• This record comes from PubMed

In Vivo Organic Bioelectronics for Neuromodulation

. 2022 Feb 23 ; 122 (4) : 4826-4846. [epub] 20220120

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.

See more in PubMed

Kandel E. R.; Schwartz J. H.; Jessell T. M.; Siegelbaum S. A.; Hudspeth A. J.. Principles of Neural Science, 5th ed.; McGraw-Hill Education: 2000.

Lozano A. M.; Lipsman N.; Bergman H.; Brown P.; Chabardes S.; Chang J. W.; Matthews K.; McIntyre C. C.; Schlaepfer T. E.; Schulder M.; Temel Y.; Volkmann J.; Krauss J. K. Deep Brain Stimulation: Current Challenges and Future Directions. Nat. Rev. Neurol. 2019, 15 (3), 148–160. 10.1038/s41582-018-0128-2. PubMed DOI PMC

Chiken S.; Nambu A. Disrupting Neuronal Transmission: Mechanism of DBS?. Front. Syst. Neurosci. 2014, 8 (MAR), 33.10.3389/fnsys.2014.00033. PubMed DOI PMC

Chiken S.; Nambu A. Mechanism of Deep Brain Stimulation. Neuroscientist 2016, 22 (3), 313–322. 10.1177/1073858415581986. PubMed DOI PMC

Parpura V.; Silva G. A.; Tass P. A.; Bennet K. E.; Meyyappan M.; Koehne J.; Lee K. H.; Andrews R. J. Neuromodulation: Selected Approaches and Challenges. J. Neurochem. 2013, 124 (4), 436–453. 10.1111/jnc.12105. PubMed DOI PMC

Ramirez-Zamora A.; Giordano J. J.; Gunduz A.; Brown P.; Sanchez J. C.; Foote K. D.; Almeida L.; Starr P. A.; Bronte-Stewart H. M.; Hu W.; McIntyre C.; Goodman W.; Kumsa D.; Grill W. M.; Walker H. C.; Johnson M. D.; Vitek J. L.; Greene D.; Rizzuto D. S.; Song D.; Berger T. W.; Hampson R. E.; Deadwyler S. A.; Hochberg L. R.; Schiff N. D.; Stypulkowski P.; Worrell G.; Tiruvadi V.; Mayberg H. S.; Jimenez-Shahed J.; Nanda P.; Sheth S. A.; Gross R. E.; Lempka S. F.; Li L.; Deeb W.; Okun M. S. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank. Front. Neurosci. 2018, 11, 734.10.3389/fnins.2017.00734. PubMed DOI PMC

Akopyan F.; Sawada J.; Cassidy A.; Alvarez-Icaza R.; Arthur J.; Merolla P.; Imam N.; Nakamura Y.; Datta P.; Nam G.-J.; Taba B.; Beakes M.; Brezzo B.; Kuang J. B.; Manohar R.; Risk W. P.; Jackson B.; Modha D. S. TrueNorth: Design and Tool Flow of a 65 MW 1 Million Neuron Programmable Neurosynaptic Chip.. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2015, 34 (10), 1537–1557. 10.1109/TCAD.2015.2474396. DOI

Schoen I.; Fromherz P. Activation of Na+ Channels in Cell Membrane by Capacitive Stimulation with Silicon Chip. Appl. Phys. Lett. 2005, 87 (19), 193901.10.1063/1.2126803. DOI

Berggren M.; Richter-Dahlfors A. Organic Bioelectronics. Adv. Mater. 2007, 19 (20), 3201–3213. 10.1002/adma.200700419. DOI

Hambrecht F. T. Biomaterials Research in Neural Prostheses. Biomaterials 1982, 3 (3), 187–188. 10.1016/0142-9612(82)90010-2. PubMed DOI

Gerhardt G. A.; Oke A. F.; Nagy G.; Moghaddam B.; Adams R. N. Nafion-Coated Electrodes with High Selectivity for CNS Electrochemistry. Brain Res. 1984, 290 (2), 390–395. 10.1016/0006-8993(84)90963-6. PubMed DOI

Shamma-Donoghue S. A.; May G. A.; Cotter N. E.; White R. L.; Simmons F. B. Thin-Film Multielectrode Arrays For A Cochlear Prosthesis. IEEE Trans. Electron Devices 1982, 29 (1), 136–144. 10.1109/T-ED.1982.20671. DOI

Heywang G.; Jonas F. Poly(Alkylenedioxythiophene)s - New, Very Stable Conducting Polymers. Adv. Mater. 1992, 4 (2), 116–118. 10.1002/adma.19920040213. DOI

Keiji Kanazawa K.; Diaz A. F.; Gill W. D.; Grant P. M.; Street G. B.; Piero Gardini G.; Kwak J. F. Polypyrrole: An Electrochemically Synthesized Conducting Organic Polymer. Synth. Met. 1980, 1 (3), 329–336. 10.1016/0379-6779(80)90022-3. DOI

Aizawa M.Design and Fabrication of Biomolecular Electronic Devices and Neuro Devices In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE: 1991; Vol. 13, pp 1792–1793.10.1109/IEMBS.1991.684758. DOI

Williams R. L.; Doherty P. J. A Preliminary Assessment of Poly(Pyrrole) in Nerve Guide Studies. J. Mater. Sci.: Mater. Med. 1994, 5 (6–7), 429–433. 10.1007/BF00058978. DOI

McNaughton T. G.; Horch K. W.. Mechanical Testing of Metallic and Polymeric Intrafascicular Electrodes. In Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE: 1994; Vol. 2, pp 806–807.10.1109/IEMBS.1994.415154. DOI

Schmidt C. E.; Shastri V. R.; Vacanti J. P.; Langer R. Stimulation of Neurite Outgrowth Using an Electrically Conducting Polymer. Proc. Natl. Acad. Sci. U. S. A. 1997, 94 (17), 8948–8953. 10.1073/pnas.94.17.8948. PubMed DOI PMC

Collier J. H.; Camp J. P.; Hudson T. W.; Schmidt C. E. Synthesis and Characterization of Polypyrrole-Hyaluronic Acid Composite Biomaterials for Tissue Engineering Applications. J. Biomed. Mater. Res. 2000, 50 (4), 574–584. 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I. PubMed DOI

Cui X.; Lee V. A.; Raphael Y.; Wiler J. A.; Hetke J. F.; Anderson D. J.; Martin D. C. Surface Modification of Neural Recording Electrodes with Conducting Polymer/Biomolecule Blends. J. Biomed. Mater. Res. 2001, 56 (2), 261–272. 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I. PubMed DOI

Cui X.; Hetke J. F.; Wiler J. A.; Anderson D. J.; Martin D. C. Electrochemical Deposition and Characterization of Conducting Polymer Polypyrrole/PSS on Multichannel Neural Probes. Sens. Actuators, A 2001, 93 (1), 8–18. 10.1016/S0924-4247(01)00637-9. DOI

Nyberg T.; Inganäs O.; Jerregård H. Polymer Hydrogel Microelectrodes for Neural Communication. Biomed. Microdevices 2002, 4 (1), 43–52. 10.1023/A:1014219828983. DOI

Wang X.; Gu X.; Yuan C.; Chen S.; Zhang P.; Zhang T.; Yao J.; Chen F.; Chen G. Evaluation of Biocompatibility of Polypyrrole in Vitro and in Vivo. J. Biomed. Mater. Res. 2004, 68A (3), 411–422. 10.1002/jbm.a.20065. PubMed DOI

Wallace G. G.; Kane-Maguire L. A. P. Manipulating and Monitoring Biomolecular Interactions with Conducting Electroactive Polymers. Adv. Mater. 2002, 14 (13–14), 953–960. 10.1002/1521-4095(20020704)14:13/14<953::AID-ADMA953>3.0.CO;2-W. DOI

Clark G. Research Directions for Future Generations of Cochlear Implants. Cochlear Implants Int. 2004, 5 (sup1), 2–8. 10.1179/cim.2004.5.Supplement-1.2. PubMed DOI

Kim S. H.; Oh K. W.; Bahk J. H. Electrochemically Synthesized Polypyrrole and Cu-Plated Nylon/Spandex for Electrotherapeutic Pad Electrode. J. Appl. Polym. Sci. 2004, 91 (6), 4064–4071. 10.1002/app.13625. DOI

Zhang Z.; Rouabhia M.; Wang Z.; Roberge C.; Shi G.; Roche P.; Li J.; Dao L. H. Electrically Conductive Biodegradable Polymer Composite for Nerve Regeneration: Electricity-Stimulated Neurite Outgrowth and Axon Regeneration. Artif. Organs 2007, 31 (1), 13–22. 10.1111/j.1525-1594.2007.00335.x. PubMed DOI

Richardson R. T.; Thompson B.; Moulton S.; Newbold C.; Lum M. G.; Cameron A.; Wallace G.; Kapsa R.; Clark G.; O’Leary S. The Effect of Polypyrrole with Incorporated Neurotrophin-3 on the Promotion of Neurite Outgrowth from Auditory Neurons. Biomaterials 2007, 28 (3), 513–523. 10.1016/j.biomaterials.2006.09.008. PubMed DOI

Forcelli P. A.; Sweeney C. T.; Kammerich A. D.; Lee B. C.-W.; Rubinson L. H.; Kayinamura Y. P.; Gale K.; Rubinson J. F. Histocompatibility and in Vivo Signal Throughput for PEDOT, PEDOP, P3MT, and Polycarbazole Electrodes. J. Biomed. Mater. Res., Part A 2012, 100A (12), 3455–3462. 10.1002/jbm.a.34285. PubMed DOI PMC

Asplund M.; Thaning E.; Lundberg J.; Sandberg-Nordqvist A. C.; Kostyszyn B.; Inganas O.; von Holst H. Toxicity Evaluation of PEDOT/Biomolecular Composites Intended for Neural Communication Electrodes. Biomed. Mater. 2009, 4 (4), 04500910.1088/1748-6041/4/4/045009. PubMed DOI

Keohan F.; Wei X. F.; Wongsarnpigoon A.; Lazaro E.; Darga J. E.; Grill W. M. Fabrication and Evaluation of Conductive Elastomer Electrodes for Neural Stimulation. J. Biomater. Sci., Polym. Ed. 2007, 18 (8), 1057–1073. 10.1163/156856207781494395. PubMed DOI

Durgam H.; Sapp S.; Deister C.; Khaing Z.; Chang E.; Luebben S.; Schmidt C. E. Novel Degradable Co-Polymers of Polypyrrole Support Cell Proliferation and Enhance Neurite out-Growth with Electrical Stimulation. J. Biomater. Sci., Polym. Ed. 2010, 21 (10), 1265–1282. 10.1163/092050609X12481751806330. PubMed DOI

Venkatraman S.; Hendricks J.; King Z. A.; Sereno A. J.; Richardson-Burns S.; Martin D. C.; Carmena J. M. In Vitro and in Vivo Evaluation of PEDOT Microelectrodes for Neural Stimulation and Recording. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19 (3), 307–316. 10.1109/TNSRE.2011.2109399. PubMed DOI

Green R. A.; Matteucci P. B.; Hassarati R. T.; Giraud B.; Dodds C. W. D.; Chen S.; Byrnes-Preston P. J.; Suaning G. J.; Poole-Warren L. A.; Lovell N. H. Performance of Conducting Polymer Electrodes for Stimulating Neuroprosthetics. J. Neural Eng. 2013, 10 (1), 016009.10.1088/1741-2560/10/1/016009. PubMed DOI

Choi J. S.; Park J. S.; Kim B.; Lee B.-T.; Yim J.-H. In Vitro Biocompatibility of Vapour Phase Polymerised Conductive Scaffolds for Cell Lines. Polymer 2017, 124, 95–100. 10.1016/j.polymer.2017.07.047. DOI

Peramo A.; Urbanchek M. G.; Spanninga S. A.; Povlich L. K.; Cederna P.; Martin D. C. In Situ Polymerization of a Conductive Polymer in Acellular Muscle Tissue Constructs. Tissue Eng., Part A 2008, 14 (3), 423–432. 10.1089/tea.2007.0123. PubMed DOI

Ouyang L.; Green R.; Feldman K. E.; Martin D. C. Direct Local Polymerization of Poly(3,4-Ethylenedioxythiophene) in Rat Cortex. Prog. Brain Res. 2011, 194, 263–271. 10.1016/B978-0-444-53815-4.00001-7. PubMed DOI

Ouyang L.; Shaw C. L.; Kuo C.; Griffin A. L.; Martin D. C. In Vivo Polymerization of Poly(3,4-Ethylenedioxythiophene) in the Living Rat Hippocampus Does Not Cause a Significant Loss of Performance in a Delayed Alternation Task. J. Neural Eng. 2014, 11 (2), 026005.10.1088/1741-2560/11/2/026005. PubMed DOI PMC

Vara H.; Collazos-Castro J. E. Enhanced Spinal Cord Microstimulation Using Conducting Polymer-Coated Carbon Microfibers. Acta Biomater. 2019, 90, 71–86. 10.1016/j.actbio.2019.03.037. PubMed DOI

Carli S.; Bianchi M.; Zucchini E.; Di Lauro M.; Prato M.; Murgia M.; Fadiga L.; Biscarini F. Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Adv. Healthcare Mater. 2019, 8 (19), 1900765.10.1002/adhm.201900765. PubMed DOI

Zinger B.; Miller L. L. Timed Release of Chemicals from Polypyrrole Films. J. Am. Chem. Soc. 1984, 106 (22), 6861–6863. 10.1021/ja00334a076. DOI

Svirskis D.; Travas-Sejdic J.; Rodgers A.; Garg S. Electrochemically Controlled Drug Delivery Based on Intrinsically Conducting Polymers. J. Controlled Release 2010, 146 (1), 6–15. 10.1016/j.jconrel.2010.03.023. PubMed DOI

Simon D. T.; Gabrielsson E. O.; Tybrandt K.; Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016, 116 (21), 13009–13041. 10.1021/acs.chemrev.6b00146. PubMed DOI

Otero T. F.; Martinez J. G.; Arias-Pardilla J. Biomimetic Electrochemistry from Conducting Polymers. Electrochim. Acta 2012, 84, 112–128. 10.1016/j.electacta.2012.03.097. DOI

Green R.; Abidian M. R. Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Adv. Mater. 2015, 27 (46), 7620–7637. 10.1002/adma.201501810. PubMed DOI PMC

Thompson B. C.; Moulton S. E.; Richardson R. T.; Wallace G. G. Effect of the Dopant Anion in Polypyrrole on Nerve Growth and Release of a Neurotrophic Protein. Biomaterials 2011, 32 (15), 3822–3831. 10.1016/j.biomaterials.2011.01.053. PubMed DOI

Stauffer W. R. R.; Lau P.-M.; Bi G.-Q.; Cui X. T. T. Rapid Modulation of Local Neural Activity by Controlled Drug Release from Polymer-Coated Recording Microelectrodes. J. Neural Eng. 2011, 8 (4), 04400110.1088/1741-2560/8/4/044001. PubMed DOI

Wu L.; Wang J.; Gao N.; Ren J.; Zhao A.; Qu X. Electrically Pulsatile Responsive Drug Delivery Platform for Treatment of Alzheimer’s Disease. Nano Res. 2015, 8 (7), 2400–2414. 10.1007/s12274-015-0750-x. DOI

Löffler S.; Seyock S.; Nybom R.; Jacobson G. B.; Richter-Dahlfors A. Electrochemically Triggered Release of Acetylcholine from ScCO2 Impregnated Conductive Polymer Films Evokes Intracellular Ca2+ Signaling in Neurotypic SH-SY5Y Cells. J. Controlled Release 2016, 243, 283–290. 10.1016/j.jconrel.2016.10.020. PubMed DOI

Boehler C.; Oberueber F.; Asplund M. Tuning Drug Delivery from Conducting Polymer Films for Accurately Controlled Release of Charged Molecules. J. Controlled Release 2019, 304, 173–180. 10.1016/j.jconrel.2019.05.017. PubMed DOI

Hendy G. M.; Breslin C. B. The Incorporation and Controlled Release of Dopamine from a Sulfonated β–Cyclodextrin–Doped Conducting Polymer. J. Polym. Res. 2019, 26 (3), 61.10.1007/s10965-019-1733-5. DOI

Krukiewicz K.; Kowalik A.; Turczyn R.; Biggs M. J. P. In Vitro Attenuation of Astrocyte Activation and Neuroinflammation through Ibuprofen-Doping of Poly(3,4-Ethylenedioxypyrrole) Formulations. Bioelectrochemistry 2020, 134, 107528.10.1016/j.bioelechem.2020.107528. PubMed DOI

Muller R.; Yue Z.; Ahmadi S.; Ng W.; Grosse W. M.; Cook M. J.; Wallace G. G.; Moulton S. E. Development and Validation of a Seizure Initiated Drug Delivery System for the Treatment of Epilepsy. Sens. Actuators, B 2016, 236, 732–740. 10.1016/j.snb.2016.06.038. DOI

Boehler C.; Kleber C.; Martini N.; Xie Y.; Dryg I.; Stieglitz T.; Hofmann U. G.; Asplund M. Actively Controlled Release of Dexamethasone from Neural Microelectrodes in a Chronic in Vivo Study. Biomaterials 2017, 129, 176–187. 10.1016/j.biomaterials.2017.03.019. PubMed DOI

Du Z. J.; Bi G.-Q.; Cui X. T. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex. Adv. Funct. Mater. 2018, 28 (12), 1703988.10.1002/adfm.201703988. PubMed DOI PMC

Woeppel K. M.; Zheng X. S.; Schulte Z. M.; Rosi N. L.; Cui X. T. Nanoparticle Doped PEDOT for Enhanced Electrode Coatings and Drug Delivery. Adv. Healthcare Mater. 2019, 8 (21), 1900622.10.1002/adhm.201900622. PubMed DOI PMC

Arbring Sjöström T.; Berggren M.; Gabrielsson E. O.; Janson P.; Poxson D. J.; Seitanidou M.; Simon D. T. A Decade of Iontronic Delivery Devices. Adv. Mater. Technol. 2018, 3 (5), 1700360.10.1002/admt.201700360. DOI

Chun H.; Chung T. D. Iontronics. Annu. Rev. Anal. Chem. 2015, 8 (1), 441–462. 10.1146/annurev-anchem-071114-040202. PubMed DOI

Isaksson J.; Kjäll P.; Nilsson D.; Robinson N.; Berggren M.; Richter-Dahlfors A. Electronic Control of Ca2+ Signalling in Neuronal Cells Using an Organic Electronic Ion Pump. Nat. Mater. 2007, 6 (9), 673–679. 10.1038/nmat1963. PubMed DOI

Tybrandt K.; Larsson K. C.; Kurup S.; Simon D. T.; Kjäll P.; Isaksson J.; Sandberg M.; Jager E. W. H.; Richter-Dahlfors A.; Berggren M. Translating Electronic Currents to Precise Acetylcholine-Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device. Adv. Mater. 2009, 21 (44), 4442–4446. 10.1002/adma.200900187. DOI

Uguz I.; Proctor C. M.; Curto V. F.; Pappa A.-M.; Donahue M. J.; Ferro M.; Owens R. M.; Khodagholy D.; Inal S.; Malliaras G. G. A Microfluidic Ion Pump for In Vivo Drug Delivery. Adv. Mater. 2017, 29 (27), 1701217.10.1002/adma.201701217. PubMed DOI

Poxson D. J.; Gabrielsson E. O.; Bonisoli A.; Linderhed U.; Abrahamsson T.; Matthiesen I.; Tybrandt K.; Berggren M.; Simon D. T. Capillary-Fiber Based Electrophoretic Delivery Device. ACS Appl. Mater. Interfaces 2019, 11 (15), 14200–14207. 10.1021/acsami.8b22680. PubMed DOI

Gabrielsson E. O.; Tybrandt K.; Berggren M. Ion Diode Logics for PH Control. Lab Chip 2012, 12 (14), 2507.10.1039/c2lc40093f. PubMed DOI

Janson P.; Gabrielsson E. O.; Lee K. J.; Berggren M.; Simon D. T. An Ionic Capacitor for Integrated Iontronic Circuits. Adv. Mater. Technol. 2019, 4 (4), 1800494.10.1002/admt.201800494. DOI

Tybrandt K.; Larsson K. C.; Richter-Dahlfors A.; Berggren M. Ion Bipolar Junction Transistors. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (22), 9929–9932. 10.1073/pnas.0913911107. PubMed DOI PMC

Tybrandt K.; Gabrielsson E. O.; Berggren M. Toward Complementary Ionic Circuits: The Npn Ion Bipolar Junction Transistor. J. Am. Chem. Soc. 2011, 133 (26), 10141–10145. 10.1021/ja200492c. PubMed DOI

Gabrielsson E. O.; Tybrandt K.; Berggren M. Polyphosphonium-Based Ion Bipolar Junction Transistors. Biomicrofluidics 2014, 8 (6), 06411610.1063/1.4902909. PubMed DOI PMC

Gabrielsson E. O.; Janson P.; Tybrandt K.; Simon D. T.; Berggren M. A Four-Diode Full-Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity. Adv. Mater. 2014, 26 (30), 5143–5147. 10.1002/adma.201401258. PubMed DOI

Tybrandt K.; Forchheimer R.; Berggren M. Logic Gates Based on Ion Transistors. Nat. Commun. 2012, 3 (May), 871.10.1038/ncomms1869. PubMed DOI

Simon D. T.; Kurup S.; Larsson K. C.; Hori R.; Tybrandt K.; Goiny M.; Jager E. W. H.; Berggren M.; Canlon B.; Richter-Dahlfors A. Organic Electronics for Precise Delivery of Neurotransmitters to Modulate Mammalian Sensory Function. Nat. Mater. 2009, 8 (9), 742–746. 10.1038/nmat2494. PubMed DOI

Jonsson A.; Song Z.; Nilsson D.; Meyerson B.; Simon D. T.; Linderoth B.; Berggren M. Therapy Using Implanted Organic Bioelectronics. Sci. Adv. 2015, 1 (4), e1500039–e1500039. 10.1126/sciadv.1500039. PubMed DOI PMC

Proctor C. M.; Slézia A.; Kaszas A.; Ghestem A.; del Agua I.; Pappa A.-M.; Bernard C.; Williamson A. J.; Malliaras G. G. Electrophoretic Drug Delivery for Seizure Control. Sci. Adv. 2018, 4 (8), eaau1291.10.1126/sciadv.aau1291. PubMed DOI PMC

Proctor C. M.; Uguz I.; Slezia A.; Curto V.; Inal S.; Williamson A.; Malliaras G. G. An Electrocorticography Device with an Integrated Microfluidic Ion Pump for Simultaneous Neural Recording and Electrophoretic Drug Delivery In Vivo. Adv. Biosyst. 2019, 3 (2), 1800270.10.1002/adbi.201800270. PubMed DOI

Arbring Sjöström T.; Ivanov A. I.; Bernard C.; Tybrandt K.; Poxson D. J.; Simon D. T.; Berggren M. Design and Operation of Hybrid Microfluidic Iontronic Probes for Regulated Drug Delivery. Adv. Mater. Technol. 2021, 6 (2), 2001006.10.1002/admt.202001006. DOI

Jonsson A.; Sjöström T. A. A.; Tybrandt K.; Berggren M.; Simon D. T. Chemical Delivery Array with Millisecond Neurotransmitter Release. Sci. Adv. 2016, 2 (11), e1601340.10.1126/sciadv.1601340. PubMed DOI PMC

Sjöström T. A.; Jonsson A.; Gabrielsson E. O.; Berggren M.; Simon D. T.; Tybrandt K. Miniaturized Ionic Polarization Diodes for Neurotransmitter Release at Synaptic Speeds. Adv. Mater. Technol. 2020, 5 (3), 1900750.10.1002/admt.201900750. DOI

Strakosas X.; Seitanidou M.; Tybrandt K.; Berggren M.; Simon D. T. An Electronic Proton-Trapping Ion Pump for Selective Drug Delivery. Sci. Adv. 2021, 7 (5), eabd8738.10.1126/sciadv.abd8738. PubMed DOI PMC

Lin Y.; Li Y.; Zhan X. Small Molecule Semiconductors for High-Efficiency Organic Photovoltaics. Chem. Soc. Rev. 2012, 41 (11), 4245–4272. 10.1039/c2cs15313k. PubMed DOI

Loutfy R. O. Bulk Optical Properties of Phthalocyanine Pigment Particles The Optical Absorption of X-H2Pc Particles. Can. J. Chem. 1981, 59, 549–554. 10.1139/v81-078. DOI

Günter C.; Delbeke J.; Ortiz-Catalan M. Safety of Long-Term Electrical Peripheral Nerve Stimulation: Review of the State of the Art. J. Neuroeng. Rehabil. 2019, 16 (1), 13.10.1186/s12984-018-0474-8. PubMed DOI PMC

McCreery D. B.; Agnew W. F.; Yuen T. G. H.; Bullara L. Charge Density and Charge per Phase as Cofactors in Neural Injury Induced by Electrical Stimulation. IEEE Trans. Biomed. Eng. 1990, 37 (10), 996–1001. 10.1109/10.102812. PubMed DOI

Cogan S. F.; Ludwig K. A.; Welle C. G.; Takmakov P. Tissue Damage Thresholds during Therapeutic Electrical Stimulation. J. Neural Eng. 2016, 13 (2), 021001.10.1088/1741-2560/13/2/021001. PubMed DOI PMC

Sekirnjak C.; Hottowy P.; Sher A.; Dabrowski W.; Litke a M.; Chichilnisky E. J. Electrical Stimulation of Mammalian Retinal Ganglion Cells with Multielectrode Arrays. J. Neurophysiol. 2006, 95 (6), 3311–3327. 10.1152/jn.01168.2005. PubMed DOI

Albert E. S.; Bec J. M.; Desmadryl G.; Chekroud K.; Travo C.; Gaboyard S.; Bardin F.; Marc I.; Dumas M.; Lenaers G.; Hamel C.; Muller A.; Chabbert C. TRPV4 Channels Mediate the Infrared Laser-Evoked Response in Sensory Neurons. J. Neurophysiol. 2012, 107 (12), 3227–3234. 10.1152/jn.00424.2011. PubMed DOI

Sytnyk M.; Jakešová M.; Litviňuková M.; Mashkov O.; Kriegner D.; Stangl J.; Nebesářová J.; Fecher F. W.; Schöfberger W.; Sariciftci N. S.; Schindl R.; Heiss W.; Głowacki E. D. Cellular Interfaces with Hydrogen-Bonded Organic Semiconductor Hierarchical Nanocrystals. Nat. Commun. 2017, 8, 91.10.1038/s41467-017-00135-0. PubMed DOI PMC

Lodola F.; Martino N.; Tullii G.; Lanzani G.; Antognazza M. R. Conjugated Polymers Mediate Effective Activation of the Mammalian Ion Channel Transient Receptor Potential Vanilloid 1. Sci. Rep. 2017, 7 (July), 8477.10.1038/s41598-017-08541-6. PubMed DOI PMC

Martino N.; Feyen P.; Porro M.; Bossio C.; Zucchetti E.; Ghezzi D.; Benfenati F.; Lanzani G.; Antognazza M. R. Photothermal Cellular Stimulation in Functional Bio-Polymer Interfaces. Sci. Rep. 2015, 5 (1), 8911.10.1038/srep08911. PubMed DOI PMC

Shapiro M. G.; Homma K.; Villarreal S.; Richter C.-P.; Bezanilla F. Infrared Light Excites Cells by Changing Their Electrical Capacitance. Nat. Commun. 2012, 3, 736.10.1038/ncomms1742. PubMed DOI PMC

Carvalho-de-Souza J. L.; Treger J. S.; Dang B.; Kent S. B. H.; Pepperberg D. R.; Bezanilla F. Photosensitivity of Neurons Enabled by Cell-Targeted Gold Nanoparticles. Neuron 2015, 86 (1), 207–217. 10.1016/j.neuron.2015.02.033. PubMed DOI PMC

Jiang Y.; Carvalho-de-Souza J. L.; Wong R. C. S.; Luo Z.; Isheim D.; Zuo X.; Nicholls A. W.; Jung I. W.; Yue J.; Liu D.-J.; Wang Y.; De Andrade V.; Xiao X.; Navrazhnykh L.; Weiss D. E.; Wu X.; Seidman D. N.; Bezanilla F.; Tian B. Heterogeneous Silicon Mesostructures for Lipid-Supported Bioelectric Interfaces. Nat. Mater. 2016, 15, 1023–1030. 10.1038/nmat4673. PubMed DOI PMC

Zimmerman J. F.; Tian B. Nongenetic Optical Methods for Measuring and Modulating Neuronal Response. ACS Nano 2018, 12, 4086–4095. 10.1021/acsnano.8b02758. PubMed DOI PMC

Hong Y.; Cho W.; Kim J.; Hwng S.; Lee E.; Heo D.; Ku M.; Suh J.-S.; Yang J.; Kim J. H. Photothermal Ablation of Cancer Cells Using Self-Doped Polyaniline Nanoparticles. Nanotechnology 2016, 27 (18), 185104.10.1088/0957-4484/27/18/185104. PubMed DOI

McCarthy B.; Cudykier A.; Singh R.; Levi-Polyachenko N.; Soker S. Semiconducting Polymer Nanoparticles for Photothermal Ablation of Colorectal Cancer Organoids. Sci. Rep. 2021, 11 (1), 1–12. 10.1038/s41598-021-81122-w. PubMed DOI PMC

Chowdhury P.; Fortin P.; Suppes G.; Holdcroft S. Aqueous Photoelectrochemical Reduction of Anthraquinone Disulfonate at Organic Polymer Films. Macromol. Chem. Phys. 2016, 217, 1119–1127. 10.1002/macp.201500440. DOI

Bellani S.; Antognazza M. R.; Bonaccorso F. Carbon-Based Photocathode Materials for Solar Hydrogen Production. Adv. Mater. 2019, 31, 1801446.10.1002/adma.201801446. PubMed DOI

Bellani S.; Ghadirzadeh A.; Meda L.; Savoini A.; Tacca A.; Marra G.; Meira R.; Morgado J.; Di Fonzo F.; Antognazza M. R. Hybrid Organic/Inorganic Nanostructures for Highly Sensitive Photoelectrochemical Detection of Dissolved Oxygen in Aqueous Media. Adv. Funct. Mater. 2015, 25 (28), 4531–4538. 10.1002/adfm.201500701. DOI

Suppes G.; Ballard E.; Holdcroft S. Aqueous Photocathode Activity of Regioregular Poly(3-Hexylthiophene). Polym. Chem. 2013, 4, 5345–5350. 10.1039/c3py00143a. DOI

Gryszel M.; Rybakiewicz R.; Głowacki E. D. Water-Soluble Organic Dyes as Molecular Photocatalysts for H2O2 Evolution. Adv. Sustain. Syst. 2019, 3, 1900027.10.1002/adsu.201900027. DOI

Jakešová M.; Apaydin D. H.; Sytnyk M.; Oppelt K.; Heiss W.; Sariciftci N. S.; Głowacki E. D. Hydrogen-Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis. Adv. Funct. Mater. 2016, 26, 5248–5254. 10.1002/adfm.201601946. DOI

Węcławski M. K.; Jakešová M.; Charyton M.; Demitri N.; Koszarna B.; Oppelt K.; Sariciftci S.; Gryko D. T.; Głowacki E. D. Biscoumarin-Containing Acenes as Stable Organic Semiconductors for Photocatalytic Oxygen Reduction to Hydrogen Peroxide. J. Mater. Chem. A 2017, 5, 20780–20788. 10.1039/C7TA05882A. DOI

Gryszel M.; Sytnyk M.; Jakesova M.; Romanazzi G.; Gabrielsson R.; Heiss W.; Głowacki E. D. General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals. ACS Appl. Mater. Interfaces 2018, 10, 13253–13257. 10.1021/acsami.8b01295. PubMed DOI

Warczak M.; Gryszel M.; Jakešová M.; Đerek V.; Głowacki E. D. Organic Semiconductor Perylenetetracarboxylic Diimide (PTCDI) Electrodes for Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. Chem. Commun. 2018, 54, 1960–1963. 10.1039/C7CC08471D. PubMed DOI

Mitraka E.; Gryszel M.; Vagin M.; Jafari M. J.; Singh A.; Warczak M.; Mitrakas M.; Berggren M.; Ederth T.; Zozoulenko I.; Crispin X.; Głowacki E. D. Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4-Ethylenedioxythiophene) Electrodes. Adv. Sustain. Syst. 2019, 3, 1800110.10.1002/adsu.201800110. DOI

Gryszel M.; Markov A.; Vagin M.; Głowacki E. D. Organic Heterojunction Photocathodes for Optimized Photoelectrochemical Hydrogen Peroxide Production. J. Mater. Chem. A 2018, 6, 24709–24716. 10.1039/C8TA08151D. DOI

Migliaccio L.; Gryszel M.; Đerek V.; Pezzella A.; Głowacki E. D. Aqueous Photo(Electro)Catalysis with Eumelanin Thin Films. Mater. Horiz. 2018, 5, 984–990. 10.1039/C8MH00715B. DOI

Huang Y. Y.; Nagata K.; Tedford C. E.; Mccarthy T.; Hamblin M. R. Low-Level Laser Therapy (LLLT) Reduces Oxidative Stress in Primary Cortical Neurons in Vitro. J. Biophotonics 2012, 6 (10), 829–838. 10.1002/jbio.201200157. PubMed DOI PMC

Gamper N.; Zaika O.; Li Y.; Martin P.; Hernandez C. C.; Perez M. R.; Wang A. Y. C.; Jaffe D. B.; Shapiro M. S. Oxidative Modification of M-Type K + Channels as a Mechanism of Cytoprotective Neuronal Silencing. EMBO J. 2006, 25 (20), 4996–5004. 10.1038/sj.emboj.7601374. PubMed DOI PMC

Lim J. B.; Langford T. F.; Huang B. K.; Deen W. M.; Sikes H. D. A Reaction-Diffusion Model of Cytosolic Hydrogen Peroxide. Free Radical Biol. Med. 2016, 90, 85–90. 10.1016/j.freeradbiomed.2015.11.005. PubMed DOI

Moros M.; Lewinska A.; Onorato G.; Antognazza M. R.; Di Francesca M.; Blasio M.; Lanzani G.; Tino A.; Wnuk M.; Tortiglione C. Light-Triggered Modulation of Cell Antioxidant Defense by Polymer Semiconducting Nanoparticles in a Model Organism. MRS Commun. 2018, 8, 918–925. 10.1557/mrc.2018.104. DOI

Antognazza M. R.; Aziz I. A.; Lodola F. Use of Exogenous and Endogenous Photo-Mediators as Efficient ROS Modulation Tools: Results & Perspectives for Therapeutic Purposes. Oxid. Med. Cell. Longevity 2019, 2019, 2867516.10.1155/2019/2867516. PubMed DOI PMC

Lodola F.; Rosti V.; Tullii G.; Desii A.; Tapella L.; Catarsi P.; Lim D.; Moccia F.; Antognazza M. R. Conjugated Polymers Optically Regulate the Fate of Endothelial Colony-Forming Cells. Sci. Adv. 2019, 5, eaav4620.10.1126/sciadv.aav4620. PubMed DOI PMC

Tortiglione C.; Antognazza M. R.; Tino A.; Bossio C.; Marchesano V.; Bauduin A.; Zangoli M.; Morata S. V.; Lanzani G. Semiconducting Polymers Are Light Nanotransducers in Eyeless Animals. Sci. Adv. 2017, 3, e160169910.1126/sciadv.1601699. PubMed DOI PMC

Merrill D. R.; Bikson M.; Jefferys J. G. R. Electrical Stimulation of Excitable Tissue: Design of Efficacious and Safe Protocols. J. Neurosci. Methods 2005, 141 (2), 171–198. 10.1016/j.jneumeth.2004.10.020. PubMed DOI

Jakešová M.; Silverå Ejneby M.; Đerek V.; Schmidt T.; Gryszel M.; Brask J.; Schindl R.; Simon D. T.; Berggren M.; Elinder F.; Głowacki E. D. Optoelectronic Control of Single Cells Using Organic Photocapacitors. Sci. Adv. 2019, 5 (4), eaav5265.10.1126/sciadv.aav5265. PubMed DOI PMC

Sherwood C.; Elkington D. C.; Dickinson M.; Belcher W.; Dastoor P. C.; Feron K.; Brichta A.; Lim R.; Griffith M. J. Organic Semiconductors for Optically Triggered Neural Interfacing: The Impact of Device Architecture in Determining Response Magnitude and Polarity. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 7400212.10.1109/JSTQE.2021.3051408. DOI

Antognazza M. R.; Ghezzi D.; Musitelli D.; Garbugli M.; Lanzani G. A Hybrid Solid-Liquid Polymer Photodiode for the Bioenvironment. Appl. Phys. Lett. 2009, 94 (24), 243501.10.1063/1.3153846. DOI

Ghezzi D.; Antognazza M. R.; Dal Maschio M.; Lanzarini E.; Benfenati F.; Lanzani G. A Hybrid Bioorganic Interface for Neuronal Photoactivation. Nat. Commun. 2011, 2, 166.10.1038/ncomms1164. PubMed DOI

Ghezzi D.; Antognazza M. R.; MacCarone R.; Bellani S.; Lanzarini E.; Martino N.; Mete M.; Pertile G.; Bisti S.; Lanzani G.; Benfenati F. A Polymer Optoelectronic Interface Restores Light Sensitivity in Blind Rat Retinas. Nat. Photonics 2013, 7 (5), 400–406. 10.1038/nphoton.2013.34. PubMed DOI PMC

Maya-Vetencourt J. F.; Ghezzi D.; Antognazza M. R.; Colombo E.; Mete M.; Feyen P.; Desii A.; Buschiazzo A.; Di Paolo M.; Di Marco S.; Ticconi F.; Emionite L.; Shmal D.; Marini C.; Donelli I.; Freddi G.; Maccarone R.; Bisti S.; Sambuceti G.; Pertile G.; Lanzani G.; Benfenati F. A Fully Organic Retinal Prosthesis Restores Vision in a Rat Model of Degenerative Blindness. Nat. Mater. 2017, 16 (March), 681–689. 10.1038/nmat4874. PubMed DOI PMC

Bargigia I.; Zucchetti E.; Kandada A. R. S.; Moreira M.; Bossio C.; Wong W. P. D.; Miranda B.; Decuzzi P.; Soci C.; D’Andrea C.; Lanzani G. The Photophysics of Polythiophene Nanoparticles for Biological Applications. ChemBioChem 2019, 20, 532–536. 10.1002/cbic.201800167. PubMed DOI

Maya-Vetencourt J. F.; Manfredi G.; Mete M.; Colombo E.; Bramini M.; Di Marco S.; Shmal D.; Mantero G.; Dipalo M.; Rocchi A.; Difrancesco M. L.; Papaleo E. D.; Russo A.; Barsotti J.; Eleftheriou C.; Di Maria F.; Cossu V.; Piazza F.; Emionite L.; Ticconi F.; Marini C.; Sambuceti G.; Pertile G.; Lanzani G.; Benfenati F. Subretinally Injected Semiconducting Polymer Nanoparticles Rescue Vision in a Rat Model of Retinal Dystrophy. Nat. Nanotechnol. 2020, 15, 698.10.1038/s41565-020-0696-3. PubMed DOI

Ferlauto L.; Airaghi Leccardi M. J. I.; Chenais N. A. L.; Gilliéron S. C. A.; Vagni P.; Bevilacqua M.; Wolfensberger T. J.; Sivula K.; Ghezzi D. Design and Validation of a Foldable and Photovoltaic Wide-Field Epiretinal Prosthesis. Nat. Commun. 2018, 9, 992.10.1038/s41467-018-03386-7. PubMed DOI PMC

Rand D.; Jakešová M.; Lubin G.; Vėbraitė I.; David-Pur M.; Đerek V.; Cramer T.; Sariciftci N. S.; Hanein Y.; Głowacki E. D. Direct Electrical Neurostimulation with Organic Pigment Photocapacitors. Adv. Mater. 2018, 30 (25), 1707292.10.1002/adma.201707292. PubMed DOI

Đerek V.; Rand D.; Migliaccio L.; Hanein Y.; Głowacki E. D. Untangling Photofaradaic and Photocapacitive Effects in Organic Optoelectronic Stimulation Devices. Front. Bioeng. Biotechnol. 2020, 8, 284.10.3389/fbioe.2020.00284. PubMed DOI PMC

Paltrinieri T.; Bondi L.; Đerek V.; Fraboni B.; Głowacki E. D.; Cramer T. Understanding Photocapacitive and Photofaradaic Processes in Organic Semiconductor Photoelectrodes for Optobioelectronics. Adv. Funct. Mater. 2021, 31, 2010116.10.1002/adfm.202010116. DOI

Silverå Ejneby M.; Migliaccio L.; Gicevičius M.; Đerek V.; Jakešová M.; Elinder F.; Głowacki E. D. Extracellular Photovoltage Clamp Using Conducting Polymer-Modified Organic Photocapacitors. Adv. Mater. Technol. 2020, 5 (3), 1900860.10.1002/admt.201900860. DOI

Silverå Ejneby M.; Jakešová M.; Ferrero J. J.; Migliaccio L.; Sahalianov I.; Zhao Z.; Berggren M.; Khodagholy D.; Đerek V.; Gelinas J.; Głowacki E. D. Chronic Electrical Stimulation of Peripheral Nerves Via Deep-Red Light Transduced by an Implanted Organic Photocapacitor. Nat. Biomed. Eng. 2021, 10.1038/s41551-021-00817-7. PubMed DOI

Lacour S. P.; Courtine G.; Guck J. Materials and Technologies for Soft Implantable Neuroprostheses. Nat. Rev. Mater. 2016, 1, 16063.10.1038/natrevmats.2016.63. DOI

Minev I. R.; Musienko P.; Hirsch A.; Barraud Q.; Wenger N.; Moraud E. M.; Gandar J.; Capogrosso M.; Milekovic T.; Asboth L.; Torres R. F.; Vachicouras N.; Liu Q.; Pavlova N.; Duis S.; Larmagnac A.; Vörös J.; Micera S.; Suo Z.; Courtine G.; Lacour S. P. Electronic Dura Mater for Long-Term Multimodal Neural Interfaces. Science (Washington, DC, U. S.) 2015, 347 (6218), 159–163. 10.1126/science.1260318. PubMed DOI

Lecomte A.; Descamps E.; Bergaud C. A Review on Mechanical Considerations for Chronically-Implanted Neural Probes. J. Neural Eng. 2018, 15, 031001.10.1088/1741-2552/aa8b4f. PubMed DOI

Chen R.; Canales A.; Anikeeva P. Neural Recording and Modulation Technologies. Nat. Rev. Mater. 2017, 2 (2), 1–16. 10.1038/natrevmats.2016.93. PubMed DOI PMC

Apollo N. V.; Murphy B.; Prezelski K.; Driscoll N.; Richardson A. G.; Lucas T. H.; Vitale F. Gels, Jets, Mosquitoes, and Magnets: A Review of Implantation Strategies for Soft Neural Probes. J. Neural Eng. 2020, 17 (4), 041002.10.1088/1741-2552/abacd7. PubMed DOI PMC

Polanco M.; Bawab S.; Yoon H. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion. Biosensors 2016, 6 (2), 27.10.3390/bios6020027. PubMed DOI PMC

Kayser L. V.; Lipomi D. J. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31 (10), 1806133.10.1002/adma.201806133. PubMed DOI PMC

ElMahmoudy M.; Inal S.; Charrier A.; Uguz I.; Malliaras G. G.; Sanaur S. Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics. Macromol. Mater. Eng. 2017, 302 (5), 1600497.10.1002/mame.201600497. DOI

Li P.; Sun K.; Ouyang J. Stretchable and Conductive Polymer Films Prepared by Solution Blending. ACS Appl. Mater. Interfaces 2015, 7 (33), 18415–18423. 10.1021/acsami.5b04492. PubMed DOI

Lu B.; Yuk H.; Lin S.; Jian N.; Qu K.; Xu J.; Zhao X. Pure PEDOT:PSS Hydrogels. Nat. Commun. 2019, 10 (1), 1043.10.1038/s41467-019-09003-5. PubMed DOI PMC

Mario Cheong G. L.; Lim K. S.; Jakubowicz A.; Martens P. J.; Poole-Warren L. A.; Green R. A. Conductive Hydrogels with Tailored Bioactivity for Implantable Electrode Coatings. Acta Biomater. 2014, 10 (3), 1216–1226. 10.1016/j.actbio.2013.12.032. PubMed DOI

Luan L.; Wei X.; Zhao Z.; Siegel J. J.; Potnis O.; Tuppen C. A.; Lin S.; Kazmi S.; Fowler R. A.; Holloway S.; Dunn A. K.; Chitwood R. A.; Xie C. Ultraflexible Nanoelectronic Probes Form Reliable, Glial Scar–Free Neural Integration. Sci. Adv. 2017, 3 (2), e160196610.1126/sciadv.1601966. PubMed DOI PMC

Williamson A.; Ferro M.; Leleux P.; Ismailova E.; Kaszas A.; Doublet T.; Quilichini P.; Rivnay J.; Rózsa B.; Katona G.; Bernard C.; Malliaras G. G. Localized Neuron Stimulation with Organic Electrochemical Transistors on Delaminating Depth Probes. Adv. Mater. 2015, 27 (30), 4405–4410. 10.1002/adma.201500218. PubMed DOI

Ferrari L. M.; Rodríguez-Meana B.; Bonisoli A.; Cutrone A.; Micera S.; Navarro X.; Greco F.; del Valle J. All-Polymer Printed Low-Cost Regenerative Nerve Cuff Electrodes. Front. Bioeng. Biotechnol. 2021, 9, 615218.10.3389/fbioe.2021.615218. PubMed DOI PMC

Tian H. C.; Liu J. Q.; Kang X. Y.; Tang L. J.; Wang M. H.; Ji B. W.; Yang B.; Wang X. L.; Chen X.; Yang C. S. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface. Sci. Rep. 2016, 6 (1), 1–10. 10.1038/srep26910. PubMed DOI PMC

Apollo N. V.; Murphy B.; Prezelski K.; Driscoll N.; Richardson A. G.; Lucas T. H.; Vitale F. Gels, Jets, Mosquitoes, and Magnets: A Review of Implantation Strategies for Soft Neural Probes. J. Neural Eng. 2020, 17 (4), 041002.10.1088/1741-2552/abacd7. PubMed DOI PMC

Kim N.; Lienemann S.; Petsagkourakis I.; Alemu Mengistie D.; Kee S.; Ederth T.; Gueskine V.; Leclère P.; Lazzaroni R.; Crispin X.; Tybrandt K. Elastic Conducting Polymer Composites in Thermoelectric Modules. Nat. Commun. 2020, 11 (1), 1–10. 10.1038/s41467-020-15135-w. PubMed DOI PMC

Wang Y.; Zhu C.; Pfattner R.; Yan H.; Jin L.; Chen S.; Molina-Lopez F.; Lissel F.; Liu J.; Rabiah N. I.; Chen Z.; Chung J. W.; Linder C.; Toney M. F.; Murmann B.; Bao Z. A Highly Stretchable, Transparent, and Conductive Polymer. Sci. Adv. 2017, 3 (3), e160207610.1126/sciadv.1602076. PubMed DOI PMC

Qi D.; Liu Z.; Liu Y.; Jiang Y.; Leow W. R.; Pal M.; Pan S.; Yang H.; Wang Y.; Zhang X.; Yu J.; Li B.; Yu Z.; Wang W.; Chen X. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Adv. Mater. 2017, 29, 1702800.10.1002/adma.201702800. PubMed DOI

Liu Y.; Li J.; Song S.; Kang J.; Tsao Y.; Chen S.; Mottini V.; McConnell K.; Xu W.; Zheng Y. Q.; Tok J. B. H.; George P. M.; Bao Z. Morphing Electronics Enable Neuromodulation in Growing Tissue. Nat. Biotechnol. 2020, 38, 1031.10.1038/s41587-020-0495-2. PubMed DOI PMC

Wurth S.; Capogrosso M.; Raspopovic S.; Gandar J.; Federici G.; Kinany N.; Cutrone A.; Piersigilli A.; Pavlova N.; Guiet R.; Taverni G.; Rigosa J.; Shkorbatova P.; Navarro X.; Barraud Q.; Courtine G.; Micera S. Long-Term Usability and Bio-Integration of Polyimide-Based Intra-Neural Stimulating Electrodes. Biomaterials 2017, 122, 114–129. 10.1016/j.biomaterials.2017.01.014. PubMed DOI

Zheng X.; Woeppel K. M.; Griffith A. Y.; Chang E.; Looker M. J.; Fisher L. E.; Clapsaddle B. J.; Cui X. T. Soft Conducting Elastomer for Peripheral Nerve Interface. Adv. Healthcare Mater. 2019, 8 (9), 1801311.10.1002/adhm.201801311. PubMed DOI

Tybrandt K.; Khodagholy D.; Dielacher B.; Stauffer F.; Renz A. F.; Buzsáki G.; Vörös J. High-Density Stretchable Electrode Grids for Chronic Neural Recording. Adv. Mater. 2018, 30 (15), 1706520.10.1002/adma.201706520. PubMed DOI PMC

Rochford A. E.; Carnicer-Lombarte A.; Curto V. F.; Malliaras G. G.; Barone D. G. When Bio Meets Technology: Biohybrid Neural Interfaces. Adv. Mater. 2020, 32, 1903182.10.1002/adma.201903182. PubMed DOI

Thompson C. H.; Zoratti M. J.; Langhals N. B.; Purcell E. K. Regenerative Electrode Interfaces for Neural Prostheses. Tissue Eng., Part B 2016, 22 (2), 125–135. 10.1089/ten.teb.2015.0279. PubMed DOI

Spearman B. S.; Desai V. H.; Mobini S.; Mcdermott M. D.; Graham J. B.; Otto K. J.; Judy J. W.; Schmidt C. E. Tissue-Engineered Peripheral Nerve Interfaces. Adv. Funct. Mater. 2018, 28, 1701713.10.1002/adfm.201701713. PubMed DOI PMC

Goding J. A.; Gilmour A. D.; Aregueta-Robles U. A.; Hasan E. A.; Green R. A. Living Bioelectronics: Strategies for Developing an Effective Long-Term Implant with Functional Neural Connections. Adv. Funct. Mater. 2018, 28, 1702969.10.1002/adfm.201702969. DOI

Alvarez-Buylla A.; García-Verdugo J. M.; Tramontin A. D. A Unified Hypothesis on the Lineage of Neural Stem Cells. Nat. Rev. Neurosci. 2001, 2, 287.10.1038/35067582. PubMed DOI

Purcell E. K.; Seymour J. P.; Yandamuri S.; Kipke D. R. In Vivo Evaluation of a Neural Stem Cell-Seeded Prosthesis. J. Neural Eng. 2009, 6, 026005.10.1088/1741-2560/6/2/026005. PubMed DOI PMC

Aregueta-Robles U. A.; Lim K. S.; Martens P. J.; Lovell N. H.; Poole-Warren L. A.; Green R.. Producing 3D Neuronal Networks in Hydrogels for Living Bionic Device Interfaces. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE: 2015; pp 2600–2603.10.1109/EMBC.2015.7318924. PubMed DOI

Goding J.; Robles U. A.; Poole-Warren L.; Lovell N.; Martens P.; Green R. A Living Electrode Construct for Incorporation of Cells into Bionic Devices. MRS Commun. 2017, 7 (3), 487–495. 10.1557/mrc.2017.44. DOI

Purcell E. K.; Singh A.; Kipke D. R. Alginate Composition Effects on a Neural Stem Cell–Seeded Scaffold. Tissue Eng., Part C 2009, 15 (4), 541–550. 10.1089/ten.tec.2008.0302. PubMed DOI PMC

Azemi E.; Gobbel G. T.; Cui X. T. Seeding Neural Progenitor Cells on Silicon-Based Neural Probes. J. Neurosurg. 2010, 113 (3), 673–681. 10.3171/2010.1.JNS09313. PubMed DOI

Serruya M. D.; Harris J. P.; Adewole D. O.; Struzyna L. A.; Burrell J. C.; Nemes A.; Petrov D.; Kraft R. H.; Chen H. I.; Wolf J. A.; Cullen D. K. Engineered Axonal Tracts as “Living Electrodes” for Synaptic-Based Modulation of Neural Circuitry. Adv. Funct. Mater. 2018, 28, 1701183.10.1002/adfm.201701183. PubMed DOI PMC

Struzyna L. A.; Harris J. P.; Katiyar K. S.; Chen H. I.; Cullen D. K. Restoring Nervous System Structure and Function Using Tissue Engineered Living Scaffolds. Neural Regener. Res. 2015, 10 (5), 679–685. 10.4103/1673-5374.156943. PubMed DOI PMC

Struzyna L. A.; Smith D. H.; Cullen D. K.; Wolf J. A.; Mietus C. J.; Adewole D. O.; Chen H. I. Rebuilding Brain Circuitry with Living Micro-Tissue Engineered Neural Networks. Tissue Eng., Part A 2015, 21, 2744–2756. 10.1089/ten.tea.2014.0557. PubMed DOI PMC

Urbanchek M. G.; Kung T. A.; Frost C. M.; Martin D. C.; Larkin L. M.; Wollstein A.; Cederna P. S. Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb. BioMed Res. Int. 2016, 2016, 1–8. 10.1155/2016/5726730. PubMed DOI PMC

Desai V. H.; Spearman B. S.; Shafor C. S.; Natt S.; Teem B.; Graham J. B.; Atkinson E. W.; Wachs R. A.; Nunamaker E. A.; Otto K. J.; Schmidt C. E.; Judy J. W.. Design, Fabrication, and Characterization of a Scalable Tissue-Engineered-Electronic-Nerve-Interface (TEENI) Device. 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE: 2017; pp 203–206.10.1109/NER.2017.8008326. DOI

Kuliasha C. A.; Spearman B. S.; Atkinson E. W.; Rustogi P.; Furniturewalla A. S.; Nunamaker E. A.; Otto K. J.; Schmidt C. E.; Judy J. W.. Robust and Scalable Tissue-Engineerined Electronic Nerve Interfaces (TEENI). Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC, June 3–7, 2018; Transducer Research Foundation: 2018; pp 46–49.10.31438/trf.hh2018.13. DOI

Graham J. B.; Atkinson E. W.; Nunamaker E. A.; Spearman B. S.; Desai V. H.; Shafor C. S.; Natt S.; Wachs R. A.; Schmidt C. E.; Judy J. W.; Otto K. J.. Histological Evaluation of Chronically Implanted Tissue-Engineered-Electronic-Neural-Interface (TEENI) Devices. 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE: 2017; pp 275–278.10.1109/NER.2017.8008344. DOI

Yan J.; Liu M.; Jeong Y. G.; Kang W.; Li L.; Zhao Y.; Deng N.; Cheng B.; Yang G. Performance Enhancements in Poly(Vinylidene Fluoride)-Based Piezoelectric Nanogenerators for Efficient Energy Harvesting. Nano Energy 2019, 56, 662–692. 10.1016/j.nanoen.2018.12.010. DOI

Singer A.; Dutta S.; Lewis E.; Chen Z.; Chen J. C.; Verma N.; Avants B.; Feldman A. K.; O’Malley J.; Beierlein M.; Kemere C.; Robinson J. T. Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies. Neuron 2020, 107 (4), 631–643.e5. 10.1016/j.neuron.2020.05.019. PubMed DOI PMC

Blackmore J.; Shrivastava S.; Sallet J.; Butler C. R.; Cleveland R. O. Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound Med. Biol. 2019, 45 (7), 1509–1536. 10.1016/j.ultrasmedbio.2018.12.015. PubMed DOI PMC

Piech D. K.; Johnson B. C.; Shen K.; Ghanbari M. M.; Li K. Y.; Neely R. M.; Kay J. E.; Carmena J. M.; Maharbiz M. M.; Muller R. A Wireless Millimetre-Scale Implantable Neural Stimulator with Ultrasonically Powered Bidirectional Communication. Nat. Biomed. Eng. 2020, 4, 207–222. 10.1038/s41551-020-0518-9. PubMed DOI

Zheng X. S.; Tan C.; Castagnola E.; Cui X. T. Electrode Materials for Chronic Electrical Microstimulation. Adv. Healthcare Mater. 2021, 10 (12), 2100119.10.1002/adhm.202100119. PubMed DOI PMC

Zheng X. S.; Yang Q.; Vazquez A. L.; Cui X. T. Imaging the Efficiency of Poly(3,4-Ethylenedioxythiophene) Doped with Acid-Functionalized Carbon Nanotube and Iridium Oxide Electrode Coatings for Microstimulation. Adv. NanoBiomed Res. 2021, 1 (7), 2000092.10.1002/anbr.202000092. PubMed DOI PMC

Vomero M.; Castagnola E.; Ciarpella F.; Maggiolini E.; Goshi N.; Zucchini E.; Carli S.; Fadiga L.; Kassegne S.; Ricci D. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Sci. Rep. 2017, 7 (1), 40332.10.1038/srep40332. PubMed DOI PMC

Luo X.; Weaver C. L.; Zhou D. D.; Greenberg R.; Cui X. T. Highly Stable Carbon Nanotube Doped Poly(3,4-Ethylenedioxythiophene) for Chronic Neural Stimulation. Biomaterials 2011, 32 (24), 5551–5557. 10.1016/j.biomaterials.2011.04.051. PubMed DOI PMC

Bodart C.; Rossetti N.; Hagler J.; Chevreau P.; Chhin D.; Soavi F.; Schougaard S. B.; Amzica F.; Cicoira F. Electropolymerized Poly(3,4-Ethylenedioxythiophene) (PEDOT) Coatings for Implantable Deep-Brain-Stimulating Microelectrodes. ACS Appl. Mater. Interfaces 2019, 11 (19), 17226–17233. 10.1021/acsami.9b03088. PubMed DOI

Kolarcik C. L.; Catt K.; Rost E.; Albrecht I. N.; Bourbeau D.; Du Z.; Kozai T. D. Y.; Luo X.; Weber D. J.; Cui X. T. Evaluation of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotube Neural Electrode Coatings for Stimulation in the Dorsal Root Ganglion. J. Neural Eng. 2015, 12 (1), 016008.10.1088/1741-2560/12/1/016008. PubMed DOI PMC

Acutus Medical’s New Contact Mapping Software Receives CE Mark. Acutus Medical, April 26, 2019. https://www.acutusmedical.com/media/Acutus-Cision-Article.pdf (accessed 2021-09-17).

Narayan S.; Stoica L.; Liess A.; Reisinger A.. Amplicoat® – Conductive Polymer Coating with Enhanced Durability and Performance for Chronic Implants. Proceedings of the 2021 Design of Medical Devices Conference; ASME: 2021.10.1115/DMD2021-1082. DOI

Private communication, September 17, 2021.

Aregueta-Robles U. A.; Woolley A. J.; Poole-Warren L. A.; Lovell N. H.; Green R. A. Organic Electrode Coatings for Next-Generation Neural Interfaces. Front. Neuroeng. 2014, 7, 15.10.3389/fneng.2014.00015. PubMed DOI PMC

Serruya M. D.; Harris J. P.; Adewole D. O.; Struzyna L. A.; Burrell J. C.; Nemes A.; Petrov D.; Kraft R. H.; Chen H. I.; Wolf J. A.; Cullen D. K. Engineered Axonal Tracts as “Living Electrodes” for Synaptic-Based Modulation of Neural Circuitry. Adv. Funct. Mater. 2018, 28 (12), 1701183.10.1002/adfm.201701183. PubMed DOI PMC

Kuliasha C. A.; Spearman B. S.; Atkinson E. W.; Rustogi P.; Fumiturewalla A. S.; Nunamaker E. A.; Otto K. J.; Schmidt C. E.; Judy J. W.. Sensing Nerve Activity with Scalable and Robust Nerve Interfaces. In 2019 IEEE Sensors; IEEE; 2019; pp 1–4.10.1109/SENSORS43011.2019.8956532. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Photo-Chemical Stimulation of Neurons with Organic Semiconductors

. 2023 Nov ; 10 (31) : e2300473. [epub] 20230903

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...