Occurrence of plant-uncoupling mitochondrial protein (PUMP) in diverse organs and tissues of several plants
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15254369
DOI
10.1023/a:1005648226431
PII: 291201
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus farmakologie MeSH
- druhová specificita MeSH
- iontové kanály metabolismus MeSH
- kyselina linolová farmakologie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny účinky léků metabolismus MeSH
- rozpřahující látky farmakologie MeSH
- spotřeba kyslíku MeSH
- tkáňová distribuce MeSH
- uncoupling protein 1 MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- iontové kanály MeSH
- kyselina linolová MeSH
- mitochondriální proteiny MeSH
- rostlinné proteiny MeSH
- rozpřahující látky MeSH
- uncoupling protein 1 MeSH
The presence of plant-uncoupling mitochondrial protein (PUMP), previously described by Vercesi et al. (1995), was screened in mitochondria of various organs or tissues of several plant species. This was done functionally, by monitoring purine nucleotide-sensitive linoleic acid-induced uncoupling, or by Western blots. The following findings were established: (1) PUMP was found in most of the higher plants tested; (2) since ATP inhibition of linoleic acid-induced membrane potential decrease varied, PUMP content might differ in different plant tissues, as observed with mitochondria from maize roots, maize seeds, spinach leaves, wheat shoots, carrot roots, cauliflower, broccoli, maize shoots, turnip root, and potato calli. Western blots also indicated PUMP presence in oat shoots, carnation petals, onion bulbs, red beet root, green cabbage, and Sedum leaves. (3) PUMP was not detected in mushrooms. We conclude that PUMP is likely present in the mitochondria of organs and tissues of all higher plants.
Zobrazit více v PubMed
J Biol Chem. 1997 Sep 26;272(39):24272-8 PubMed
J Bioenerg Biomembr. 1995 Aug;27(4):367-77 PubMed
J Bioenerg Biomembr. 1995 Aug;27(4):415-21 PubMed
J Bioenerg Biomembr. 1995 Aug;27(4):397-406 PubMed
Arch Biochem Biophys. 1982 Aug;217(1):312-23 PubMed
Methods Enzymol. 1990;182:679-88 PubMed
Nat Genet. 1997 Mar;15(3):269-72 PubMed
FEBS Lett. 1999 Jan 29;443(3):326-30 PubMed
J Biol Chem. 1996 Dec 20;271(51):32743-8 PubMed
J Bioenerg Biomembr. 1999 Oct;31(5):527-33 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:703-734 PubMed
Nature. 1997 Sep 11;389(6647):135-6 PubMed
Yeast. 1997 May;13(6):573-81 PubMed
J Biol Chem. 1999 Oct 1;274(40):28150-60 PubMed
J Membr Biol. 1979 Aug;49(2):105-21 PubMed
Eur J Biochem. 1992 Dec 15;210(3):775-84 PubMed
Plant Physiol. 1975 Dec;56(6):816-20 PubMed
Plant Physiol. 1990 Nov;94(3):1187-92 PubMed
FEBS Lett. 1998 Jun 16;429(3):403-6 PubMed
Int J Biochem Cell Biol. 1998 Nov;30(11):1163-8 PubMed
Biochemistry. 1973 Aug 14;12(17):3350-5 PubMed
FEBS Lett. 1997 May 12;408(1):39-42 PubMed
FEBS Lett. 1998 Aug 21;433(3):237-40 PubMed
Plant Physiol. 1991 Aug;96(4):1345-53 PubMed
FEBS Lett. 1999 Aug 20;457(1):103-6 PubMed
FEBS Lett. 1998 Mar 27;425(2):213-6 PubMed
J Biol Chem. 1998 Dec 25;273(52):34882-6 PubMed
J Biol Chem. 1998 Dec 18;273(51):34611-5 PubMed
J Bioenerg Biomembr. 1999 Oct;31(5):457-66 PubMed
Biochim Biophys Acta. 1998 Jun 10;1365(1-2):319-27 PubMed
IUBMB Life. 2000 Jan;49(1):63-70 PubMed
Eur J Biochem. 1992 Sep 1;208(2):487-91 PubMed