Discovery of microRNA-like Small RNAs in Pathogenic Plant Fungus Verticillium nonalfalfae Using High-Throughput Sequencing and qPCR and RLM-RACE Validation

. 2022 Jan 14 ; 23 (2) : . [epub] 20220114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35055083

Grantová podpora
34110 Slovenian Research Agency
P4-0077 Slovenian Research Agency

Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant-fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5' RLM-RACE approach.

Zobrazit více v PubMed

Inderbitzin P., Subbarao K.V. Verticillium systematics and evolution: How confusion impedes Verticillium wilt management and how to resolve it. Phytopathology. 2014;104:564–574. doi: 10.1094/PHYTO-11-13-0315-IA. PubMed DOI

Kasson M.T., O’Neal E.S., Davis D.D. Expanded Host Range Testing for Verticillium nonalfalfae: Potential Biocontrol Agent Against the Invasive Ailanthus altissima. Plant Dis. 2014;99:823–835. doi: 10.1094/PDIS-04-14-0391-RE. PubMed DOI

Fradin E.F., Thomma B.P. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006;7:71–86. doi: 10.1111/j.1364-3703.2006.00323.x. PubMed DOI

Neve R.A. Hops. Chapman and Hall; London, UK: Springer; Dordrecht, The Netherlands: 1991.

Gent D.H., Woods J.L., Putnam M.L. New Outbreaks of Verticillium Wilt on Hop in Oregon Caused by Nonlethal Verticillium albo-atrum. Plant Health Prog. 2012;13:14. doi: 10.1094/PHP-2012-0521-01-RS. DOI

Sewell G.W.F., Wilson J.F. The nature and distribution of Verticillium albo-atrum strains highly pathogenic to the hop. Plant Pathol. 1984;33:39–51. doi: 10.1111/j.1365-3059.1984.tb00585.x. DOI

Radišek S., Jakše J., Javornik B. Genetic variability and virulence among Verticillium albo-atrum isolates from hop. Eur. J. Plant Pathol. 2006;116:301–314. doi: 10.1007/s10658-006-9061-0. DOI

Sewell G.W.F., Wilson J.F. Verticillium wilt of the hop: The survival of V. albo-atrum in soil. Ann. Appl. Biol. 1966;58:241–249. doi: 10.1111/j.1744-7348.1966.tb04383.x. DOI

Mahaffee W.F., Pethybridge S.J., Gent D.H. Compendium of Hop Diseases and Pests. APS Press; St. Paul, MN, USA: 2009. American Phytopathological, S.

Jakše J., Jelen V., Radišek S., de Jonge R., Mandelc S., Majer A., Curk T., Zupan B., Thomma B.P.H.J., Javornik B. Genome Sequence of a Lethal Strain of Xylem-Invading Verticillium nonalfalfae. Genome Announc. 2018;6:e01458-17. doi: 10.1128/genomeA.01458-17. PubMed DOI PMC

Jeseničnik T., Štajner N., Radišek S., Jakše J. RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Sci. Rep. 2019;9:8651. doi: 10.1038/s41598-019-44494-8. PubMed DOI PMC

Agrawal N., Dasaradhi P.V.N., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev. 2003;67:657–685. doi: 10.1128/MMBR.67.4.657-685.2003. PubMed DOI PMC

Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Carthew R.W., Sontheimer E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–655. doi: 10.1016/j.cell.2009.01.035. PubMed DOI PMC

Hammond S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015;87:3–14. doi: 10.1016/j.addr.2015.05.001. PubMed DOI PMC

Nicolas F.E., Garre V. RNA Interference in Fungi: Retention and Loss. Microbiol. Spectr. 2016;4:4–6. doi: 10.1128/microbiolspec.FUNK-0008-2016. PubMed DOI

Torres-Martínez S., Ruiz-Vázquez R.M. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annu. Rev. Microbiol. 2017;71:371–391. doi: 10.1146/annurev-micro-090816-093352. PubMed DOI

Zhou J., Fu Y., Xie J., Li B., Jiang D., Li G., Cheng J. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol. Genet. Genom. 2012;287:275–282. doi: 10.1007/s00438-012-0678-8. PubMed DOI

Chen R., Jiang N., Jiang Q., Sun X., Wang Y., Zhang H., Hu Z. Exploring MicroRNA-Like Small RNAs in the Filamentous Fungus Fusarium oxysporum. PLoS ONE. 2014;9:e104956. PubMed PMC

Chen Y., Gao Q., huamg M., Liu Y., Liu Z., Liu X., Ma Z. Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum. Sci. Rep. 2015;5:12500. doi: 10.1038/srep12500. PubMed DOI PMC

Mueth N.A., Ramachandran S.R., Hulbert S.H. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici) BMC Genom. 2015;16:718. doi: 10.1186/s12864-015-1895-4. PubMed DOI PMC

Dubey H., Kiran K., Jaswal R., Jain P., Kayastha A.M., Bhardwaj S., Mondal T.K., Sharma T.R. Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct. Integr. Genom. 2019;19:391–407. doi: 10.1007/s10142-018-00652-1. PubMed DOI

Inderbitzin P., Bostock R.M., Davis M., Usami T., Platt H.W., Subbarao K.V. Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species. PLoS ONE. 2011;6:e28341. doi: 10.1371/journal.pone.0028341. PubMed DOI PMC

Jin Y., Zhao J.H., Zhao P., Zhang T., Wang S., Guo H.S. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos. Trans. R. Soc. B. 2019;374:20180309. doi: 10.1098/rstb.2018.0309. PubMed DOI PMC

Nunes C.C., Dean R.A. Host-induced gene silencing: A tool for understanding fungal host interaction and for developing novel disease control strategies. Mol. Plant Pathol. 2012;13:519–529. doi: 10.1111/j.1364-3703.2011.00766.x. PubMed DOI PMC

Weiberg A., Wang M., Bellinger M., Jin H. Small RNAs: A new paradigm in plant-microbe interactions. Annu. Rev. Phytopathol. 2014;52:495–516. doi: 10.1146/annurev-phyto-102313-045933. PubMed DOI

Wang M., Weiberg A., Lin F.M., Thomma B.P.H.J., Huang H.D., Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants. 2016;2:16151. doi: 10.1038/nplants.2016.151. PubMed DOI PMC

Hua C., Zhao J.H., Guo H.S. Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions. Mol. Plant. 2018;11:235–244. doi: 10.1016/j.molp.2017.12.001. PubMed DOI

Villalobos-Escobedo J.M., Herrera-Estrella A., Carreras-Villasenor N. The interaction of fungi with the environment orchestrated by RNAi. Mycologia. 2016;108:556–571. doi: 10.3852/15-246. PubMed DOI

Knip M., Constantin M.E., Thordal-Christensen H. Trans-kingdom cross-talk: Small RNAs on the move. PLoS Genet. 2014;10:e1004602. doi: 10.1371/journal.pgen.1004602. PubMed DOI PMC

Weiberg A., Bellinger M., Jin H. Conversations between kingdoms: Small RNAs. Curr. Opin. Biotechnol. 2015;32:207–215. doi: 10.1016/j.copbio.2014.12.025. PubMed DOI PMC

Weiberg A., Wang M., Lin F.M., Zhao H., Zhang Z., Kaloshian I., Huang H.D., Jin H. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science. 2013;342:118–123. doi: 10.1126/science.1239705. PubMed DOI PMC

Wang M., Weiberg A., Dellota E., Yamane D., Jin H. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol. 2017;14:421–428. doi: 10.1080/15476286.2017.1291112. PubMed DOI PMC

Wang M., Jin H. Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection. Trends Microbiol. 2017;25:4–6. doi: 10.1016/j.tim.2016.11.011. PubMed DOI PMC

Mathelier A., Carbone A. MIReNA: Finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics. 2010;26:2226–2234. doi: 10.1093/bioinformatics/btq329. PubMed DOI

Mishra A.K., Duraisamy G.S., Tycova A., Matousek J. Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus, target predictions and expression analysis. Comput. Biol. Chem. 2015;59 Pt A:131–141. doi: 10.1016/j.compbiolchem.2015.09.005. PubMed DOI

Kramer M.F. STEM-LOOP RT-qPCR for miRNAS. In: Ausbel F.M., editor. Current Protocols in Molecular Biology. Volume 95. Wiley; Hoboken, NJ, USA: 2015. pp. 15.10.1–15.10.15. PubMed PMC

Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. PubMed DOI PMC

Dang Y., Yang Q., Xue Z., Liu Y. RNA Interference in Fungi: Pathways, Functions, and Applications. Eukaryot. Cell. 2011;10:1148–1155. doi: 10.1128/EC.05109-11. PubMed DOI PMC

Choi J., Kim K.T., Jeon J., Wu J., Song H., Aseiegbu F., Lee Y.H. funRNA: A fungi-centered genomics platform for genes encoding key components of RNAi. BMC Genom. 2014;15((Suppl. 9)):S14. doi: 10.1186/1471-2164-15-S9-S14. PubMed DOI PMC

Nicolas F.E., de Haro J.P., Torres-Martinez S., Ruiz-Vazquez R.M. Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet. Biol. 2007;44:504–516. doi: 10.1016/j.fgb.2006.09.003. PubMed DOI

Nicolas F.E., Moxon S., de Haro J.P., Calo S., Grigoriev I.V., Torres-Martinez S., Moulton V., Ruiz-Vazquez R.M., Dalmay T. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res. 2010;38:5535–5541. doi: 10.1093/nar/gkq301. PubMed DOI PMC

Cervantes M., vila A., Nicolas F.E., Moxon S., de HAro J.P., Dalmay T., Torres-Martinez S., Ruiz-Vazqez R.M. A single argonaute gene participates in exogenous and endogenous RNAi and controls cellular functions in the basal fungus Mucor circinelloides. PLoS ONE. 2013;8:e69283. doi: 10.1371/journal.pone.0069283. PubMed DOI PMC

Raman V., Simon S.A., Demirci S., Nakano M., Meyers B.C., Donofrio N.M. Small RNA Functions Are Required for Growth and Development of Magnaporthe oryzae. Mol. Plant Microbe Interact. 2017;30:517–530. doi: 10.1094/MPMI-11-16-0236-R. PubMed DOI

Liu T., Hu J., Zuo Y., Jin Y., Hou J. Identification of microRNA-like RNAs from Curvularia lunata associated with maize leaf spot by bioinformation analysis and deep sequencing. Mol. Genet. Genom. 2016;291:587–596. doi: 10.1007/s00438-015-1128-1. PubMed DOI

Jiang N., Yang Y., Janbon G., Pan J., Zhu X. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS ONE. 2012;7:e52734. doi: 10.1371/journal.pone.0052734. PubMed DOI PMC

Lau S.K., Chow W.N., Wong A.Y.P., Yeung J.M.Y., Bao J., Zhang N., Lok S., Woo P.C.Y., Yeun K.Y. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl. Trop. Dis. 2013;7:e2398. doi: 10.1371/journal.pntd.0002398. PubMed DOI PMC

Kang K., Zhong J., Jiang L., Liu G., Gou C.Y., Wu Q., Wang Y., Luo J., Gou D. Identification of microRNA-Like RNAs in the Filamentous Fungus Trichoderma reesei by Solexa Sequencing. PLoS ONE. 2013;8:e76288. PubMed PMC

Zhang W., Li X., Ma L., Urrehman U., Bao X., Zhang Y., Zhang C.Y., Hou D., Zhou Z. Identification of microRNA-like RNAs in Ophiocordyceps sinensis. Sci. China Life Sci. 2019;62:349–356. doi: 10.1007/s11427-017-9277-9. PubMed DOI

Shao Y., Tang J., Chen S., Wu Y., Wang K., Ma B., Zhiu Q., Chen A., Wang Y. milR4 and milR16 Mediated Fruiting Body Development in the Medicinal Fungus Cordyceps militaris. Front. Microbiol. 2019;10:83. doi: 10.3389/fmicb.2019.00083. PubMed DOI PMC

Lee H.C., Li L., Gu W., Xue Z., Crosthwaite S.K., Pertsemlidis A., Lewis Z.A., Freitag M., Sleker E.U., Mello C.C., et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol. Cell. 2010;38:803–814. doi: 10.1016/j.molcel.2010.04.005. PubMed DOI PMC

Zhou X., Khare T., Kumar V. Recent trends and advances in identification and functional characterization of plant miRNAs. Acta Physiol. Plant. 2020;42:25. doi: 10.1007/s11738-020-3013-8. DOI

Nerva L., Sandrini M., Gambino G., Chitarra W. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules. 2020;10:200. doi: 10.3390/biom10020200. PubMed DOI PMC

Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., mahuvakar V.R., Andersen M.R., et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179. doi: 10.1093/nar/gni178. PubMed DOI PMC

Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902–1910. doi: 10.1101/gr.2722704. PubMed DOI PMC

Olena A.F., Patton J.G. Genomic organization of microRNAs. J. Cell. Physiol. 2010;222:540–545. doi: 10.1002/jcp.21993. PubMed DOI PMC

Lau A.Y.T., Cheng X., Cheng C.K., Nong W., Cheung M.K., Chan R.H.F., Hui J.H.L., Kwan H.S. Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS ONE. 2018;13:e0198234. doi: 10.1371/journal.pone.0198234. PubMed DOI PMC

de Curcio J.S., Paccez J.D., Novaes E., Brock M., Soares C.M.d.A. Cell Wall Synthesis, Development of Hyphae and Metabolic Pathways Are Processes Potentially Regulated by MicroRNAs Produced Between the Morphological Stages of Paracoccidioides brasiliensis. Front. Microbiol. 2018;9:3057. doi: 10.3389/fmicb.2018.03057. PubMed DOI PMC

Thomson D.W., Bracken C.P., Goodall G.J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 2011;39:6845–6853. doi: 10.1093/nar/gkr330. PubMed DOI PMC

Pennypacker B.W. Verticillium Wilts. In: Pegg G.F., Brady B.L., editors. The Quarterly Review of Biology. Volume 79. CABI Publishing; Wallingford, UK: 2004. p. 80.

Wang L., Xu X., Yang J., Chen L., Liu B., Liu T., Jin Q. Integrated microRNA and mRNA analysis in the pathogenic filamentous fungus Trichophyton rubrum. BMC Genom. 2018;19:933. doi: 10.1186/s12864-018-5316-3. PubMed DOI PMC

Zhou Q., Wang Z., Zhang J., Meng H., Huang B. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol. 2012;116:1156–1162. doi: 10.1016/j.funbio.2012.09.001. PubMed DOI

Jiang X., Qiao F., Long Y., Cong H., Sun H. MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f.sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech. 2017;7:354. doi: 10.1007/s13205-017-0951-y. PubMed DOI PMC

Wang M., Dean R.A. Movement of small RNAs in and between plants and fungi. Mol. Plant Pathol. 2020;21:589–601. doi: 10.1111/mpp.12911. PubMed DOI PMC

Silvestri A., Fiorilli V., Miozzi L., Accotto G.P., Turina M., Lanfranco L. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genom. 2019;20:169. doi: 10.1186/s12864-019-5561-0. PubMed DOI PMC

Peres da Silva R., Puccia R., Rodrigues M.L., Oliveira D.L., Jpffe L.S., Cesar G.V., Nimrichter L., Goldenberg S., Alves L.R. Extracellular vesicle-mediated export of fungal RNA. Sci. Rep. 2015;5:7763. doi: 10.1038/srep07763. PubMed DOI PMC

Cai Q., He B., Weiberg A., Buck A.H., Jin H. Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. PLoS Pathog. 2020;15:e1008090. doi: 10.1371/journal.ppat.1008090. PubMed DOI PMC

Neumann M.J., Dobinson K.F. Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet. Biol. 2003;38:54–62. doi: 10.1016/S1087-1845(02)00507-8. PubMed DOI

European and Mediterranean Plant Protection Organization Organisation Européenne et Méditerranéenne pour la Protection des Plantes Verticillium albo-atrum and V.dahliae on hop. EPPO Bull. 2007;37:528–535.

Lei J., Sun Y. miR-PREFeR: An accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics. 2014;30:2837–2839. doi: 10.1093/bioinformatics/btu380. PubMed DOI

Marton K., Flajšman M., Radišek S., Košmelj K., Jakše J., Javornik B., Berne S. Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion. PLoS ONE. 2018;13:e0198971. PubMed PMC

R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 3 November 2020)]. Available online: https://r-project.org/index.html.

Matz M.V. Rank-Based Gene Ontology Analysis with Adaptive Clustering. [(accessed on 13 May 2021)]. Available online: https://github.com/z0on/GO_MWU.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...