resources
- Keywords
- COVID-19, Ebola, HIV, SARS-CoV-2, influenza,
- MeSH
- COVID-19 MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- HIV MeSH
- Comorbidity MeSH
- Middle East Respiratory Syndrome Coronavirus MeSH
- Humans MeSH
- Pandemics history MeSH
- SARS-CoV-2 MeSH
- Public Health MeSH
- Virus Diseases epidemiology physiopathology MeSH
- Influenza A Virus, H1N1 Subtype MeSH
- Ebolavirus MeSH
- Severe acute respiratory syndrome-related coronavirus MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
The twenty-first century has witnessed some of the deadliest viral pandemics with far-reaching consequences. These include the Human Immunodeficiency Virus (HIV) (1981), Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) (2002), Influenza A virus subtype H1N1 (A/H1N1) (2009), Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2012) and Ebola virus (2013) and the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) (2019-present). Age- and gender-based characterizations suggest that SARS-CoV-2 resembles SARS-CoV and MERS-CoV with regard tohigher fatality rates in males, and in the older population with comorbidities. The invasion-mechanism of SARS-CoV-2 and SARS-CoV, involves binding of its spike protein with angiotensin-converting enzyme 2 (ACE2) receptors; MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), whereas H1N1 influenza is equipped with hemagglutinin protein. The viral infections-mediated immunomodulation, and progressive inflammatory state may affect the functions of several other organs. Although no effective commercial vaccine is available for any of the viruses, those against SARS-CoV-2 are being developed at an unprecedented speed. Until now, only Pfizer/BioNTech's vaccine has received temporary authorization from the UK Medicines and Healthcare products Regulatory Agency. Given the frequent emergence of viral pandemics in the 21st century, proper understanding of their characteristics and modes of action are essential to address the immediate and long-term health consequences.
Department of Life Science and Bioinformatics Assam University Silchar 788011 India
Department of Microbiology R G Kar Medical College and Hospital Kolkata 700004 India
Department of Obstetrics and Gynecology Silchar Medical College and Hospital Silchar 788014 India
Department of Pathology Silchar Medical College and Hospital Silchar 788014 India
See more in PubMed
Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Napoli R.D. Statpearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2020. Features, evaluation and treatment coronavirus (COVID-19) pp. 1–16.
Bloom D.E., Cadarette D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front. Immunol. 2019;10:549. doi: 10.3389/fimmu.2019.00549. PubMed DOI PMC
Grubaugh N.D., Lander J.T., Lemey P., Pybus O.G., Rambaut A., Holmes E.C., Andersen K.G. Tracking virus outbreaks in twenty-first century. Nat. Microbiol. 2019;4:10–19. doi: 10.1038/s41564-018-0296-2. PubMed DOI PMC
Zappa A., Amendola A., Romano L., Zanetti A. Emerging and re-emerging viruses in the era of globalization. Blood Transfus. 2009;7:167–171. PubMed PMC
Marco M.D., Baker M.L., Dasjak P., Barro P.D., Eskew E.A., Godde C.M., Harwood T.D., Herrero M., Hoskins A.J., Johnson E., et al. Sustainable development must account for pandemic risk. Proc. Natl. Acad. Sci. USA. 2020;117:3888–3892. doi: 10.1073/pnas.2001655117. PubMed DOI PMC
Joint United Nations Programme on HIV/AIDS (UNAIDS) Report on the Global HIV/AIDS Epidemic. [(accessed on 29 November 2020)]; Available online: https://data.unaids.org/pub/report/2000/2000_gr_en.pdf.
Gayle H.D., Hill G.L. Global impacts of human immunodeficiency virus and AIDS. Clin. Microbiol. Rev. 2001;14:327–335. doi: 10.1128/CMR.14.2.327-335.2001. PubMed DOI PMC
World Health Organization (WHO) Inadequate Plumbing Systems Likely Contributed to SARS Transmission. [(accessed on 29 November 2020)];2003 Available online: https://www.who.int/mediacentre/releases/2003/pr70/en/
Abdullah A.S.M., Tomlinson B., Thomas G.N., Cockram C.S. Impacts of SARS on health care systems and strategies for combating future outbreaks of emerging infectious diseases. In: Knobler S., Mahmoud A.D., Lemon S., Mack A., Sivitz L., Oberholtzer K., editors. Learning from SARS: Preparing for the Next Disease Outbreak. National Academic Press; Washington, DC, USA: 2004. pp. 83–90.
Cheng V.C.C., To K.K.W., Tse H., Hung I.F.N., Yuen K.-Y. Two tears after pandemic influenza A/2009/H1N1: What have we learned? Clin. Microbiol. Rev. 2012;25:223–263. doi: 10.1128/CMR.05012-11. PubMed DOI PMC
World Health Organization (WHO) Middle East Respiratory Syndrome Coronavirus (MERS-CoV)—Update. [(accessed on 29 November 2020)];Disease Outbreak News. 4 October 2013. Available online: https://www.who.int/csr/don/2013_10_04/en/index.html.
Calnan M., Gadsby E.W., Konde M.K., Diallo A., Rossman J.S. The response to and impact of the ebola epidemic: Towards an agenda for interdisciplinary research. Int. J. Health Policy Manag. 2018;7:402–411. doi: 10.15171/ijhpm.2017.104. PubMed DOI PMC
Guo Y.-R., Cao Q.-D., Hong Z.-S., Tan Y.-Y., Chen S.-D., Jin H.-J., Tan K.-S., Wang D.-Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak: An update on the status. Mil. Med. Res. 2020;7:1–10. doi: 10.1186/s40779-020-00240-0. PubMed DOI PMC
Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020;382:1199–1207. doi: 10.1056/NEJMoa2001316. PubMed DOI PMC
World Health Organization (WHO) WHO Coronavirus Disease (COVID-19) Dashboard. [(accessed on 10 December 2020)]; Available online: https://covid19.who.int/
Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI
Chen J., Subbarao K. The immunobiology of SARS. Annu. Rev. Immunol. 2007;25:443–472. doi: 10.1146/annurev.immunol.25.022106.141706. PubMed DOI
Karlberg J., Chong D.S.Y., Lai W.Y.Y. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am. J. Epidemiol. 2004;159:229–231. doi: 10.1093/aje/kwh056. PubMed DOI PMC
Alghamdi I.G., Hussain I.I., Almalki S.S., Alghamdi M.S., Alghamdi M.M., El-Sheemy M.A. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int. J. Gen. Med. 2014;7:417–423. doi: 10.2147/IJGM.S67061. PubMed DOI PMC
Altamimi A., Abu-Saris R., El-Metwally A., Alaifan T., Alamri A. Demographic variation of MERS-CoV infection among suspected and confirmed cases: An epidemiological analysis of laboratory-based data from Riyadh Regional Laboratory. Biomed. Res. Int. 2020;2020:9629747. doi: 10.1155/2020/9629747. PubMed DOI PMC
Meleis A., Caglia J., Langer A. Women and health: Women’s dual roles as both recipients and providers of healthcare. J. Womens Health. 2016;25:329–331. doi: 10.1089/jwh.2015.5717. PubMed DOI
Wise J. COVID-19: Low skilled men have highest death rate of working age adults. BMJ. 2020;369:m1906. doi: 10.1136/bmj.m1906. PubMed DOI
Oksuzyan A., Juel K., Vaupel J.W., Christensen K. Men: Good health and high mortality. Sex differences in health and aging. Aging Clin. Exp. Res. 2008;20:91–102. doi: 10.1007/BF03324754. PubMed DOI PMC
Klein S.L., Passaretti C., Anker M., Olukoya P., Pekosz A. The impact of sex, gender and pregnancy on 2009 H1N1 disease. Biol. Sex Differ. 2010;1:5. doi: 10.1186/2042-6410-1-5. PubMed DOI PMC
Eshima N., Tokumara O., Hara S., Bacal K., Korematsu S., Tabata M., Karukaya S., Yasui Y., Okabe N., Matsuishi T. Sex- and age-related differences in morbidity rates of 2009 ppandemic influenza A H1N1 virus of swine origin in Japan. PLoS ONE. 2011;6:e19409. doi: 10.1371/journal.pone.0019409. PubMed DOI PMC
World Health Organization (WHO) Sex, Gender and Influenza. [(accessed on 29 November 2020)]; Available online: https://apps.who.int/iris/handle/10665/44401.
Ojanunga D.N., Gilbert C. Women’s access to healthcare in developing countries. Social. Sci. Med. 1992;35:613–617. doi: 10.1016/0277-9536(92)90355-T. PubMed DOI
Kamate S.K., Agarwal A., Chaudhary H., Singh K., Mishra P., Asawa K. Public knowledge, attitude and behavioural changes in an Indian population during the influenza A (H1N1) outbreak. J. Infect. Dev. Ctries. 2010;4:7–14. doi: 10.3855/jidc.501. PubMed DOI
Zarychanski R., Stuart T.L., Kumar A., Doucette S., Elliott L., Kettner J., Plummer F. Correlates of severe disease in patients with 2009 pandemic influenza (H1N1) virus infection. CMAJ. 2010;182:257–264. doi: 10.1503/cmaj.091884. PubMed DOI PMC
Quinn S.C., Kumar S., Freimuth V.S., Musa D., Casteneda-Angarita N., Kidwell K. Racial disparities in exposure, susceptibility, and access to healthcare in the US H1N1 influenza pandemic. Am. J. Public Health. 2011;101:285–293. doi: 10.2105/AJPH.2009.188029. PubMed DOI PMC
Agency for Haelthcare Research and Quality 2007 National Healthcare Quality and Disparities Report. [(accessed on 1 December 2020)]; Available online: https://www.arhq.gov/qual/qrdr07.htm.
Bower H., Johnson S., Bangura M.S., Kamara A.J., Kamara O., Mansaray S.H., Sesay D., Turay C., Checchi F., Glynn J.R. Exposure-specific and age-specific attack rates for ebola virus disease in ebola-affected households, Sierra Leone. Emerg. Infect. Dis. 2016;22:1403–1411. doi: 10.3201/eid2208.160163. PubMed DOI PMC
Nkangu M.N., Olatunde O.A., Yaya S. The perspective of gender on ebola virus using a risk management and population health framework: A scoping review. Infect. Dis. Poverty. 2017;6:135. doi: 10.1186/s40249-017-0346-7. PubMed DOI PMC
United Nations (UN) Gender Inequality Index, UN Dev. Programme. [(accessed on 1 December 2020)]; Available online: https://hdr.undp.org/en/content/table-4-gender-inequality-index.
Human Rights Watch (HRW) West Africa: Respect Rights in Ebola Response. [(accessed on 1 December 2020)]; Available online: https://www.hrw.org/news/2014/09/15/west-africa-respect-rights-ebola-response.
World Health Organization (WHO) Addressing Sex and Gender in Epidemic-Prone Infectious Diseases. [(accessed on 1 December 2020)];2007 Available online: https://www.who.int/csr/resources/publications/SexGenderInfectDis.pdf.
British Broadcasting Corporation (BBC) “The Number of Deaths Could Have Been Avoided. Better Engagement of Women at the Grassroots Level Who Are Midwives, Who Are Death Attendants, Who Are Traditional Healers, Who Were Not Aware of All the Details. Just Respecting Their Leadership and Engagement Could Have Decreased the Number of People Who Died.” Phumzile Mlambo-Ngcuka, Exec. Dir., U.N. Women, Remarks at the BBC World Debate in Accra, Ghana: Ebola—What Next? [(accessed on 1 December 2020)];2015 Mar 25; Available online: http://www.bbc.co.uk/programmes/pozmcz5g.
Singh G.K., Rodriguez-Lainz A., Kogan M.D. Immigrant health inequalities in the United States: Use of eight major national data systems. Sci. World J. 2013;2013:512313. doi: 10.1155/2013/512313. PubMed DOI PMC
Azuine R.E., Ekejiuba S.E., Singh G.K., Azuine M.A. Ebola Virus Disease Epidemic: What Can the World Learn and Not Learn from West Africa? Int. J. MCH AIDS. 2015;3:1–6. doi: 10.21106/ijma.32. PubMed DOI PMC
Singh G.K., Lin S.C. Marked ethnic, nativity, and socioeconomic disparities in disability and health insurance among US children and adults: The 2008–2010 American community survey. Biomed. Res. Int. 2013;2013:627412. doi: 10.1155/2013/627412. PubMed DOI PMC
Girum T., Wasie A., Lentiro K., Muktar E., Shumbej T., Difer M., Shegaze M., Worku A. Gender disparity in epidemiological trend of HIV/AIDS infection and treatment in Ethiopia. Arch. Public Health. 2018;76:51. doi: 10.1186/s13690-018-0299-8. PubMed DOI PMC
Magadi M.A. Understanding the gender disparity in HIV infection across countries in sub-Saharan Africa: Evidence from the demographic and health surveys. Sociol. Health Illn. 2011;33:522–539. doi: 10.1111/j.1467-9566.2010.01304.x. PubMed DOI PMC
Richardson E.T., Collins S.E., Kung T., Jones J.H., Tram K.H., Boggiano V.L., Bekker L.-G., Zolopa A.R. Gender inequality and HIV transmission: A global analysis. J. Int. AIDS Soc. 2014;17:19035. doi: 10.7448/IAS.17.1.19035. PubMed DOI PMC
WHO (World Health Organization) AIDS Epidemic Update: December 2006. [(accessed on 25 September 2020)]; Available online: https://www.who.int/hiv/pub/epidemiology/epiupdate2006/en/
Haley D.F., Justman J.E. The HIV epidemic among women in the United States: A persistent puzzle. J. Women’s Health. 2013;22:715–717. doi: 10.1089/jwh.2013.4562. PubMed DOI PMC
Anugwom E., Anugwom K. Socio-cultural factors in the access of women to HIV/AIDS prevention and treatment services in South-southern Nigeria. Iran. J. Public Health. 2016;45:754–760. PubMed PMC
Heslin K.C., Andersen R.M., Ettner S.L., Cunningham W.E. Racial and ethnic disparities in access to physicians with HIV-related expertise. J. Gen. Intern. Med. 2005;20:283–289. doi: 10.1111/j.1525-1497.2005.40109.x. PubMed DOI PMC
Centers for Disease Control and Prevention (CDC) Diagnoses of HIV Infection in the United States and Dependent Areas. [(accessed on 1 December 2020)];2018 Available online: www.cdc.gov/hiv/library/reports/hiv-surveillance/vol-31/index.html.
Liu Y., Mao B., Liang S., Yang J.-W., Lu H.-W., Chai Y.-H., Wang L., Zhang L., Li Q.-H., Zhao L., et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur. Respir. J. 2020;55:2001112. doi: 10.1183/13993003.01112-2020. PubMed DOI PMC
Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8:475–481. doi: 10.1016/S2213-2600(20)30079-5. PubMed DOI PMC
Klein S.L., Dhakal S., Ursin R.L., Deshpande S., Sandberg K., Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. PLoS Pathog. 2020;16:e1008570. doi: 10.1371/journal.ppat.1008570. PubMed DOI PMC
Gebhard C., Regitz-Zagrosek V., Neuhauser H.K., Morgan R., Klein S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020;11:29. doi: 10.1186/s13293-020-00304-9. PubMed DOI PMC
Chen T., Wu D., Chen H., Yan W., Yang D., Chen G., Ma K., Xu D., Yu H., Wang H., et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091. PubMed DOI PMC
Dudley J.P., Lee N.T. Disparities in age-specific morbidity and mortality from SARS-CoV-2 in China and the Republic of Korea. Clin. Infect. Dis. 2020;71:863–865. doi: 10.1093/cid/ciaa354. PubMed DOI PMC
Borghesi A., Zigliani A., Masciullo R., Golemi S., Maculotti P., Farina D., Maroldi R. Radiographic severity index in COVID-19 pneumonia: Relationship to age and sex in 783 Italian patients. Radiol. Med. 2020;125:461–464. doi: 10.1007/s11547-020-01202-1. PubMed DOI PMC
Gemmati D., Bramanti B., Serino M.L., Secchiero P., Zauli G., Tisato V. COVID-19 and Individual Genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int. J. Mol. Sci. 2020;21:3474. doi: 10.3390/ijms21103474. PubMed DOI PMC
Jin J.-M., Bai P., He W., Wu F., Liu X.-F., Han D.-M., Liu S., Yang J.-K. Gender differences in patients with COVID-19: Focus on severity and mortality. Front. Public Health. 2020;8:152. doi: 10.3389/fpubh.2020.00152. PubMed DOI PMC
Meng Y., Wu P., Lu W., Liu K., Ma K., Huang L., Cai J., Zhang H., Qin Y., Sun H., et al. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients. PLoS Pathog. 2020;16:e1008520. doi: 10.1371/journal.ppat.1008520. PubMed DOI PMC
Lechien J.R., Chiesa-Estomba C.M., Laethem Y.V., Cabaraux P., Mat Q., Huet K., Pizak J., Horoi M., Hans S., Barillari M.R., et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J. Int. Med. 2020;288:335–344. doi: 10.1111/joim.13089. PubMed DOI PMC
Cohen F.S. How viruses invade cells. Biophys. J. 2016;110:1028–1032. doi: 10.1016/j.bpj.2016.02.006. PubMed DOI PMC
Cohen F.S., Melikyan G.B. The energetic of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 2004;199:1–14. doi: 10.1007/s00232-004-0669-8. PubMed DOI
Rogers G.N., Paulson J.C. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983;127:361–373. doi: 10.1016/0042-6822(83)90150-2. PubMed DOI
Gamblin S.J., Skehel J.J. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J. Biol. Chem. 2010;285:28403–28409. doi: 10.1074/jbc.R110.129809. PubMed DOI PMC
Roy A.M., Parker J.S., Parrish C.R., Whittaker G.R. Early stages of influenza virus entry into Mv-1 lung cells: Involvement of dynamin. Virology. 2000;267:17–28. doi: 10.1006/viro.1999.0109. PubMed DOI
Rust M.J., Lakadamyali M., Zhang F., Zhuang X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat. Struct. Mol. Biol. 2004;11:567–573. doi: 10.1038/nsmb769. PubMed DOI PMC
Martin K., Helenius A. Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import. Cell. 1991;67:117–130. doi: 10.1016/0092-8674(91)90576-K. PubMed DOI
Choi J.H., Croyle M.A. Emerging targets and novel approaches to ebola virus prophylaxis and treatment. BioDrugs. 2013;27:565–583. doi: 10.1007/s40259-013-0046-1. PubMed DOI PMC
Alvarez C.P., Lasala F., Carrillo J., Muniz O., Corbi A.L., Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by ebola virus in cis and in trans. J. Virol. 2002;76:6841–6844. doi: 10.1128/JVI.76.13.6841-6844.2002. PubMed DOI PMC
Nanbo A., Imai M., Watanabe S., Noda T., Takhashi K., Neumann G., Halfmann P., Kawaoka Y. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 2010;23:e1001121. doi: 10.1371/journal.ppat.1001121. PubMed DOI PMC
Moller-Tank S., Maury W. Phosphatidylserine receptors: Enhancers of enveloped virus entry and infection. Virology. 2014;468:565–580. doi: 10.1016/j.virol.2014.09.009. PubMed DOI PMC
Lee J., Gregory S.M., Nelson E.A., White J.M., Tamm L.K. The roles of histidines and charged residues as potential triggers of a conformational change in the fusion loop of ebola virus glycoprotein. PLoS ONE. 2016;11:e0152527. doi: 10.1371/journal.pone.0152527. PubMed DOI PMC
Furuta Y., Eriksson K., Svennerholm B., Fredman P., Horal P., Jeansson S., Vahlne A., Holmgren J., Czerkinsky C. Infection of vaginal and colonic epithelial cells by the human immunodeficiency virus type 1 is neutralized by antibodies raised against conserved epitopes in the envelope glycoprotein gp 120. Proc. Natl. Acad. Sci. USA. 1994;91:12559–12563. doi: 10.1073/pnas.91.26.12559. PubMed DOI PMC
Bomsel M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat. Med. 1997;3:42–47. doi: 10.1038/nm0197-42. PubMed DOI
Yeaman G.R., Asin S., Weldon S., Demian D.J., Collins J.E., Gonzalez J.L., Wira C.R., Fanger M.W., Howell A.L. Chemokine receptor expression in the human ectocervix: Implications for infection by the human immunodeficiency virus-type 1. Immunology. 2004;113:524–533. doi: 10.1111/j.1365-2567.2004.01990.x. PubMed DOI PMC
Hladik F., McElrath M.J. Setting the stage- HIV host invasion. Nat. Rev. Immunol. 2008;8:447–457. doi: 10.1038/nri2302. PubMed DOI PMC
Suresh P., Wanchu A. Chemokines and chemokine receptors in HIV infection: Role in pathogenesis and therapeutics. J. Postgrad. Med. 2006;52:210–217. PubMed
Willey J.M., Sherwood L.M., Woolverton C.J. Human diseases caused by viruses and prions. In: Willey J.M., Sherwood L.M., Woolverton C.J., editors. Prescott’s Microbiology. 10th ed. Mc Graw Hill; New York, NY, USA: 2017. pp. 827–858.
Cheng P.K.C., Wong D.A., Tong L.K.L., Ip S.-M., Lo A.C.T., Lau C.-S., Yeung E.Y.H., Lim W.W.L. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004;363:1699–1700. doi: 10.1016/S0140-6736(04)16255-7. PubMed DOI PMC
Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:250–454. doi: 10.1038/nature02145. PubMed DOI PMC
Kuba K., Imai Y., Ohto-Nakanishi T., Penninger J.M. Trilogy of ACE2: A peptidase in the rennin-angiotensin system, a SARS receptor, and a partner for the amino acid transporters. Pharmacol. Ther. 2010;128:119–128. doi: 10.1016/j.pharmthera.2010.06.003. PubMed DOI PMC
Raj V.S., Mou H., Smits S.L., Dekkers D.H.W., Muller M.A., Dijkman R., Muth D., Demmers J.A.A., Zaki A., Fouchier R.A.M., et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–254. doi: 10.1038/nature12005. PubMed DOI PMC
Bosch B.J., van der Zee R., de Haan C.A.M., Rottier P.J.M. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol. 2003;77:8801–8811. doi: 10.1128/JVI.77.16.8801-8811.2003. PubMed DOI PMC
Fehr A.R., Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses. 2015;1282:1–23. PubMed PMC
Rabi F.A., Al Zoubi M.S., Kasasbeh G.A., Salameh D.M., Al-Nasser A.D. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens. 2020;9:231. doi: 10.3390/pathogens9030231. PubMed DOI PMC
Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–292. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC
Simmons G., Zmora P., Gierer S., Heurich A., Pohlmann S. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral. Res. 2013;100:605–614. doi: 10.1016/j.antiviral.2013.09.028. PubMed DOI PMC
Sungnak W., Huang N., Becavin C., Berg M. HCA Lung Biological Network. SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. arXiv. 20202003.06122
Hou Y.J., Okuda K., Edwards C.E., Martinez D.R., Asakura T., Dinnon K.H., Kato T., Lee R.E., Yount B.L., Mascenik T.M., et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182:429–446. doi: 10.1016/j.cell.2020.05.042. PubMed DOI PMC
Zhang Y., Geng X., Tan Y., Li Q., Xu C., Xu J., Hao L., Zeng Z., Luo X., Liu F., et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 2020;127:110195. doi: 10.1016/j.biopha.2020.110195. PubMed DOI PMC
Iwasaki M., Saito J., Zhao H., Sakamoto A., Hirota K., Ma D. Inflammation triggered by SARS-CoV-2 and ACE2 augment deives multiple organ failure of severe COVID-19: Molecular mechanisms and implications. Inflammation. 2020;43:1–22. PubMed PMC
Astuti I. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr. 2020;14:407–412. doi: 10.1016/j.dsx.2020.04.020. PubMed DOI PMC
Wang Q., Wu J., Wang H., Gao Y., Liu Q., Mu A., Ji W., Yan L., Zhu Y., Zhu C., et al. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell. 2020;182:417–428. doi: 10.1016/j.cell.2020.05.034. PubMed DOI PMC
Renu K., Prasanna P.L., Gopalakrishnan A.V. Coronaviruses pathogenesis, comorbidities and multiple-organ damage—A review. Life Sci. 2020;255:117839. doi: 10.1016/j.lfs.2020.117839. PubMed DOI PMC
Zaragoulidis P., Kouliatsis G., Papanas N., Spyratos D., Constantinidis T.C., Kouroumichakis I., Steiropoulos P., Mabroudi M., Matthaios D., Kerenidi T., et al. Long-term respiratory follow-up of H1N1 infection. Virol. J. 2011;8:319. doi: 10.1186/1743-422X-8-319. PubMed DOI PMC
Wolf T., Kann G., Becker S., Stephan C., Brodt H.-R., Leuw P.D., Grunewald T., Vogl T., Kempf V.A.J., Keppler O.T., et al. Severe ebola virus disease with vascular leakage and multiorgan failure: Treatment of a patient in intensive care. Lancet. 2015;385:1428–1435. doi: 10.1016/S0140-6736(14)62384-9. PubMed DOI
Martines R.B., Ng D.L., Greer P.W., Rollin P.E., Zaki S.R. Tissue and cellular tropism, pathology and pathogenesis of ebola and Marburg viruses. J. Pathol. 2015;235:153–174. doi: 10.1002/path.4456. PubMed DOI
Fitzpatrick M.E., Kunisaki K.M., Morris A. Pulmonary disease in HIV-infected adults in the era of antiretroviral therapy. AIDS. 2018;32:277–292. doi: 10.1097/QAD.0000000000001712. PubMed DOI PMC
Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005;202:415–424. doi: 10.1084/jem.20050828. PubMed DOI PMC
Ramadan N., Shaib H. Middle east respiratory syndrome coronavirus (MERS-CoV): A review. Germs. 2019;9:35–42. doi: 10.18683/germs.2019.1155. PubMed DOI PMC
Mohanty S.K., Satapathy A., Naidu M.M., Mukhopadhyay S., Sharma S., Barton L.M., Stroberg E., Duval E.J., Pradhan D., Tzankov A., et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19)- anatomic pathology perspective on current knowledge. Diagn. Pathol. 2020;15:103. doi: 10.1186/s13000-020-01017-8. PubMed DOI PMC
Ciceri F., Beretta L., Scandroglio A.M., Colombo S., Landoni G., Ruggeri A., Peccatori J., D’Angelo A., De Cobelli F., Rovere-Querini P., et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020;22:95–97. PubMed PMC
Gupta M.D., Girish M.P., Yadav G., Shankar A., Yadav R. Coronavirus disease 2019 and the cardiovascular system: Impacts and implications. Indian Heart J. 2020;72:1–6. doi: 10.1016/j.ihj.2020.03.006. PubMed DOI PMC
Richardson P., McKenna W., Bristow M., Maisch B., Mautner B., O’Connell J., Olsen E., Thiene G., Goodwin J., Gyarfas I., et al. Reprt of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841. PubMed
Onitsuka H., Imamura T., Miyamoto N., Shibata Y., Kashiwagi T., Ayabe T., Kawagoe J., Matsuda J., Ishikawa T., Unoki T., et al. Clinical manifestations of influenza a myocarditis during the influenza epidemic of winter 1998–1999. J. Cardiol. 2001;37:315–323. PubMed
Golabchi A., Sarrafzadegan N. What every cardiologist should know about H1N1? ARYA Atheroscler. 2010;6:118–121. PubMed PMC
Kortepeter M.G., Lawler J.V., Honko A., Bray M., Johnson J.C., Purcell B.K., Olinger G.G., Rivard R., Hepburn M.J., Hensley L.E. Real-time monitoring of cardiovascular function in rhesus macaques infected with Zaire ebolavirus. J. Infect. Dis. 2011;204:S1000–S1010. doi: 10.1093/infdis/jir337. PubMed DOI
Barnes R.P., Lacson J.C.A., Bahrami H. HIV infection and risk of cardiovascular diseases beyond coronary artery disease. Curr. Atheroscler. Rep. 2017;19:20. doi: 10.1007/s11883-017-0652-3. PubMed DOI PMC
Yu C.-M., Wong R.S.-M., Wu E.B., Kong S.-L., Wong J., Yip G.W.-K., Soo Y.O.Y., Chiu M.L.S., Chan Y.-S., Hui D., et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J. 2006;82:140–144. doi: 10.1136/pgmj.2005.037515. PubMed DOI PMC
Assiri A., Al-Tawfiq J.A., Al-Rabeeah A.A., Al-Rabiah F.A., Al-Hajjar S., Al-Barrak A., Flemban H., Al-Nassir W.N., Balkhy H.H., Al-Hakeem R.F., et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect. Dis. 2013;13:752–761. doi: 10.1016/S1473-3099(13)70204-4. PubMed DOI PMC
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Landi K.K., Coleman A.T. Sudden death in toddlers caused by influenza B infection: A report of two cases and a review of the literature. J. Forensic Sci. 2008;53:213–215. doi: 10.1111/j.1556-4029.2007.00604.x. PubMed DOI
Adalja A.A., Henderson D.A. Original antigenic sin and pandemic (H1N1) 2009. Emerg. Infect. Dis. 2010;16:1028–1029. doi: 10.3201/eid1606.091653. PubMed DOI PMC
Reisler R.B., Zeng X., Schellhase C.W., Bearss J.J., Warren T.K., Trefry J.C., Christopher G.W., Kortepeter M.G., Bavari S., Cardile A.P. Ebola virus causes intestinal tract architecrural disruption and bacterial invasion in non-human primates. Viruses. 2018;10:513. doi: 10.3390/v10100513. PubMed DOI PMC
Sestak K. Chronic diarrhea and AIDS: Insights into studies with non-human primates. Curr. HIV Res. 2005;3:199–205. doi: 10.2174/1570162054368084. PubMed DOI
Zhang J.-Z. Severe acute respiratory syndrome and its lesions in digestive system. World J. Gastroenterol. 2003;9:1135–1138. doi: 10.3748/wjg.v9.i6.1135. PubMed DOI PMC
Chan J.F.W., Lau S.K.P., To K.K.W., Cheng V.C.C., Woo P.C.Y., Yuen K.-Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 2015;28:465–522. doi: 10.1128/CMR.00102-14. PubMed DOI PMC
Zhou J., Li C., Zhao G., Chu H., Wang D., Yan H.H.-N., Poon V.K.-M., Wen L., Wong B.H.-Y., Zhao X., et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci. Adv. 2017;15:eaao4966. doi: 10.1126/sciadv.aao4966. PubMed DOI PMC
Hajifathalian K., Mahadev S., Schwartz R.E., Shah S., Sampath K., Schnoll-Sussman F., Brown R.S., Jr., Carr-Locke D., Cohen D.E., Sharaiha R.Z. SARS-CoV-2-infection (coronavirus disease 2019) for the gastrointestinal consultant. World J. Gastroenterol. 2020;26:1546–1553. doi: 10.3748/wjg.v26.i14.1546. PubMed DOI PMC
Sulkava R., Rissanen A., Pyhala R. Post-influenzal encephalitis during the influenza A outbreak in 1979/1980. J. Neurol. Neurosurg. Psychiatry. 1981;44:161–163. doi: 10.1136/jnnp.44.2.161. PubMed DOI PMC
Asadi-Pooya A.A., Yaghoubi E., Niksereshi A., Moghadami M., Honarvar B. The neurological manifestations of H1N1 influenza infection; diagnostic challenges and recommendations. Iran J. Med. Sci. 2011;36:36–39. PubMed PMC
West T.E., Arnim A.V.S.A.-V. Clinical presentation and management of severe ebola virus disease. Ann. Am. Thorac. Soc. 2014;11:1341–1350. doi: 10.1513/AnnalsATS.201410-481PS. PubMed DOI
Billioux B.J., Smith B., Nath A. Neurological complications of ebola virus infection. Neurotherapeutics. 2016;13:461–470. doi: 10.1007/s13311-016-0457-z. PubMed DOI PMC
Ellis R.J., Calero P., Stockin M.D. HIV infection and the central nervous system: A primer. Neuropsychol. Rev. 2009;19:144–151. doi: 10.1007/s11065-009-9094-1. PubMed DOI PMC
Lau K.-K., Yu W.-C., Chu C.-M., Lau S.-T., Sheng B., Yuen K.-Y. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis. 2004;10:342–344. doi: 10.3201/eid1002.030638. PubMed DOI PMC
Xu J., Zhong S., Liu J., Li L., Li Y., Wu X., Li Z., Deng P., Zhang J., Zhong N., et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin. Infect. Dis. 2005;41:1089–1096. doi: 10.1086/444461. PubMed DOI PMC
Kim J.E., Heo J.H., Kim H.O., Song S.H., Park S.S., Park T.H., Ahn J.Y., Kim M.K., Choi J.P. Neurological complications during treatment of Middle East respiratory syndrome. J. Clin. Neurol. 2017;13:227–233. doi: 10.3988/jcn.2017.13.3.227. PubMed DOI PMC
Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Ueno M., Sakata H., Kondo K., Myose N., et al. A first case of meningitis/ encephalitis associated with SARS-coronavirus-2. Int. J. Infect. Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062. PubMed DOI PMC
Mao L., Jin H., Wang M., HU Y., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1–9. doi: 10.1001/jamaneurol.2020.1127. PubMed DOI PMC
Watanabe T. Renal complications of seasonal and pandemic influenza A virus infections. Eur. J. Pediatr. 2013;172:15–22. doi: 10.1007/s00431-012-1854-x. PubMed DOI
Prasad N., Novak J.E., Patel M.R. Kidney diseases associated with parvovirus B19, hanta, ebola, and dengue virus infection: A brief review. Adv. Chronic Kidney Dis. 2019;26:207–219. doi: 10.1053/j.ackd.2019.01.006. PubMed DOI
Wyatt C.M. Kidney diseases and HIV infection. Top Antivir. Med. 2017;25:13–16. PubMed PMC
Huang J.-W., Chen K.-Y., Tsai H.-B., Wu V.-C., Yang Y.-F., Wu M.-S., Chu T.-S., Wu K.-D. Acute renal failure in patients with severe acute respiratory syndrome. J. Formos. Med. Assoc. 2005;104:891–896. PubMed
Memish Z.A., Zumla A.I., Al-Hakeem R.F., Al-Rabeeah A.A., Stephens G.M. Family cluster of Middle East respiratory syndrome coronavirus infections. N. Engl. J. Med. 2013;368:2487–2494. doi: 10.1056/NEJMoa1303729. PubMed DOI
Su H., Yang M., Wan C., Yi L.-X., Tang F., Zhu H.-Y., Yi F., Yang H.-C., Fogo A.B., Nie X., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98:219–227. doi: 10.1016/j.kint.2020.04.003. PubMed DOI PMC
Martinez-Rojas M.A., Vega-Vega O., Bobadilla N.A. Is the kidney a target of SARS-CoV-2? Am. J. physiol. Renal. Physiol. 2020;318:F1454–F1462. doi: 10.1152/ajprenal.00160.2020. PubMed DOI PMC
Evenson D.P., Jost L.K., Corzett M., Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: A case study. J. Androl. 2000;21:739–746. PubMed
Sergerie M., Mieusset R., Croute F., Daudin M., Bujan L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil. Steril. 2007;88:e1–e7. doi: 10.1016/j.fertnstert.2006.12.045. PubMed DOI
Shinde V., Bridges C.B., Uyeki T.M., Shu B., Balish A., Xu X., Lindstrom S., Gubareva L.V., Deyde V., Garten R.J., et al. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N. Engl. J. Med. 2009;360:2616–2625. doi: 10.1056/NEJMoa0903812. PubMed DOI
Rasmussen S.A., Jamieson D.J., Macfarlane K., Cragan J.D., Williams J., Henderson Z. Pandemic influenza and pregnant women: Summary of a meeting of experts. Am. J. Public Health. 2009;99:S248–S254. doi: 10.2105/AJPH.2008.152900. PubMed DOI PMC
Perry D.L., Huzella L.M., Bernbaum J.G., Holbrook M.R., Jahrling P.B., Hagen K.R., Schnell M.J., Johnson R.F. Ebola virus localization in the macaque reproductive tract during acute ebola virus disease. Am. J. Pathol. 2018;188:550–558. doi: 10.1016/j.ajpath.2017.11.004. PubMed DOI PMC
Connolly B.M., Steele K.E., Davis K.J., Geisbert T.W., Kell W.M., Jaax N.K., Jahrling P.B. Pathogenesis of experimental ebola virus infection in guinea pig. J. Infect. Dis. 1999;179:S203–S217. doi: 10.1086/514305. PubMed DOI
Muehlenbachs A., Vasquez O.D.L.R., Bausch D.G., Schafer I.J., Paddock C.D., Nyakio J.P., Lame P., Bergeron E., McCollum A.M., Goldsmith C.S., et al. Ebola virus disease in pregnancy: Clinical, histopathologic, and immunohistochemical findings. J. Infect. Dis. 2017;215:64–69. doi: 10.1093/infdis/jiw206. PubMed DOI
Sissoko D., Keita M., Diallo B., Aliabadi N., Fitter D.L., Dahl B.A., Bore J.A., Koundouno F.R., Singethan K., Meisel S., et al. Ebola virus persistence in breast milk after no reported illness: A likely source of virus transmission from mother to child. Clin. Infect. Dis. 2017;64:513–516. doi: 10.1093/cid/ciw793. PubMed DOI PMC
Leruez-Ville M., Almeida M.D., Tachet A., Dulioust E., Guibert J., Mandelbrot L., Salmon D., Jouannet P., Rouzioux C. Asssited reproduction in HIV-1 serodifferent couples: The need for viral validation of processed semen. AIDS. 2002;16:2267–2273. doi: 10.1097/00002030-200211220-00006. PubMed DOI
Tindall B., Forde S., Goldstein D., Ross M.W., Cooper D.A. Sexual dysfunction in advanced HIV disease. AIDS Care. 1994;6:105–107. doi: 10.1080/09540129408258030. PubMed DOI
Cejtin H.E., Kalinowski A., Bacchetti P., Taylor R.N., Watts D.H., Kim S., Massad L.S., Preston-Martin S., Anastos K., Moxley M., et al. Effects of human immunodeficiency virus on protracted amenorrhea and ovarian dysfunction. Obstet. Gynecol. 2006;108:1423–1431. doi: 10.1097/01.AOG.0000245442.29969.5c. PubMed DOI
Paxton L.A., Kiwanuka N., Nalugoda F., Gray R., Wawer M.J. Community based study of treatment seeking among subjects with symptoms of sexually transmitted disease in rural Uganda. BMJ. 1998;317:1630–1631. doi: 10.1136/bmj.317.7173.1630. PubMed DOI PMC
Gray R.H., Wawer M.J., Serwadda D., Sewankambo N., Li C., Wabwire-Mangen F., Paxton L., Kiwanuka N., Kigozi G., Konde-Lule J., et al. Population-based study of fertility in women with HIV-1 infection in Uganda. Lancet. 1998;351:98–103. doi: 10.1016/S0140-6736(97)09381-1. PubMed DOI
Payne D.C., Iblam I., Alqasrawi S., Nsour M.A., Rha B., Tohme R.A., Abedi G.R., Farag N.H., Haddadin A., Sanhouri T.A., et al. Stillbirth during infection with Middle East respiratory syndrome coronavirus. J. Infect. Dis. 2014;209:1870–1872. doi: 10.1093/infdis/jiu068. PubMed DOI PMC
World Health Organization (WHO) Middle East Respiratory Syndrome Coronavirus (MERS-CoV)—Update. [(accessed on 21 August 2020)];Disease Outbreak News. 2 December 2013. Available online: https://www.who.int/csr/don/2013_12_02/en/
Xu J., Qi L., Chi X., Yang J., Wei X., Gong E., Peh S., Gu J. Orchitis: A complication of severe acute respiratory syndrome (SARS) Biol. Reprod. 2006;74:410–416. doi: 10.1095/biolreprod.105.044776. PubMed DOI PMC
Paoli D., Pallotti F., Colangelo S., Basilico F., Mazzuti L., Turriziani O., Antonelli G., Lenzi A., Lombardo F. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J. Endocrinol. Invest. 2020;43:1819–1822. doi: 10.1007/s40618-020-01261-1. PubMed DOI PMC
Holtmann N., Edimiris P., Andree M., Doehmen C., Baston-Buest D., Adams O., Kruessel J.-S., Bielfeld A.P. Assessment of SARS-CoV-2 in human semen- a cohort study. Fertil. Steril. 2020;114:233–238. doi: 10.1016/j.fertnstert.2020.05.028. PubMed DOI PMC
Li D., Jin M., Bao P., Zhao W., Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw. Open. 2020;3:e208292. doi: 10.1001/jamanetworkopen.2020.8292. PubMed DOI PMC
Ma L., Xie W., Li D., Shi L., Mao Y., Xiong Y., Zhang Y., Zhang M. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv. 2020 doi: 10.1101/2020.03.21.20037267. DOI
Schroeder M., Tuku B., Jarczak D., Nierhaus A., Bai T., Jacobsen H., Zickler M., Mueller Z., Bertram-Stanelle S., Meinhardt A., et al. The majority of male patients with COVID-19 present low testosterone levels on admission to intensive care in Hamburg, Germany: A retrospective cohort study. medRxiv. 2020 doi: 10.1101/2020.05.07.20073817. DOI
Dutta S., Sengupta P. SARS-CoV-2 and male infertility: Possible multifaceted pathology. Reprod. Sci. 2020;7:1–4. doi: 10.1007/s43032-020-00261-z. PubMed DOI PMC
Blendon R.J., Benson J.M., DesRoches C.M., Raleigh E., Taylor-Clark K. The public’s response to severe acute respiratory syndrome in Toronto and the United States. Clin. Infect. Dis. 2004;38:925–931. doi: 10.1086/382355. PubMed DOI
Wheatland R. Molecular mimicry of ACTH in SARS–implications for corticosteroid treatment and prophylaxis. Med. Hypotheses. 2004;63:855–862. doi: 10.1016/j.mehy.2004.04.009. PubMed DOI PMC
Dutta S., Sengupta P. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: Can testicular-adrenal crosstalks be ruled out? J. Basic Clin. Physiol. Pharmacol. 2020 doi: 10.1515/jbcpp-2020-0205. PubMed DOI
Bouayed J., Rammal H., Soulimani R. Oxidative stress and anxiety. Oxid. Med. Cell Longev. 2009;2:63–67. doi: 10.4161/oxim.2.2.7944. PubMed DOI PMC
Sengupta P., Dutta S. Does SARS-CoV-2 infection cause sperm DNA fragmentation? Possible link with oxidative stress. Eur. J. Contracept. Reprod. Health Care. 2020;10:1787376. doi: 10.1080/13625187.2020.1787376. PubMed DOI
Nillni Y.I., Wesselink A.K., Hatch E.E., Mikkelsen E.M., Gradus J.L., Rothman K.J., Wise L.A. Mental health, psychotropic medication use, and menstrual cycle characteristics. Clin. Epidemiol. 2018;10:1073–1082. doi: 10.2147/CLEP.S152131. PubMed DOI PMC
Segars J., Katler Q., McQueen D.B., Kotlyar A., Glenn T., Knight Z., Feinberg E.C., Taylor H.S., Toner J.P., Kawwass J.F. Prior and novel coronaviruses, coronavirus disease 2019 (COVID-19), and human reproduction: What is known? Fertil. Steril. 2020;113:1140–1149. doi: 10.1016/j.fertnstert.2020.04.025. PubMed DOI PMC
Li R., Yin T., Fang F., Li Q., Chen J., Wang Y., Hao Y., Wu G., Duan P., Wang Y., et al. Potential risk of SARS-CoV-2 infection on reproductive health. Reprod. Biomed. Online. 2020;41:89–95. doi: 10.1016/j.rbmo.2020.04.018. PubMed DOI PMC
de Souza Silva G.A., da Silva S.P., da Costa M.A.S., da Silva A.R., de Vasconcelos Alves R.R., Tenorio F.D.C.A.M., da Silva Melo A.R., de Freitas C., de Melo C.M.L. SARS-CoV, MERS-CoV and SARS-CoV-2 infections in pregnancy and fetal development. J. Gynecol. Obstet. Hum. Reprod. 2020;49:101846. doi: 10.1016/j.jogoh.2020.101846. PubMed DOI PMC
Berkowitz K., LaSala A. Risk factors associated with the increasing prevalence of pneumonia during pregnancy. Am. J. Obstet. Gynecol. 1990;163:981–985. doi: 10.1016/0002-9378(90)91109-P. PubMed DOI
Chen H., Guo J., Wang C., Luo F., Yu X., Zhang W., Li J., Zhao D., Xu D., Gong Q., et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet. 2020;395:809–815. doi: 10.1016/S0140-6736(20)30360-3. PubMed DOI PMC
Zhu H., Wang L., Fang C., Peng S., Zhang L., Chang G., Xia S., Zhou W. Clinical analysis of 10 neonates born to mother with 2019-nCoV pneumonia. Transl. Pediatr. 2020;9:51–60. doi: 10.21037/tp.2020.02.06. PubMed DOI PMC
Evans-Hoeker E.A., Eisenberg E., Diamond M.P., Legro R.S., Alvero R., Coutifaris C., Casson P.R., Christman G.M., Hansen K.R., Zhang H., et al. Major depression, antidepressant use and male and female infertility. Fertil. Steril. 2018;109:879–887. doi: 10.1016/j.fertnstert.2018.01.029. PubMed DOI PMC
Nargund V.H. Effects of psychological stress on male fertility. Nat. Rev. Urol. 2015;12:373–382. doi: 10.1038/nrurol.2015.112. PubMed DOI
Greene W.C. A history of AIDS: Looking back to see ahead. Eur. J. Immunol. 2007;37:S94–S102. doi: 10.1002/eji.200737441. PubMed DOI
Wang L., Wang Y., Ye D., Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. 2020;55:105948. doi: 10.1016/j.ijantimicag.2020.105948. PubMed DOI PMC
Central Intelligence Agency (CIA) The World Factbook. [(accessed on 21 August 2020)]; Available online: https://www.cia.gov.
Sharp P.M., Hahn B.H. The evolution of HIV-1 and the origin of AIDS. Philoc. Trans. R. Soc. Lond. B. Bio. Sci. 2010;365:2487–2494. doi: 10.1098/rstb.2010.0031. PubMed DOI PMC
Tortorici M.A., Walls A.C., Lang Y., Wang C., Li Z., Koerhuis D., Boons G.-J., Bosch B.-J., Rey F.A., de Groot R.J., et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 2019;26:481–489. doi: 10.1038/s41594-019-0233-y. PubMed DOI PMC
Matrosovich M., Herrler G., Klenk H.D. Sialic acid receptors of viruses. Top Curr. Chem. 2015;367:1–28. PubMed PMC
Wilen C.B., Tilton J.C., Doms R.W. HIV: Cell binding and entry. Cold Spring Harb. Perspect. Med. 2012;2:a006866. doi: 10.1101/cshperspect.a006866. PubMed DOI PMC
Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect. 2020;22:69–71. doi: 10.1016/j.micinf.2020.01.004. PubMed DOI PMC
Zhang Y., Xu J., Li H., Cao B. A novel coronavirus (COVID-19) outbreak: A call for action. Chest. 2020;157:e99–e101. doi: 10.1016/j.chest.2020.02.014. PubMed DOI PMC
The US Centres for Disease Control and Prevention (CDC) [(accessed on 21 August 2020)]; Available online: https://www.cdc.gov/H1N1flu/hosp_deaths_ahdra.html.
World Health Organization (WHO) Ebola Virus Disease. [(accessed on 21 August 2020)]; Available online: https://www.who.int/health-topics/ebola/#tab=tab_1.
Ghate M.V., Tripathy S.P., Kumar B.K., Godbole S.V., Chittake A., Nyayanirgune P., Gangakhedkar R.R., Divekar A.D., Thakar M.R., Risbud A.R., et al. Rate of hospitalization and inpatient care costs for HIV-1-infected patients in Pune, India. Natl. Med. J. India. 2006;19:10–14. PubMed
Brooks J.T., Robbins K.E., Youngpairoj A.S., Rotblatt H., Kerndt P.R., Taylor M.M., Daar E.S., Kalish M.L. Molecular analysis of HIV strains from a cluster of worker infections in the adult film industry, Los Angeles 2004. AIDS. 2006;20:923–928. doi: 10.1097/01.aids.0000218558.82402.59. PubMed DOI PMC
Nsubuga R.N., White R.G., Mayanja B.N., Shafer L.A. Estimation of the HIV basic reproduction number in rural south west Uganda: 1991–2008. PLoS ONE. 2014;9:e83778. doi: 10.1371/journal.pone.0083778. PubMed DOI PMC
Bassetti M., Vena A., Giacobbe D.R. The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. Eur. J. Clin. Invest. 2020;50:e13209. doi: 10.1111/eci.13209. PubMed DOI PMC
Vanhems P., Hirschel B., Phillips A.N., Cooper D.A., Vizzard J., Brassard J., Perrin L. Incubation time of acute human immunodeficiency virus (HIV) infection and duration of acute HIV infection are independent prognostic factors of progression to AIDS. J. Infect. Dis. 2000;182:334–337. doi: 10.1086/315687. PubMed DOI
Lai C.C., Shih T.P., Ko W.C., Tang H.J., Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents. 2020;55:105924. doi: 10.1016/j.ijantimicag.2020.105924. PubMed DOI PMC
Bleibtreu A., Bertine M., Bertin C., Houhou-Fidouh N., Visseaux B. Focus on Middle East respiratory syndrome coronavirus (MERS-CoV) Med. Mal. Infect. 2020;50:243–251. doi: 10.1016/j.medmal.2019.10.004. PubMed DOI PMC
Wilson N.L., Azuero A., Vance D.E., Richman J.S., Moneyham L.D., Raper J.L., Heath S.L., Kempf M.-C. Identifying symptom patterns in people living with HIV disease. J. Assoc. Nurses AIDS Care. 2016;27:121–132. doi: 10.1016/j.jana.2015.11.009. PubMed DOI PMC
Radiopaedia H1N1 Influenza. [(accessed on 21 August 2020)]; Available online: https://radiopaedia.org/articles/h1n1-influenza.
Allen C.M., Al-Jahdali H.H., Irion K.L., Ghanem S.A., Gouda A., Khan A.N. Imaging lung manifestation of HIV/AIDS. Ann. Thorac. Med. 2010;5:201–216. PubMed PMC
Banadyga L., Siragam V., Zhu W., He S., Cheng K., Qiu X. The cytokine response profile of ebola virus disease in a large cohort of rhesus macaques treated with monoclonal antibodies. Open Forum Infect. Dis. 2019;6:ofz046. doi: 10.1093/ofid/ofz046. PubMed DOI PMC
Gao R., Bhatnagar J., Blau D.M., Greer P., Rollin D.C., Denison A.M., Deleon-Carnes M., Shieh W.-J., Sambhara S., Tumpey T.M., et al. Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1): Role of the host immune response in pathogenesis. Am. J. Pathol. 2013;183:1258–1268. doi: 10.1016/j.ajpath.2013.06.023. PubMed DOI PMC
Kedzierska K., Crowe S.M. Cytokine and HIV-1: Interaction and clinical implications. Antivir. Chem. Chemother. 2001;12:133–150. doi: 10.1177/095632020101200301. PubMed DOI
Stockman L.J., Bellamy R., Garner P. SARS: Systematic review of treatment effects. PLoS Med. 2006;3:e343. doi: 10.1371/journal.pmed.0030343. PubMed DOI PMC
The US Centres for Disease Control and Prevention (CDC) Ebola (Ebola Virus Disease) [(accessed on 21 August 2020)]; Available online: https://www.cdc.gov/vhf/ebola/index.html.
Kemnic T.R., Gulick P.G. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2020. HIV antiretroviral therapy. PubMed
Padron-Regalado E. Vaccines for SARS-CoV-2: Lessons from other coronavirus strains. Infect. Dis. Ther. 2020;9:255–274. doi: 10.1007/s40121-020-00300-x. PubMed DOI PMC
Orellana C. Phase I SARS vaccine trial in China. Lancet Infect. Dis. 2004;4:388. doi: 10.1016/S1473-3099(04)01072-2. PubMed DOI
Tang L., Zhu Q., Qin E., Yu M., Ding Z., Shi H., Cheng X., Wang C., Chang G., Zhu Q., et al. Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol. 2004;23:391–394. doi: 10.1089/104454904323145272. PubMed DOI
Lin J.-T., Zhang J.-S., Su N., Xu J.-G., Wang N., Chen J.-T., Chen X., Liu Y.-X., Gao H., Jia Y.-P., et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther. 2007;12:1107–1113. PubMed
Bolles M., Deming D., Long K., Agnihothram S., Whitmore A., Ferris M., Funkhouser W., Gralinski L., Totura A., Heise M., et al. A double-inacivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 2011;85:12201–12215. doi: 10.1128/JVI.06048-11. PubMed DOI PMC
Modjarrad K., Roberts C.C., Mills K.T., Castellano A.R., Paolini K., Muthumani K., Reuschel E.L., Robb M.L., Racine T., Oh M.-D., et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: A phase I, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis. 2019;19:1013–1022. doi: 10.1016/S1473-3099(19)30266-X. PubMed DOI PMC
Sutton T.C., Subbarao K. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology. 2015;479:247–258. doi: 10.1016/j.virol.2015.02.030. PubMed DOI PMC
Netland J., DeDiego M.L., Zhao J., Fett C., Alvarez E., Nieto-Torres J.L., Enjuanes L., Perlman S. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology. 2010;399:120–128. doi: 10.1016/j.virol.2010.01.004. PubMed DOI PMC
Tang F., Quan Y., Xin Z.-T., Wrammert J., Ma M.-J., Lv H., Wang T.-B., Yang H., Richardus J.H., Liu W., et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study. J. Immunol. 2011;186:7264–7268. doi: 10.4049/jimmunol.0903490. PubMed DOI
Payne D.C., Iblam I., Rha B., Alqasrawi S., Haddadin A., Nsour M.A., Alsanouri T., Ali S.S., Harcourt J., Miao C., et al. Persistence of antibodies against Middle East respiratory syndrome coronavirus. Emerg. Infect. Dis. 2016;22:1824–1826. doi: 10.3201/eid2210.160706. PubMed DOI PMC
Zhao J., Alshukari A.N., Baharoon S.A., Ahmed W.A., Bokhari A.A., Nehdi A.M., Layqah L.A., Alghamdi M.G., Gethamy M.M.A., Dada A.M., et al. Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell response. Sci. Immunol. 2017;2:eaan5393. doi: 10.1126/sciimmunol.aan5393. PubMed DOI PMC
World Health Organization (WHO) DRAFT Landscape of COVID-19 Candidate Vaccines—3 September 2020. [(accessed on 6 September 2020)]; Available online: https://www.who.int/docs/default-source/coronaviruse/novel-coronavirus-landscape-covid-19-(4).pdf?sfvrsn=bc448477_1&download=true.
Pfizer Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved in First Interim Analysis from Phase 3 Study. [(accessed on 9 December 2020)]; Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against.
Moderna Moderna’s Fully Phase 3 COVE Study of mRNA-1273. [(accessed on 9 December 2020)]; Available online: https://www.modernatx.com/cove-study.
National Geographic Dozens of COVID-19 Vaccines Are in Development. [(accessed on 6 September 2020)];Here Are the Ones to Follow—3 September 2020. Available online: https://www.nationalgeographic.com/science/health-and-human-body/human-diseases/coronavirus-vaccine-tracker-how-they-work-latest-developments-cvd/
British Braodcasting Corporation (BBC) Covid-19 Vaccine: First Person Receives Pfizer Jab in UK. [(accessed on 10 December 2020)]; Available online: https://www.bbc.com/news/uk-55227325.
Novavax Novavax Announces COVID-19 Vaccine Clinical Development Progress. [(accessed on 9 December 2020)]; Available online: https://ir.novavax.com/news-releases/news-release-details/novavax-announces-covid-19-vaccine-clinical-development-progress.
National Institute of Health (NIH) A Phase III Clinical Trial to Determine the Safety and Efficacy of ZF 2001 for Prevention of COVID-19. [(accessed on 9 December 2020)]; Available online: https://clinicaltrials.gov/ct2/show/results/NCT04646590?view=results.
YICAI China’s Zhifei Finishes Covid-19 Vaccine’s Phase II Clinical Trial in Three Months in Race to the Market. [(accessed on 9 December 2020)]; Available online: https://www.yicaiglobal.com/news/china-zhifei-finishes-covid-19-vaccine-phase-ii-clinical-trial-in-three-months-in-race-to-the-market.
National Affairs Professionals Society (RAPS) COVID-19 Vaccine Tracker. [(accessed on 8 November 2020)]; Available online: https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker.
Mahase E. COVID-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ. 2020;371:m4471. doi: 10.1136/bmj.m4471. DOI
Mahase E. COVID-19: Oxford vaccine is up to 90% effective, interim analysis indicates. BMJ. 2020;371:m4564. doi: 10.1136/bmj.m4564. PubMed DOI
Neucrad Health India (NHI) Covaxin and ZyCoV-D: Recent Update of Covid-19 Vaccine Candidates in India. [(accessed on 8 November 2020)]; Available online: https://neucradhealth.in/language/en/covaxin-and-zycov-d-recent-update-of-covid-19-vaccine-candidates-in-india/
Mercado N.B., Zahn R., Wegmann F., Loos C., Chandrashekar A., Yu J., Liu J., Peter L., McMahan K., Tostanoski L.H., et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020;586:583–588. doi: 10.1038/s41586-020-2607-z. PubMed DOI PMC
Heymann D.L., Rodier G. SARS: Lessons from a new disease. In: Knobler S., Mahmoud A., Lemon S., Mack A., Sivitz L., Oberholtzer K., editors. Learning From SARS: Preparing for the Next Disease Outbreak. The National Academic Press; Washington, DC, USA: 2004. pp. 234–246. PubMed
Global Health Security Agenda (GHSA) The 6th GHSA Ministerial Meeting. [(accessed on 7 December 2020)]; Available online: https://www.ghsagenda.org.
Filho W.L., Brandli L.L., Salvia A.L., Rayman-Bacchus L., Platje J. COVID-19 and the UN Sustainable Development Goals: Threat to solidarity or an opportunity. Sustainability. 2020;12:5343. doi: 10.3390/su12135343. DOI
The World Bank Reversing Setbacks to Poverty Reduction Requires Nations to Work Together for a Resilient Recovery. [(accessed on 2 December 2020)]; Available online: https://www.worldbank.org/en/news/immersive-story/2020/11/09/reversing-setbacks-to-poverty-reduction-requires-nations-to-work-together-for-a-resilient-recovery.
The World Bank The Impact of COVID-19 on Global Poverty under Worsening Growth and Inequality. [(accessed on 2 December 2020)]; Available online: https://blogs.worldbank.org/opendata/impact-covid-19-global-poverty-under-worsening-growth-and-inequality.
Khanna R.C., Cicinelli M.V., Gilbert S.S., Honavar S.G., Murthy G.S. COVID-19 pandemic: Lessons learned and future directions. Indian J. Opthalmol. 2020;68:703–710. doi: 10.4103/ijo.IJO_843_20. PubMed DOI PMC
WHO (World Health Organization) WHO Statement on the Tenth Meeting of the IHR Emergency Committee Regarding MERS. 3 September 2016. [(accessed on 21 August 2020)]; Available online: https://www.who.int/mediacentre/news/statements/2015/ihr-emergency-committee-mers/en/
Saeed A.A.B., Abedi G.R., Alzahrani A.G., Salameh I., Abdirizak F., Alhakeem R., Algarmi H., Nil O.A.E., Mohammed M., Assiri A.M., et al. Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015–February 2016. Emerg. Infect. Dis. 2017;23:682–685. doi: 10.3201/eid2304.161793. PubMed DOI PMC
World Health Organization (WHO) WHO ad hoc Scientific Teleconference on the Current Influenza A (H1N1) Situation. [(accessed on 21 August 2020)]; Available online: https://www.who.int/csr/resources/publications/swineflu/tc_report_2009_04_29/en/
Chong K.C., Fong H.F., Zee C.Y. Estimating the incidence reporting rates of new influenza pandemics at an early stage using travel data from the source country. Epidemiol. Infect. 2014;142:955–963. doi: 10.1017/S0950268813002550. PubMed DOI PMC
Woolhouse M.E.J., Rambaut A., Kellam P. Lessons from ebola: Improving infectious disease surveillance to inform outbreak management. Sci. Transl. Med. 2015;7:307rv5. doi: 10.1126/scitranslmed.aab0191. PubMed DOI PMC
Clerc O., Greub G. Routine use of point-of-care tests: Usefulness and application in clinical microbiology. Clin. Microbiol. Infect. 2010;16:1054–1061. doi: 10.1111/j.1469-0691.2010.03281.x. PubMed DOI
Sweeney P., Gardner L.I., Buchacz K., Garland P.M., Mugavero M.J., Bosshart J.T., Shouse R.L., Bertolli J. Shifting the paradigm: Using HIV surveillance data as a foundation for improving HIV care and preventing HIV infection. Milbank Q. 2013;91:558–603. doi: 10.1111/milq.12018. PubMed DOI PMC
Kramer J.B., Brown D.E., Kopar P.K. Ethics in the time of coronavirus: Recommendations in the COVID-19 pandemic. J. Am. Coll. Surg. 2020;230:1114–1118. doi: 10.1016/j.jamcollsurg.2020.04.004. PubMed DOI PMC
Kim J.Y., Choe P.G., Oh Y., Kim J., Park S.J. The first case of 2019 novel coronavirus pneumonia imported into Korea from Wuhan, China: Implication for infection prevention and control measures. J. Korean Med. Sci. 2020;35:e61. doi: 10.3346/jkms.2020.35.e61. PubMed DOI PMC
Patel A., Jernigan D.B. 2019-nCOV CDC response team initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak—United States, 31 December 2019—4 February 2020. MMWR Morb. Mortal Wkly. Rep. 2020;69:140–146. doi: 10.15585/mmwr.mm6905e1. PubMed DOI PMC
World Economic Forum Coronavirus—This Is How the World Is Responding. [(accessed on 21 August 2020)]; Available online: https://www.weforum.org/agenda/2020/03/coronavirus-this-is-how-the-world-is-responding/
World Health Organization (WHO) Novel Coronavirus (2019-nCOV) Situation Report 1. [(accessed on 21 August 2020)]; Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4.
Zyoud S.H. Global research trends of Middle East respiratory syndrome coronavirus: A bibliometric analysis. BMC Infect. Dis. 2016;16:255. doi: 10.1186/s12879-016-1600-5. PubMed DOI PMC
Xue L., Zeng G. Golbal strategies and response measures to the influenza A (H1N1) pandemic. In: Xue L., Zeng G., editors. A Comprehensive Evaluation on Emergency Response in China. Research Series on the Chinese Dream and China’s Development Path. Springer; Singapore: 2019. pp. 15–44.
People.cn Developed Countries Rush to Buy Influenza (H1N1) Vaccines, Leaving Poor Countries Worried about Epidemic Control. [(accessed on 3 October 2020)]; Available online: http://medicine.people.com.cn/GB/9732375.html.
Keusch G., McAdam K., Cuff P.A., Mancher M., Busta E.R. Strengthening capacity for response and research. In: Keusch G., McAdam K., Cuff P.A., Mancher M., Busta E.R., editors. Integrating Clinical Research into Epidemic Response: The Ebola Experience. The National Academic Press; Washington, DC, USA: 2017. pp. 155–198.
Balachova T.N., Batluk J.V., Bryant K.J., Shaboltas A.V. International collaboration in HIV prevention research: Evidence from a research seminar in Russia. AIDS Res. Hum. Retrovir. 2015;31:163–172. doi: 10.1089/aid.2014.0078. PubMed DOI PMC
O’Brien K.K., Solomon P., Ibanez-Carrasco F., Chegwidden W., McDonnell E., Brown D., Harding R., Bergin C., Worthington C., Tattle S., et al. Evolution of an international research collaborative in HIV and rehabilitation: Community engaged process, lessons learned, and recommendations. Prog. Community Health Partnersh. 2018;12:395–408. PubMed
Frazer I.H. Collaboration in the war against viruses: A multidisciplinary international effort. Innovation. 2020;1:100011. doi: 10.1016/j.xinn.2020.04.011. PubMed DOI PMC
Moradian N., Ochs H.D., Sedikies C., Hamblin M.R., Camargo C.A., Jr., Martinez J.A., Biamonte J.D., Abdollahi M., Torres P.J., Nieto J.J., et al. The urgent need for integrated science to fight COVID-19 pandemic and beyond. J. Transl. Med. 2020;18:205. doi: 10.1186/s12967-020-02364-2. PubMed DOI PMC
World Economic Forum COVID-19: Collaboration Is the Engine of Global Science—Especially for Developing Countries. [(accessed on 21 August 2020)]; Available online: https://www.weforum.org/agenda/2020/05/global-science-collaboration-open-source-covid-19/
Soheilypour M., Mofrad M.R.K. Agent-based modeling in molecular systems biology. BioEssays. 2018;40:e1800020. doi: 10.1002/bies.201800020. PubMed DOI
Ming R.-X., Liu J., Cheung W.K.W., Wan X. Stochastic modeling of infectious diseases for heterogeneous populations. Infect. Dis. Poverty. 2016;5:107. doi: 10.1186/s40249-016-0199-5. PubMed DOI PMC
Adamu H., Muhammad M.M., Jingi A., Usman M. Mathematical modeling using improved SIR model with more realistic assumptions. Int. J. Eng. Appl. Sci. 2019;6:64–69.
Verbeek J.H., Ijaz S., Mischke C., Routsalainen J.H., Makela E., Neuvonen K., Edmond M.B., Sauni R., Balci F.S.K., Mihalache R.C. Personal protective equipment for preventing highly infectious disease due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst. Rev. 2016;4:CD011621. doi: 10.1002/14651858.CD011621.pub2. PubMed DOI PMC
Rubinson L., Mutter R., Viboud C., Hupert N., Uyeki T., Creanga A., Finelli L., Iwashyna T.J., Carr B., Merchant R., et al. Impact of the fall 2009 influenza A(H1N1)pdm09 pandemic on US hospitals. Med. Care. 2013;51:259–265. doi: 10.1097/MLR.0b013e31827da8ea. PubMed DOI PMC
Dentico N. Ebola and the global governance of health. Recenti. Prog. Med. 2014;105:405–406. PubMed
GSDRC Impact and Implications of the Ebola Crisis. [(accessed on 26 September 2020)]; Available online: https://www.gsdrc.org/docs/open/HDQ1177.pdf.
Studies IfS Ebola Threatens Social and Political Stability in Affected Countries. [(accessed on 26 September 2020)]; Available online: https://www.issafrica.org/iss-today/ebola-threatens-social-and-political-stability-in-affected-countries.
Regmi K., Gilbert R., Thunhurst C. How can health systems be strengthened to control and prevent an ebola outbreak? A narrative review. Infect. Ecol. Epidemiol. 2015;5:28877. doi: 10.3402/iee.v5.28877. PubMed DOI PMC
Koto M.V., Maharaj P. Difficulties facing healthcare workers in the era of AIDS treatment in Lesotho. SAHARA J. 2016;13:53–59. doi: 10.1080/17290376.2016.1179588. PubMed DOI PMC
Kretchy I.A., Asiedu-Danso M., Kretchy J. Medication management and adherence during the COVID-19 pandemic: Perspectives and experiences from low- and middle-income countries. Res. Soc. Adm. Pharm. 2020;17:2023–2026. doi: 10.1016/j.sapharm.2020.04.007. PubMed DOI PMC
Gallup COVID-19 Quickly Becomes Most Important US Problem. [(accessed on 21 August 2020)]; Available online: https://news.gallup.com/poll/309038/covid-quickly-becomes-important-problem.aspx.
China Global Television Network (CGTN) COVID-19 UK Roundup: Latest Developments and Challenges. [(accessed on 21 August 2020)]; Available online: https://news-cgtn-com.cdn.ampproject.org/v/s/news.cgtn.com/news/2020-05-04/COVID-19-UK-Roundup-Latest-developments-and-challenges-QdglVgctEs/share_amp.html?amp_js_v=a6&_gsa=1&usqp=mq331AQHKAFQArABIA%3D%3D#aoh=16081908079024&referrer=https%3A%2F%2Fwww.google.com&_tf=From%20%251%24s&share=https%3A%2F%2Fnews.cgtn.com%2Fnews%2F2020-05-04%2FCOVID-19-UK-Roundup-Latest-developments-and-challenges-QdglVgctEs%2Findex.html.
Financial Magazine 6 Key COVID-19 Challenges Facing UK Businesses Today. [(accessed on 21 August 2020)]; Available online: https://www.fm-magazine.com/news/2020/may/key-coronavirus-challenges-for-uk-businesses-cima-andrew-harding.html.
Garg S., Basu S., Rustagi R., Borle A. Primary health care facility preparedness for outpatient service provision during the COVID-19 pandemic in India: Cross-sectional study. JMIR Public Health Surveill. 2020;6:e19927. doi: 10.2196/19927. PubMed DOI PMC
Halder N., Kelso J.K., Milne G.J. Analysis of the effectiveness of interventions used during the 2009 A/H1N1 influenza pandemic. BMC Public Health. 2010;10:168. doi: 10.1186/1471-2458-10-168. PubMed DOI PMC
Kirsch T.D., Moseson H., Massaquoi M., Nyenswah T., Goodermote R., Rodriguez-Barrquer I., Lessler J., Cumings D.A.T., Peters D.H. Impact of interventions and the incidence of ebola virus disease in Liberia-implications for future epidemics. Health Policy Plan. 2017;32:205–214. doi: 10.1093/heapol/czw113. PubMed DOI PMC
Brown J.L., Sales J.M., DiClemente R.J. Combination HIV prevention interventions: The potential of integrated behavioral and biomedical approaches. Curr. HIV/AIDS Rep. 2014;11:363–375. doi: 10.1007/s11904-014-0228-6. PubMed DOI PMC
Maier B.F., Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020;368:742–746. doi: 10.1126/science.abb4557. PubMed DOI PMC
Dong L., Hu S., Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) Drug Discov. Ther. 2020;14:58–60. doi: 10.5582/ddt.2020.01012. PubMed DOI
Frediansyah A., Nainu F., Dhama K., Mudatsir M., Harapan H. Remdesivir and its antiviral activity against COVID-19: A systematic review. Clin. Epidemiol. Glob. Health. 2020 doi: 10.1016/j.cegh.2020.07.011. in press. PubMed DOI PMC
Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S., et al. Remdesivir for the treatment of Covid-19- preliminary report. N. Engl. J. Med. 2020;383:994. doi: 10.1056/NEJMoa2007764. PubMed DOI
Wang Y., Zhang D., Du G., Du R., Zhao J., Jin Y., Fu S., Gao L., Cheng Z., Lu Q., et al. Remdesivir in adults with severe COVID-19: A randomized, double-bling, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–1578. doi: 10.1016/S0140-6736(20)31022-9. PubMed DOI PMC
National Institute of Health (NIH) NIH Clinical Trial Shows Remdesivir Accelerates Recovery from Advanced COVID-19. [(accessed on 27 September 2020)]; Available online: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19.
World Health Organization (WHO) Coronavirus Disease (COVID-19): Dexamethasone. [(accessed on 27 October 2020)]; Available online: https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-dexamethasone.
Rohrich R.J., Hamilton K.L., Avashia Y., Savetsky I. The COVID-19 pandemic: Changing lives and lessons learned. Plast. Reconstr. Surg. Glob. Open. 2020;8:e2854. doi: 10.1097/GOX.0000000000002854. PubMed DOI PMC
Bong C.-L., Brasher C., Chikumba E., McDougall R., Mellin-Olsen J., Enright A. The COVID-19 pandemic: Effects on low- and middle-income countries. Anesth. Anal. 2020;131:86–92. doi: 10.1213/ANE.0000000000004846. PubMed DOI PMC
Li H., Liu S.-M., Yu X.-H., Tang S.-L., Tang C.-K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents. 2020;55:105951. doi: 10.1016/j.ijantimicag.2020.105951. PubMed DOI PMC
Wang F., Kream R.M., Stefano G.B. An evidence based perspective on mRNA- SARS-CoV-2 vaccine development. Med. Sci. Monit. 2020;26:e924700. PubMed PMC
Gennaro F.D., Pizzol D., Marotta C., Antunes M., Racalbuto V., Veronese N., Smith L. Coronavirus disease (COVID-19) current status and future perspectives: A narrative review. Int. J. Environ. Res. Public Health. 2020;17:2690. doi: 10.3390/ijerph17082690. PubMed DOI PMC
COVID-19, oxidative stress, and male reproductive dysfunctions: is vitamin C a potential remedy?
Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility?
Viral pathogenesis of SARS-CoV-2 infection and male reproductive health