Bioinoculants-Natural Biological Resources for Sustainable Plant Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-20-0071 and EPPN2020-OPVaI-VA-ITMS313011T813'
This research was funded by the 'Slovak University of Agriculture,' Nitra, Tr. A. Hlinku 2,949 01 Nitra, Slovak Republic under the projects 'APVV-20-0071 and EPPN2020-OPVaI-VA-ITMS313011T813'.
PubMed
35056500
PubMed Central
PMC8780112
DOI
10.3390/microorganisms10010051
PII: microorganisms10010051
Knihovny.cz E-zdroje
- Klíčová slova
- agricultural sustainability, bioinoculants, climate change mitigation, green revolution, negative impact,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture.
Bangladesh Wheat and Maize Research Institute Dinajpur 5200 Bangladesh
Department of Plant Physiology Slovak University of Agriculture Tr A Hlinku 2 949 01 Nitra Slovakia
Zobrazit více v PubMed
United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) 2019. [(accessed on 7 July 2020)]. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf.
FAO Plant Health and Food Security. International Plant Protection Convention, Rome, Italy. 2017. [(accessed on 4 August 2020)]. Available online: http://www.fao.org/3/a-i7829e.pdf.
Lichtfouse E., Navarrete M., Debaeke P., Souchère V., Alberola C., Ménassieu J. Agronomy for Sustainable Agriculture, A Review. Agron. Sustain. Dev. 2009;29:1–6. doi: 10.1051/agro:2008054. DOI
Maitra S., Pine S. Smart Irrigation for Food Security and Agricultural Sustainability. Ind. J. Nat. Sci. 2020;10:20435–20439.
John D.A., Babu G.R. Lessons from the Aftermaths of Green Revolution on Food System and Health. Front. Sustain. Food Syst. 2021;5:644559. doi: 10.3389/fsufs.2021.644559. PubMed DOI PMC
Scherr S.J., McNeely J.A. Biodiversity Conservation and Agricultural Sustainability: Towards a new Paradigm of ‘Ecoagriculture’ Landscapes. Philos. Trans. Royal. Soc. B. 2008;363:477–494. doi: 10.1098/rstb.2007.2165. PubMed DOI PMC
WCED (World Commission on Environment and Development) Our Common Future. Oxford University Press; Oxford, UK: 1987.
Arora N.K., Fatima T., Mishra I., Verma M., Mishra J., Mishra V. Environmental Sustainability: Challenges and Viable Solutions. Environ. Sustain. 2018;1:309–350. doi: 10.1007/s42398-018-00038-w. DOI
Akinsemolu A.A. The Role of Microorganisms in Achieving the Sustainable Development Goals. J. Clean Prod. 2018;182:139–155. doi: 10.1016/j.jclepro.2018.02.081. DOI
Committee on World Food Security Coming to Terms with Terminology: Food Security, Nutrition Security, Food Security and Nutrition, Food and Nutrition Security. 2012. [(accessed on 10 June 2020)]. Available online: http://www.fao.org/fsnforum/sites/default/files/file/Terminology/MD776(CFS_Coming_to_terms_with_Terminology).pdf.
Butterbach-Bahl K., Baggs E.M., Dannenmann M., Kiese R., Zechmeister-Boltenstern S. Nitrous Oxide Emissions from Soils: How well do we understand the Processes and their Controls? Philos. Trans. R. Soc. Lond. Biol. Sci. 2013;5:368. doi: 10.1098/rstb.2013.0122. PubMed DOI PMC
Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science. 2008;320:889–892. doi: 10.1126/science.1136674. PubMed DOI
Chen S., Zhao H., Zou C., Li Y., Chen Y., Wang Z., Ahammed G.J. Combined Inoculation with Multiple Arbuscular mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front. Microbiol. 2017;8:2516. doi: 10.3389/fmicb.2017.02516. PubMed DOI PMC
Jensen E.S., Peoples M.B., Boddey R.M., Gresshoff P.M., Hauggaard-Nielsen H., Alves B.J., Morrison M.J. Legumes for Mitigation of Climate Change and the Provision of Feedstock for Biofuels and Biorefineries. A Review. Agron. Sustain. Dev. 2012;32:329–364. doi: 10.1007/s13593-011-0056-7. DOI
Maitra S., Hossain A., Brestic M., Skalicky M., Ondrisik P., Gitari H., Brahmachari K., Shankar T., Bhadra P., Palai J.B., et al. Intercropping–A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy. 2021;11:343. doi: 10.3390/agronomy11020343. DOI
Rai P.K., Singh M., Anand K., Saurabh S., Kaur T., Kour D., Yadav A.N., Kumar M. Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Elsevier; Amsterdam, The Netherlands: 2020. Role and Potential Applications of Plant Growth-Promoting Rhizobacteria for Sustainable Agriculture; pp. 49–60. DOI
Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., et al. Agriculture. In: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A., editors. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2007. p. 497.
Morrissey J.P., Dow J.M., Mark G.L., O’Gara F. Are Microbes at the Root of a Solution to World Food Production? Rational Exploitation of Interactions Between Microbes and Plants Can Help to Transform Agriculture. EMBO Rep. 2004;5:922–926. doi: 10.1038/sj.embor.7400263. PubMed DOI PMC
Glick B.R. Bacteria and ACC Deaminase can Promote Plant Growth and Help to Feed the World. Microbial. Res. 2014;169:30–39. doi: 10.1016/j.micres.2013.09.009. PubMed DOI
Olubukola O., Babalola O., Glick B.R. The use of Microbial Inoculants in African agriculture. Food Agric. Environ. 2012;10:540–549.
Lugtenberg B. Life of Microbes in the Rhizosphere. In: Lugtenberg B., editor. Principles of Plant-Microbe Interactions. Springer; Cham, Switzerland: 2015. DOI
Kang S.M., Khan A.L., Waqas M., You Y.H., Kim J.H., Kim J.G., Hamayun M., Lee I.J. Plant Growth Promoting Rhizobacteria Reduce Adverse Effects of Salinity and Osmotic Stress by Regulating Phytohormones and Antioxidants in Cucumis Sativus. J. Plant Interact. 2014;9:673–682. doi: 10.1080/17429145.2014.894587. DOI
Wang C., Yang W., Wang C., Gu C., Niu D., Liu H. Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth promoting Rhizobacterium Strains. PLoS ONE. 2012;7:e52565. doi: 10.1371/journal.pone.0052565. PubMed DOI PMC
Harika J.V., Maitra S., Shankar T., Bera M., Manasa P. Effect of Integrated Nutrient Management on Productivity, Nutrient Uptake and Economics of Finger Millet (Eleusine coracana L. Gaertn) Int. J. Agric. Environ. Biotech. 2019;12:273–279. doi: 10.30954/0974-1712.08.2019.11. DOI
Scagliola M., Valentinuzzi F., Mimmo T., Cesco S., Crecchio C., Pii Y. Bioinoculants as Promising Complement of Chemical Fertilizers for a More Sustainable Agricultural Practice. Front. Sustain. Food Syst. 2021;4:622169. doi: 10.3389/fsufs.2020.622169. DOI
Armada E., Portela G., Roldán A., Azcón R. Combined Use of Beneficial Soil Microorganism and Agrowaste Residue to Cope with Plant Water Limitation Under Semiarid Conditions. Geoderma. 2014;232–234:640–648. doi: 10.1016/j.geoderma.2014.06.025. DOI
Glick B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation Scientifica; London, UK: 2012. PubMed DOI PMC
Mustafa S., Kabir S., Shabbir U., Batool R. Plant Growth Promoting Rhizobacteria in Sustainable Agriculture: From Theoretical to Pragmatic Approach. Symbiosis. 2019;78:115–123. doi: 10.1007/s13199-019-00602-w. DOI
Barnawal D., Bharti N., Maji D., Chanotiya C.S., Kalra A. 1-Aminocyclopropane-1-carboxylic acid (ACC) Deaminase Containing Rhizobacteria Protect Ocimum Sanctum Plants during Water Logging Stress via Reduced Ethylene Generation. Plant Physiol. Biochem. 2012;58:227–235. doi: 10.1016/j.plaphy.2012.07.008. PubMed DOI
Ali S.Z., Sandhya V., Rao L.V. Isolation and Characterization of Drought Tolerant Acc Deaminase and Exopolysaccharide Producing Fl Uorescent Pseudomonas spp. Ann. Microbiol. 2014;64:493–502. doi: 10.1007/s13213-013-0680-3. DOI
Compant S., Duffy B., Nowak J., Clement C., Barka E.A. Use of Plant Growth Promoting Bacteria for Biocontrol of Diseases: Principles, Mechanisms of Action and Future Prospects. Appl. Environ. Microbiol. 2005;71:4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005. PubMed DOI PMC
Herzner A.M., Dischinger J., Szekat C., Josten M., Schmitz S., Yakéléba A., Reinartz R., Jansen A., Sahl H.G., Piel J., et al. Expression of the Lantibiotic Mersacidin in Bacillus Amyloliquefaciens FZB42. PLoS ONE. 2011;6:e22389. doi: 10.1371/journal.pone.0022389. PubMed DOI PMC
Raza W., Yuan J., Ling N., Huang Q., Shen Q. Production of Volatile Organic Compounds by an Antagonistic Strain Paenibacillus Polymyxa WR-2 in the Presence of Root Exudates and Organic Fertilizer and their Antifungal Activity Against Fusarium oxysporum f. sp. niveum. Biol. Control. 2015;80:89–95. doi: 10.1016/j.biocontrol.2014.09.004. DOI
Hartman W.H., Richardson C.J. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (Qco2): Is There a Biological Stoichiometry of Soil Microbes. PLoS ONE. 2013;8:e57127. doi: 10.1371/journal.pone.0057127. PubMed DOI PMC
Baez-Rogelio A., Morales-García Y.E., Quintero-Hernández V., Muñoz-Rojas J. Next Generation of Microbial Inoculants for Agriculture and Bioremediation. Microb. Biotechnol. 2017;10:19–21. doi: 10.1111/1751-7915.12448. PubMed DOI PMC
Nobbe F., Hiltner L. Inoculation of the Soil for Cultivating Leguminous Plants. 1896,570,813. US. Patent. 1895 August 9;
Prashar P., Shah S. Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E., editor. Bambara Groundnut for Food Security in the Changing African Climate. Volume 19. Springer; Berlin/Heidelberg, Germany: 2016. pp. 331–362.
Alori E.T., Glick B.R., Babalola O.O. Microbial Phosphorus Solubilization and its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017;8:971. doi: 10.3389/fmicb.2017.00971. PubMed DOI PMC
Etesami H., Emami S., Alikhani H.A. Potassium Solubilizing Bacteria (KSB): Mechanisms, Promotion of Plant Growth, and Future Prospects—A Review. J. Soil Sci. Plant Nutr. 2017;17:897–911. doi: 10.4067/S0718-95162017000400005. DOI
Adams D.G., Duggan P.S. Cyanobacteria-bryophytes Symbioses. J. Exp. Bot. 2008;59:1047–1058. doi: 10.1093/jxb/ern005. PubMed DOI
Abhilash P.C., Dubey R.K., Tripathi V., Gupta V.K., Singh H.B. Plant Growth-Promoting Microorganisms for Environmental Sustainability. Trends Biotechnol. 2016;34:847–850. doi: 10.1016/j.tibtech.2016.05.005. PubMed DOI
Batra P., Barkodia M., Ahlawat U., Sansanwal R., Wati L. Effect of Compatible and Incompatible Endophytic Bacteria on Growth of Chickpea Plant. Def. Life Sci. J. 2020;5:45–48. doi: 10.14429/dlsj.5.15119. DOI
Gray E.J., Smith D.L. Intracellular and Extracellular Pgpr: Commonalities and Distinctions in the Plant-Bacterium Signaling Processes. Soil. Biol. Biochem. 2005;37:395–412. doi: 10.1016/j.soilbio.2004.08.030. DOI
Malusá E., Sas-Paszt L., Ciesielska J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Sci. World J. 2012:491206. doi: 10.1100/2012/491206. PubMed DOI PMC
Owen D., Williams A.P., Griffith G.W., Withers P.J.A. Use of Commercial Bio-Inoculants to Increase Agricultural Production through Improved Phosphrous Acquisition. Appl. Soil. Ecol. 2015;86:41–54. doi: 10.1016/j.apsoil.2014.09.012. DOI
Santos M.S., Nogueira M.A., Hungria M. Microbial Inoculants: Reviewing the past, Discussing the Present and Previewing an Outstanding Future for the use of Benefcial Bacteria in Agriculture. AMB Exp. 2019;9:205. doi: 10.1186/s13568-019-0932-0. PubMed DOI PMC
Koohafkan P., Altieri M.A., Gimenez E.H. Green Agriculture: Foundations For Biodiverse, Resilient and Productive Agricultural Systems. Int. J. Agric. Sust. 2012;10:61–75. doi: 10.1080/14735903.2011.610206. DOI
Altieri M.A., Nicholls C.I. Biodiversity and Pest Management in Agroecosystems. Haworth Press; New York, NY, USA: 2004.
Uphoff N. Agroecological Innovations: Increasing Food Production with Participatory Development. Earthscan; London, UK: 2002.
Toledo V.M., Barrera-Bassals N. La Memoria Biocultural: La Importancia Ecologica de las Sabidurias Tradicionales. ICARIA Editorial; Barcelona, Spain: 2009.
Pretty J., Sutherland W.J., Ashby J., Auburn J., Baulcombe D., Bell M., Bentley J., Bickersteth S., Brown K., Burke J., et al. The top 100 Questions of Importance to the Future of Global Agriculture. Int. J. Agric. Sust. 2011;9:1–20. doi: 10.3763/ijas.2010.0534. DOI
Herren H.R., Bassi A.M., Tan Z., Binns W.P. Green Jobs for a Revitalized Food and Agriculture Sector. Natural Resources Management and Environment Department Food and Agriculture Organization of the United Nations; Rome, Italy: 2012. p. 4.
Lovo S., Bezabih M., Singer G. Green Agricultural Policies and Poverty Reduction, Policy Brief. The Grantham Research Institute on Climate Change and the Environment, London and Global Green Growth Institute; Seoul, Korea: 2015. [(accessed on 30 August 2021)]. p. 24. Available online: https://gregorsinger.com/files/papers/GRI_LSE-Agriculture-GGGI-policy.pdf.
Berg G., Rybakova D., Grube M., Koberl M. The Plant Microbiome Explored: Implications for Experimental Botany. J. Exp. Bot. 2016;67:995–1002. doi: 10.1093/jxb/erv466. PubMed DOI PMC
Smith D.L., Gravel V., Yergeau E. Editorial: Signaling in the Phytomicrobiome. Front. Plant Sci. 2017;8:611. doi: 10.3389/fpls.2017.00611. PubMed DOI PMC
Backer R., Rokem J.S., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., Smith D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018;9:1473. doi: 10.3389/fpls.2018.01473. PubMed DOI PMC
Turner T.R., James E.K., Poole P.S. The Plant Microbiome. Genome. Biol. 2013;14:209. doi: 10.1186/gb-2013-14-6-209. PubMed DOI PMC
Lebeis S.L. The Potential for Give and Take in Plant-Microbiome Relationships. Front. Plant Sci. 2014;5:287. doi: 10.3389/fpls.2014.00287. PubMed DOI PMC
Smith D.L., Subramanian S., Lamont J.R., Bywater-Ekegard M. Signaling in the phytomicrobiome: Breadth and potential. Front. Plant Sci. 2015;6:709. doi: 10.3389/fpls.2015.00709. PubMed DOI PMC
Trabelsi D., Mhamdi R. Microbial Inoculants and their Impact on Soil Microbial Communities: A Review. Biomed. Res. Int. 2013:863240. doi: 10.1155/2013/863240. PubMed DOI PMC
Nelson M.S., Sadowsky M.J. Secretion Systems and Signal Exchange Between Nitrogen-Fixing Rhizobia and Legumes. Front. Plant Sci. 2015;6:491. doi: 10.3389/fpls.2015.00491. PubMed DOI PMC
Leach J.E., Triplett L.R., Argueso C.T., Trivedi P. Communication in the Phytobiome. Cell. 2017;169:587–596. doi: 10.1016/j.cell.2017.04.025. PubMed DOI
Massalha H., Korenblum E., Tholl D., Aharoni A. Small Molecules Below-Ground: The Role of Specialized Metabolites in the Rhizosphere. Plant J. 2017;90:788–807. doi: 10.1111/tpj.13543. PubMed DOI
Uchida R. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms, Chapter 3. In: Silva J.A., Uchida R., editors. Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa; Honolulu, HI, USA: 2000. [(accessed on 13 July 2020)]. pp. 31–55. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/pnm3.pdf.
White P.J., Brown P.H. Plant Nutrition for Sustainable Development and Global Health. Ann. Bot. 2010;105:1073–1080. doi: 10.1093/aob/mcq085. PubMed DOI PMC
Polacco J.C. Nitrogen Metabolism in Soybean Tissue Culture: II. Urea Utilization and Urease Synthesis Require Ni. Plant Physiol. 1977;59:827–830. doi: 10.1104/pp.59.5.827. PubMed DOI PMC
Eskew D.L., Welch R.M., Cary E.E. Nickel: An Essential Micronutrient for Legumes and Possibly all Higher Plants. Science. 1983;222:621–623. doi: 10.1126/science.222.4624.621. PubMed DOI
Gerendás J., Sattelmacher B. Influence of Ni Supply on Growth and Nitrogen Metabolism of Brassica Napus L. Grown with NH4NO3 or Urea As N Source. Ann. Bot. 1999;83:65–71. doi: 10.1006/anbo.1998.0789. DOI
Fabiano C.C., Tezotto T., Favarin J.L., Polacco J.C., Mazzafera P. Essentiality of Nickel in Plants: A Role in Plant Stresses. Front. Plant Sci. 2015;6:754. doi: 10.3389/fpls.2015.00754. PubMed DOI PMC
Grusak M.A., Broadley M.R., White P.J. Plant Macro- and Micronutrient Minerals. John Wiley & Sons, Ltd.; Chichester, UK: 2016. DOI
Rashid M.I., Mujawar L.H., Shahzad T., Almeelbi T., Ismail I.M., Oves M. Bacteria and Fungi can contribute to Nutrients Bioavailability and Aggregate Formation in Degraded Soils. Microbiol. Res. 2016;183:26–41. doi: 10.1016/j.micres.2015.11.007. PubMed DOI
Vessey J.K. Plant Growth Promoting Rhizobacteria as Biofertilizers. Plant Soil. 2003;255:571–586. doi: 10.1023/A:1026037216893. DOI
Stamenković S., Beškoski V., Karabegović I., Lazić M., Nikolić N. Microbial fertilizers: A Comprehensive Review of Current Findings and Future Perspectives. Span. J. Agric. Res. 2018;16:e09R01. doi: 10.5424/sjar/2018161-12117. DOI
Patil M.G., Sayyed R.Z., Chaudhari A.B., Chincholkar S.B. Phosphate Solubilizing Microbes: A Potential Bioinoculant for Efficient use of Phosphate Fertilizers. Bioinoculants for Sustainable Agriculture and Forestry. Sci. Pub. 2002;l107:118.
Dey R., Pal K.K., Bhatt D.M., Chauhan S.M. Growth Promotion and Yield Enhancement of Peanut (Arachis Hypogaea L) by Application of Plant Growth Promoting Rhizobacteria. Microbiol. Res. 2004;159:371–394. doi: 10.1016/j.micres.2004.08.004. PubMed DOI
Ponmurugan P., Gopi C. Distribution Pattern and Screening of Phosphate Solubilizing Bacteria Isolated from Different Food and Forage Crops. J. Agron. 2006;5:600–604.
Afzal A., Asghari B. Rhizobium and Phosphate Solubilizing Bacteria Improve the Yield and Phosphorus Uptake in Wheat. (Triticum aestivum L.) Int. J. Agric. Biotec. 2008;10:85–88.
Hayat R., Ali S., Amara U., Khalid R., Ahmed I. Soil Beneficial Bacteria and Their Role in Plant Growth Promotion: A review. Ann. Microbiol. 2010;60:579–598. doi: 10.1007/s13213-010-0117-1. DOI
Kammar S.C., Gundappagol R.C., Santhosh G.P., Shubha S., Ravi M.V. Influence of Potassium Solubilizing Bacteria on Growth and Yield of Sunflower (Helianthus annuus L.) Environ. Ecol. 2016;34:33–37.
Korir H., Mungai N.W., Thuita M., Hamba Y., Masso C. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil. Front. Plant. Sci. 2017;8:141. doi: 10.3389/fpls.2017.00141. PubMed DOI PMC
Leggett M., Diaz-Zorita M., Koivunen M., Bowman R., Pesek R., Stevenson C., Leister T. Soybean Response Ti Inoculation with Bradyrhizobium Japonicum in the Unites States and Argentina. Agron. J. 2017;109:1031–1038. doi: 10.2134/agronj2016.04.0214. DOI
Rosa P.A.L., Mortinho E.S., Jalal A., Galindo F.S., Buzetti S., Fernandes G.C., Barco Neto M., Pavinato P.S., Teixeira Filho M.C.M. Inoculation With Growth-Promoting Bacteria Associated With the Reduction of Phosphate Fertilization in Sugarcane. Front. Environ. Sci. 2020;8:32. doi: 10.3389/fenvs.2020.00032. DOI
Bourion V.K., Heulin-Gotty V., Aubert P., Tisseyre M., Chabert-Martinello M., Pervent C., Delaitre D., Vile M., Siol G., Duc B., et al. Co-Inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation are Distinct Traits in the Interaction. Front. Plant Sci. 2018;8:2249. doi: 10.3389/fpls.2017.02249. PubMed DOI PMC
Galindo F.S., Filho M.C.M.T., Buzetti S., Pagliari P.H., Santini J.M.K., Alves C.J., Megda M.M., Nogueira T.A.R., Reotti M., Arf O. Maize Yield Response to Nitrogen Rates and Sources Associated with Azospirillum Brasilense. Agron. J. 2019;111:1985–1997. doi: 10.2134/agronj2018.07.0481. DOI
Galindo F.S., Rodrigues W.L., Biagini A.L.C., Fernandes G.C., Baratella E.B., Junior C.A.d., Buzetti S., Filho M.C.M. Assessing Forms of Application of Azospirillum Brasilense Associated With Silicon Use on Wheat. Agronomy. 2019;9:678. doi: 10.3390/agronomy9110678. DOI
Zeffa D.M., Perini L.J., Silva M.B., de Sousa N.V., Scapim C.A., Oliveira A.L.M.D., Amaral Júnior A.T.D., Azeredo Goncalves L.S. Azospirillum Brasilense Promotes Increases in Growth and Nitrogen Use Efficiency of Maize Genotypes. PLoS ONE. 2019;14:e0215332. doi: 10.1371/journal.pone.0215332. PubMed DOI PMC
Zeffa D.M., Fantin L.H., Koltun A., de Oliveira A.L., Nunes M.P., Canteri M.G., Gonçalves L.S. Effects of Plant Growth-Promoting Rhizobacteria on Co-Inoculation with Bradyrhizobium in Soybean Crop: A Meta-Analysis of Studies from 1987 to 2018. PeerJ. 2020;8:e7905. doi: 10.7717/peerj.7905. PubMed DOI PMC
Bouguyon E., Brun F., Meynard D., Kubeš M., Pervent M., Leran S., Lacombe B., Krouk G., Guiderdoni E., Zažímalová E., et al. Multiple Mechanisms of Nitrate Sensing by Arabidopsis Nitrate Transceptor NRT1.1. Nat. Plants. 2015;1:15015. doi: 10.1038/nplants.2015.15. PubMed DOI
Bae H., Morrison E., Chanton J.P., Ogram A. Methanogens are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades. Appl. Environ. Microbiol. 2018;84:7. doi: 10.1128/AEM.02222-17. PubMed DOI PMC
Gothwal R., Nigam V., Mohan M., Sasmal D., Ghosh P. Screening of Nitrogen Fixers From Rhizospehric Bacterial Isolates Associated with Important Desert Plants. Appl. Ecol. Environ. Res. 2009;6:101–109. doi: 10.15666/aeer/0602_101109. DOI
Kuan K.B., Othman R., Abdul Rahim K., Shamsuddin Z.H. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize Under Greenhouse Conditions. PLoS ONE. 2016;11:e0152478. doi: 10.1371/journal.pone.0152478. PubMed DOI PMC
Gouda S., Kerry R.G., Das G., Paramithiotis S., Shin H.S., Patra J.K. Revitalization of Plant Growth Promoting Rhizobacteria for Sustainable Development in Agriculture. Microbiol. Res. 2018;206:131–140. doi: 10.1016/j.micres.2017.08.016. PubMed DOI
Sulieman S., Tran L.S.P. Symbiotic nitrogen fixation in legume nodules: Metabolism and regulatory mechanisms. Int. J. Mol. Sci. 2014;15:19389–19393. doi: 10.3390/ijms151119389. PubMed DOI PMC
Mus F., Crook M.B., Garcia K., Garcia Costas A., Geddes B.A., Kouri E.D., Paramasivan P., Ryu M.H., Oldroyd G.E., Poole P.S., et al. Symbiotic Nitrogen Fixation and the Challenges to its Extension to Nonlegumes. Appl. Environ. Microbiol. 2016;82:3698–3710. doi: 10.1128/AEM.01055-16. PubMed DOI PMC
Oke V., Long S.R. Bacteroid formation in the Rhizobium–legume symbiosis. Curr. Opin. Microbiol. 1999;2:641–646. doi: 10.1016/S1369-5274(99)00035-1. PubMed DOI
Mazid M., Khan T.A. Future of Bio-Fertilizers in Indian Agriculture: An Overview. Int. J. Agric. Food Res. 2014;3:1–23. doi: 10.24102/ijafr.v3i3.132. DOI
Herridge D.F., Peoples M.B., Boddey R.M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant Soil. 2008;311:1–18. doi: 10.1007/s11104-008-9668-3. DOI
Maróti G., Kondorosi E. Nitrogen-Fixing Rhizobium-Legume Symbiosis: Are Polyploidy and Host Peptide-Governed Symbiont Differentiation General Principles of Endosymbiosis. Front. Microbiol. 2014;5:326. PubMed PMC
Saikia S.P., Jain V., Srivastava G.C. Nitrogen Fixation in Nodules of Maize (Zea mays) Roots by Introduced Free-Living Diazo-Troph. Indian J. Agric. Sci. 2004;74:213–214.
Dawson T.L. It must be Green: Meeting Society’s Environmental Concerns. Color. Technol. 2008;124:67–78. doi: 10.1111/j.1478-4408.2008.00124.x. DOI
Santi C., Bogusz D., Franche C. Biological Nitrogen Fixation in Non-Legume Plants. Ann. Bot. 2013;111:743–767. doi: 10.1093/aob/mct048. PubMed DOI PMC
Glick B.R., Patten C.L., Holguin G., Penrose D.M. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press; London, UK: 1999.
Kloepper J.W., Lifshitz R., Zablotowicz R.M. Free-Living Bacterial Inocula for Enhancing Crop Productivity. Trends Technol. 1989;7:39–44. doi: 10.1016/0167-7799(89)90057-7. DOI
Brady N.C., Well R.R. The Nature and Properties of Soils. 13th ed. Pearson Education Pvt. Ltd.; Bengaluru, India: 2002. p. 735.
Wang Y., Yang Z., Kong Y., Li X., Li W., Du H., Zhang C. GmPAP12 Is Required for Nodule Development and Nitrogen Fixation under Phosphorus Starvation in Soybean. Front. Plant Sci. 2020;11:450. doi: 10.3389/fpls.2020.00450. PubMed DOI PMC
Taliman N.A., Dong Q., Echigo K., Raboy V., Saneoka H. Effect of Phosphorus Fertilization on the Growth, Photosynthesis, Nitrogen Fixation, Mineral Accumulation, Seed Yield, and Seed Quality of a Soybean Low-Phytate Line. Plants. 2019;8:119. doi: 10.3390/plants8050119. PubMed DOI PMC
Kadam D.V., Indulkar B.S., Kadam L.S., Jadhav V.S., Jadhav P.N. Effect of Phosphorus and Zinc and Quality of Groundnut (Arachis hypogaea L.) in Inceptisol. Int. J. Pure App. Biosci. 2018;6:105–110.
Ray K., Banerjee H., Dutta S., Hazra A.K., Majumdar K. Macronutrients Influence Yield and Oil Quality of Hybrid Maize (Zea mays L.) PLoS ONE. 2019;14:e0216939. doi: 10.1371/journal.pone.0216939. PubMed DOI PMC
Whitelaw M.A. Growth Promotion of Plants Inoculated With Phosphate-Solubilizing Fungi. Adv. Agron. 2000;69:100–151.
Rodriguez H., Fraga R. Phosphate Solubilizing Bacteria and their Role in Plant Growth Promotion. Biotechnol. Adv. 1999;17:319–339. doi: 10.1016/S0734-9750(99)00014-2. PubMed DOI
Hajjam Y., Cherkaoui S. The Influence of Phosphate Solubilizing Microorganisms on Symbiotic Nitrogen Fixation: Perspectives for Sustainable Agriculture. J. Mater. 2017;8:801–808.
Dhull S., Gera R., Singh H.S., Kakar R. Phosphate Solubilization Activity of Rhizobial Strains Isolated from Root Nodule of Cluster Bean Plant Native to Indian Soils. Int. J. Curr. Microbiol. App. Sci. 2018;7:255–266. doi: 10.20546/ijcmas.2018.704.029. DOI
Sharon J.A., Hathwaik L.T., Glenn G.M., Imam S.H., Lee C.C. Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. J. Soil Sci. Plant Nut. 2016;16:525–536. doi: 10.4067/S0718-95162016005000043. DOI
Subbarao N.S. Biofertilizers in Agriculture and Forestry. Regional Biofert Dev Centre; Hissar, India: 1998. Phosphate solubilizing microorganisms; pp. 133–142.
Kucey R.M.N., Janzen H.H., Legget M.E. Microbial Mediated Increases in Plant-Available Phosphorus. Adv. Agron. 1989;42:199–228.
Sridevi M., Mallaiah K.V. Phosphate solubilization by Rhizobium strains. Ind. J. Microbiol. 2009;49:98–102. doi: 10.1007/s12088-009-0005-1. PubMed DOI PMC
Anand K., Kumari B., Mallick M.A. Phosphate Solubilizing Microbes: An Effective and Alternative Approach as Biofertilizers. Int. J. Pharm. Pharm. Sci. 2016;8:37–40.
Sharma S.B., Sayyed R.Z., Trivedi M.H., Gobi T.A. Phosphate Solubilizing Microbes, Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Springer Plus. 2013;2:587. doi: 10.1186/2193-1801-2-587. PubMed DOI PMC
Baykov A.A., Malinen A.M., Luoto H.H., Lahti R. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes. Microbiol. Mol. Biol. Rev. 2013;77:267–276. doi: 10.1128/MMBR.00003-13. PubMed DOI PMC
Yan F., Zhu Y., Muller C., Zörb C., Schubert S. Adaptation of H+-Pumping and Plasma Membrane H+ Atpase Activity in Proteoid Roots of White Lupin Under Phosphate Deficiency. Plant Physiol. 2002;129:50–63. doi: 10.1104/pp.010869. PubMed DOI PMC
Begum N., Qin C., Ahanger M.A., Raza S., Khan M.I., Ashraf M., Ahmed N., Zhang L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019;10:1068. doi: 10.3389/fpls.2019.01068. PubMed DOI PMC
Nacoon S., Jogloy S., Riddech N., Mongkolthanaruk W., Kuyper T., Boonlue S. Interaction Between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Sci. Rep. 2020;10:4916. doi: 10.1038/s41598-020-61846-x. PubMed DOI PMC
Salam E.A., Alatar A., El-Sheikh M.A. Inoculation with Arbuscular Mycorrhizal Fungi Alleviates Harmful Effects of Drought Stress on Damask Rose. Saudi. J. Biol. Sci. 2017;25:1772–1780. doi: 10.1016/j.sjbs.2017.10.015. PubMed DOI PMC
Nanjundappa A., Bagyaraj D.J., Saxena A.K., Kumar M., Chakdar H. Interaction between Arbuscular Mycorrhizal Fungi and Bacillus Spp. in Soil Enhancing Growth of Crop Plants. Fungal Biol. Biotechnol. 2019;6:23. doi: 10.1186/s40694-019-0086-5. PubMed DOI PMC
Pal D., Sinha S.N. Isolation and Characterization of Phosphate Solubilizing Bacterium Pseudomonas aeruginosa KUPSB12 with Antibacterial Potential from River Ganga, India. Ann. Agrarian. Sci. 2017;15:130–136. doi: 10.1016/j.aasci.2016.10.001. DOI
Prajapati K., Modi H.A. The importance of Potassium in Plant Growth—A Review. Indian J. Plant Sci. 2012;1:177–186.
Cakmak I. The Role of Potassium in Alleviating Detrimental Effects of Abiotic Stresses in Plants. J. Plant. Nutr. Soil. Sci. 2005;168:521–530. doi: 10.1002/jpln.200420485. DOI
O’Neill S.D., Spanswick R.M. Characterization of Native and Reconstituted Plasma Membrane H+ -ATPase from the Plasma Membrane of Beta vulgaris. J. Mem. Biol. 1984;79:245–256. doi: 10.1007/BF01871063. DOI
Hasanuzzaman M., Bhuyan M.H.M.B., Nahar K., Hossain M.S., Mahmud J.A., Hossen M.S., Masud I.D., Moumita A.A.C., Fujita M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy. 2018;8:31. doi: 10.3390/agronomy8030031. DOI
Meena V.S., Maurya B.R., Bahadur I. Potassium Solubilization by Bacterial Strain in Waste Mica. J. Bot. 2015;43:235–237. doi: 10.3329/bjb.v43i2.21680. DOI
Ruiz J.L., Salas M.D.C. Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool in Container Crop Production. Agronomy. 2019;9:705. doi: 10.3390/agronomy9110705. DOI
Meena V.S., Maurya B.R., Verma J.P. Does a Rhizospheric Microorganism Enhance K+ Availability in Agricultural Soils? Microbiol. Res. 2014;169:337–347. doi: 10.1016/j.micres.2013.09.003. PubMed DOI
Velazquez E., Silva L.R., Ramirez-Bahena M.H., Peix A. Diversity of Potassium-Solubilizing Microorganisms and Their Interactions with Plants. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 1–331.
Haro R., Benito B. The Role of Soil Fungi In K+ Plant Nutrition. Int. J. Mol. Sci. 2019;20:3169. doi: 10.3390/ijms20133169. PubMed DOI PMC
Rana A., Saharan B., Joshi M. Identification of Multi-Trait PGPR Isolates and Evaluating Their Potential as Inoculants for Wheat. Ann. Microbiol. 2011;61:893–900. doi: 10.1007/s13213-011-0211-z. DOI
Kobayashi T., Nishizawa N.K. Iron Uptake, Translocation, and Regulation in Higher Plants. Ann. Rev. Plant Biol. 2012;63:131–152. doi: 10.1146/annurev-arplant-042811-105522. PubMed DOI
Jin C.W., Ye Y.Q., Zheng S.J. An Underground Tale: Contribution of Microbial Activity to Plant Iron Acquisition via Ecological Processes. Ann. Bot. 2014;113:7–18. doi: 10.1093/aob/mct249. PubMed DOI PMC
Shenker M., Chen Y. Increasing Iron Availability to Crops: Fertilizers, Organo-Fertilizers, and Biological Approaches. Soil Sci. Plant Nut. 2005;51:1–17. doi: 10.1111/j.1747-0765.2005.tb00001.x. DOI
Schalk I.J., Hannauer M., Braud A. New roles for Bacterial Siderophores in Metal Transport and Tolerance. Environ. Microbiol. 2011;13:2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x. PubMed DOI
Jin C.W., Li G.X., Yu X.H., Zheng S.J. Plant Fe Status Affects the Composition of Siderophore-Secreting Microbes in the Rhizosphere. Ann. Bot. 2010;105:835–841. doi: 10.1093/aob/mcq071. PubMed DOI PMC
Mishra P.K., Bisht S.C., Mishra S., Selvakumar G., Bisht J.K., Gupta H.S. Co-inoculation of Rhizobium Leguminosarum-PR1 With a Cold Tolerant Pseudomonas sp. Improves Iron Acquisition, Nutrient Uptake and Growth of Field Pea (Pisum sativum L.) J. Plant Nutr. 2012;35:243–256. doi: 10.1080/01904167.2012.636127. DOI
Zhang H., Sun Y., Xie X., Kim M.S., Dowd S.E., Paré P.W. A Soil Bacterium Regulates Plant Acquisition of Iron via Deficiency-Inducible Mechanisms. Plant J. 2009;58:568–577. doi: 10.1111/j.1365-313X.2009.03803.x. PubMed DOI
Bonnet M., Camares O., Veisseire P. Effect of Zinc and Influence of Acremonium Lolii on Growth Parameters, Chlorophyll A Fluorescence and Antioxidant Enzyme Activities of Ryegrass (Lolium perenne L. cv Apollo) J. Exp. Bot. 2000;51:945–953. PubMed
Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. Zinc in Plants. New Phytol. 2007;173:677–702. doi: 10.1111/j.1469-8137.2007.01996.x. PubMed DOI
Tsonev T., Lidon F.J.C. Zinc in Plants—An Overview. Emir. J. Food Agric. 2012;24:322–333.
Disante K.B., Fuentes D., Cortina J. Response to Drought of Zn-Stressed Quercus Suber L. Seedlings. Env. Exp. Bot. 2010;70:96–103. doi: 10.1016/j.envexpbot.2010.08.008. DOI
Peck A.W., McDonald G.K. Adequate Zinc Nutrition Alleviates the Adverse Effects of Heat Stress in Bread Wheat. Plant Soil. 2010;337:355–374. doi: 10.1007/s11104-010-0532-x. DOI
Tavallali V., Rahemi M., Eshghi S., Kholdebarin B., Ramezanian A. Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings, Turk. J. Agric. Forest. 2010;34:349–359.
López-Pazos S.A., Cortazar J.E., Cerón J. Cry1B and Cry3A are Active against Hypothenemus Hampei Ferrari (coleoptera Scolytidae) J. Invertebr. Pathol. 2009;101:242–245. doi: 10.1016/j.jip.2009.05.011. PubMed DOI
Hänsch R., Mendel R.R. Physiological Functions of Mineral Micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. Opin. Plant Biol. 2009;12:259–266. PubMed
Coleman J.E. Zinc Proteins: Enzymes, Storage Proteins, Transcription Factors, and Replication Proteins. Annu. Rev. Biochem. 1992;61:897–946. doi: 10.1146/annurev.bi.61.070192.004341. PubMed DOI
Iratkar A.G., Giri J.D., Kadam M.M., Giri J.N., Dabhade M.B. Distribution of DTPA Extractable Micronutrients and their Relationship with Soil Properties in soil of Parsori Watershed of Nagpur District of Maharashtra. Asian J. Soil Sci. 2014;9:297–299.
Yang X.W., Tian X.H., Lu X.C., Cao Y.X., Chen Z.H. Impacts of Phosphorus and Zinc Levels on Phosphorus and Zinc Nutrition and Phytic Acid Concentration in Wheat (Triticum aestivum L.) J. Sci. Food Agri. 2011;91:2322–2328. doi: 10.1002/jsfa.4459. PubMed DOI
Rengel Z. Availability of Mn, Zn and Fe in the Rhizosphere. J. Soil Sci. Plant Nutr. 2015;15:397–409. doi: 10.4067/S0718-95162015005000036. DOI
Mumtaz M.Z., Ahmad M., Jamil M., Hussain T. Zinc Solubilizing Bacillus Spp. Potential Candidates for Biofortification in Maize. Microbial. Res. 2017;202:51–60. doi: 10.1016/j.micres.2017.06.001. PubMed DOI
Kamran S., Shahid I., Baig D.N., Rizwan M., Malik K.A., Mehnaz S. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Front. Microbiol. 2017;8:2593. doi: 10.3389/fmicb.2017.02593. PubMed DOI PMC
Ramesh A., Sharma S.K., Sharma M.P., Yadav N., Joshi O.P. Inoculation of Zinc Solubilizing Bacillus Aryabhattai Strains for Improved Growth, Mobilization and Biofortification of Zinc In Soybean And Wheat Cultivated In Vertisols Of Central India. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2014;73:87–96. doi: 10.1016/j.apsoil.2013.08.009. DOI
Hussain A., Arshad M., Zahir Z.A., Asghar M. Prospects of Zinc Solubilizing Bacteria for Enhancing Growth of Maize. Pak. J. Agric. Sci. 2015;52:915–922.
Deepak J., Geeta N., Sachin V., Anita S. Enhancement of Wheat Growth and Zn Content in Grains by Zinc Solubilizing Bacteria. Int. J. Agric. Environ. Biotechnol. 2013;6:363–370. doi: 10.5958/j.2230-732X.6.3.004. DOI
Naz I., Ahmad H., Khokhar S.N., Khan K., Shah A.H. Impact of Zinc Solubilizing Bacteria on Zinc Contents of Wheat. Am. Euras. J. Agric. Environ. Sci. 2016;16:449–454. doi: 10.5829/idosi.aejaes.2016.16.3.12886. DOI
Fasim F., Ahmed N., Parsons R., Gadd G.M. Solubilization of Zinc Salts By A Bacterium Isolated from the Air Environment of a Tannery. FEMS. Microbiol. Lett. 2002;213:1–6. doi: 10.1111/j.1574-6968.2002.tb11277.x. PubMed DOI
Abaid-Ullah M., Nadeem M., Hassan M., Ganter J., Muhammad B., Nawaz K., Shah A.S., Hafeez F.Y. Plant Growth Promoting Rhizobacteria: An Alternate Way to Improve Yield and Quality of Wheat (Triticum aestivum) Int. J. Agric. Biol. 2015;17:51–60.
Saravanan V.S., Madhaiyan M., Thangaraju M. Solubilization of Zinc Compounds by the Diazotrophic, Plant Growth Promoting Bacterium Gluconacetobacter diazotrophicus. Chemosphere. 2007;66:1794–1798. doi: 10.1016/j.chemosphere.2006.07.067. PubMed DOI
Saravanan V.S., Kumar M.R., Sa T.M. Microbial Zinc Solubilization and Their Role on Plants, Chapter 3. In: Maheshwari D.K., editor. Bacteria in Agrobiology: Plant Nutrient Management. Springer-Verlag; Berlin/Heidelberg, Germany: 2011. DOI
Pawar A., Ismail S., Mundhe S., Patil V.D. Solubilization of Insoluble Zinc Compounds by Different Microbial Isolates in Vitro Condition. Int. J. Trop. Agric. 2015;33:865–869.
Othman N.M.I., Othman R., Saud H.M., Wahab P.E.M. Effects of Root Colonization by Zinc-Solubilizing Bacteria on Rice Plant (Oryza sativa MR219) Growth. Agric. Nat. Res. 2017;51:532–537. doi: 10.1016/j.anres.2018.05.004. DOI
Alejandro S., Höller S., Meier B., Peiter E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020;11:300. doi: 10.3389/fpls.2020.00300. PubMed DOI PMC
Xie L., Bi Y., Ma S., Shang J., Hu Q., Christie P. Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: Synergistic or competitive growth effects on maize? BMC Plant Biol. 2021;21:498. doi: 10.1186/s12870-021-03267-0. PubMed DOI PMC
Oerke E.C. Crop Losses to Pests. J. Agric. Sci. 2006;144:31–43. doi: 10.1017/S0021859605005708. DOI
.Ficke A., Cowger C., Bergstrom G., Brodal G. Understanding Yield Loss and Pathogen Biology to Improvement Disease Management: Septoria Nodorum Blotch- A case study In Wheat. Plant. Dis. 2018;102:696–707. doi: 10.1094/PDIS-09-17-1375-FE. PubMed DOI
Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M., Sharma M.P., Yadav G.S., Jhariya M.K., Jangir C.K., et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land. 2020;9:34. doi: 10.3390/land9020034. DOI
Wang M.C., Gong M., Zang H.B., Hua X.M., Yao J., Pang Y.J., Yang Y.H. Effect of Methamidophos and Urea Application on Microbial Communities in Soils as Determined by Microbial Biomass and Community Level Physiological Profiles. J. Environ. Sci. Health B. 2006;41:399–413. doi: 10.1080/03601230600616155. PubMed DOI
Miller G.T. Sustaining the Earth. Brooks/Cole; Monterey County, CA, USA: 2004.
Aktar W., Sengupta D., Chowdhury A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009;2:1–12. doi: 10.2478/v10102-009-0001-7. PubMed DOI PMC
Bowmer K.H. Ecosystem Effects from Nutrient and Pesticide Pollutants: Catchment Care as a Solution. Resources. 2013;2:439–456. doi: 10.3390/resources2030439. DOI
Hussain S., Siddique T., Saleem M., Arshad M., Khalid A. Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions. Adv. Agron. 2009;102:159–200.
Lo C.C. Effect of Pesticides on Soil Microbial Community. J. Environ. Sci. Health. Part B. 2010;45:348–359. doi: 10.1080/03601231003799804. PubMed DOI
Chagnon M., Kreutzweiser D., Mitchell E.A., Morrissey C.A., Noome D.A., Van der Sluijs J.P. Risks of Large-Scale Use of Systemic Insecticides to Ecosystem Functioning and Services. Environ. Sci. Pollut. Res. 2015;22:119–134. doi: 10.1007/s11356-014-3277-x. PubMed DOI PMC
Wezel A., Casagrande M., Celette F., Vian J., Ferrer A., Peigné J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014;34:1–20. doi: 10.1007/s13593-013-0180-7. DOI
Barratt B.I.P., Moran V.C., Bigler F., van Lanteren J.C. The Status of Biological Control and Recommendations for Improving Uptake for the Future. Biol. Control. 2018;63:155–167. doi: 10.1007/s10526-017-9831-y. DOI
Wright M.G., Bennett G.M. Evolution of Biological Control Agents Following Introduction to New Environments. Biol. Control. 2017;63:105–116. doi: 10.1007/s10526-017-9830-z. DOI
Wyckhuys K.A., Lu Y., Morales H., Vazquez L.L., Legaspi J.C., Eliopoulos P.A., Hernandez L.M. Current Status and Potential of Conservation Biological Control for Agriculture in the Developing World. Biol. Control. 2013;65:152–167. doi: 10.1016/j.biocontrol.2012.11.010. DOI
Arora N.K., Fatima T., Mishra I., Verma S. Microbe-based Inoculants: Role in Next Green Revolutio. In: Shukla V., Kumar N., editors. Environmental Concerns and Sustainable Development. Springer Nature; Singapore: 2020. pp. 191–246. DOI
Sulistyo A., Inayati A. Mechanisms of Antixenosis, Antibiosis, and Tolerance of Fourteen Soybean Genotypes in Response to Whiteflies (Bemisia tabaci) Biodiversitas. 2016;17:447–453. doi: 10.13057/biodiv/d170207. DOI
Nascimento F.X., Rossi M.J., Soares C.R., McConkey B.J., Glick B.R. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLoS ONE. 2014;6:e99168. doi: 10.1371/journal.pone.0099168. PubMed DOI PMC
Swarnalakshmi K., Senthilkumar M., Ramakrishnan B. Endophytic Actinobacteria: Nitrogen Fixation, Phytohormone Production, and Antibiosis. In: Subramaniam G., Arumugam S., Rajendran V., editors. Plant Growth Promoting Actinobacteria. Springer; Singapore: 2016. DOI
Kaunat H. Bidung Von Indolderivaten Durch Rhizospha Reenspezifisch Bakterien Und Aktinomyzeten. Zent. Bak. Abt. II. 1969;123:501–515. PubMed
Brown M.E. Plant Growth Substances Produced by Micro Organisms of Soil and Rhizosphere. J. Appl. Bacteriol. 1972;35:443–451. doi: 10.1111/j.1365-2672.1972.tb03721.x. DOI
Wheeler C.T., Crozier A., Sandberg G. The biosynthesis of Indole-3-Acetic Acid by Frankia. Plant Soil. 1984;78:99–104. doi: 10.1007/BF02277843. DOI
Abd-Alla M.H. Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia. Microbiol. 1994;39:53–56. doi: 10.1007/BF02814530. DOI
Mahadevan B., Crawford D.L. Properties of the Chitinase of the Antifungal Biocontrol Agent Streptomyces Lydicus WYEC108. Enzym. Microb. Technol. 1997;20:489–493. doi: 10.1016/S0141-0229(96)00175-5. DOI
Tokala R.K., Strap J.L., Jung C.M., Crawford D.L., Salove M.H., Deobald L.A., Bailey J.F., Morra M.J. Novel Plant-Microbe Rhizosphere Interaction Involving Streptomyces Lydicus WYEC108 and the pea plant (Pisums ativum) App. Environ. Microbiol. 2002;68:2161–2171. doi: 10.1128/AEM.68.5.2161-2171.2002. PubMed DOI PMC
Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A., Netrusov A.I. Microbial producers of Plant Growth-Stimulators and their Practical Use: A Review. App. Biochem. Microbiol. 2006;42:117–126. doi: 10.1134/S0003683806020013. PubMed DOI
El-Tarabily K.A. Promotion of Tomato (Lycopersicon esculentum Mill.) Plant Growth by Rhizosphere Competent 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing Streptomyceteactino mycetes. Plant Soil. 2008;308:161–174. doi: 10.1007/s11104-008-9616-2. DOI
Khamna S., Yokota A., Peberdy J.F., Lumyong S. Indole-3-Acetic Acid Production by Streptomyces Sp. Isolated from Some Thai Medicinal Plant Rhizosphere Soils. EurAsian J. BioSci. 2010;4:23–32. doi: 10.5053/ejobios.2010.4.0.4. DOI
Verma V.C., Singh S.K., Prakash S. Bio-control and plant growth-promotion potential of siderophore producing endophytic Streptomyces from Azadirachtaindica A. Juss. J. Basic Microbiol. 2011;51:550–556. doi: 10.1002/jobm.201000155. PubMed DOI
Abd-Alla M.H., El-Sayed E.S.A., Rasmey A.H.M. Indole-3-acetic acid (IAA) Production by Streptomyces Atrovirens Isolated from Rhizospheric Soil in Egypt. J. Biol. Earth Sci. 2013;3:B182–B193.
Lin L., Xu X. Indole-3-acetic acid Production by Endophytic Streptomyces Sp. En-1 Isolated from Medicinal Plants. Curr. Microbiol. 2013;67:209–217. doi: 10.1007/s00284-013-0348-z. PubMed DOI
Subramanian P., Kim K., Krishnamoorthy R., Sundaram S., Sa T. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobiumjaponicum MN110. Plant Growth Regul. 2014;76:327–332. doi: 10.1007/s10725-014-9993-x. DOI
Sang-Mo K., Abdul-Latif K., Young-Hyun Y., Muhammad K. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J. Microbiol. Biotechnol. 2014;24:106–112. PubMed
Cacciari I., Grappelli A., Lippi D., Pietrosanti W. Effect of Growth Rate on The Production of Phytohormone-Like Substances by an Arthrobacter Sp. in Chemostat Culture. J. Gen. Microbiol. 1980;118:549–552. doi: 10.1099/00221287-118-2-549. DOI
Stevens G., Berry A.M. Cytokinin secretion by Frankia sp. HFP ArI3 in defined medium. Plant Physiol. 1988;87:15–16. doi: 10.1104/pp.87.1.15. PubMed DOI PMC
Joshi M.V., Loria R. Streptomyces Turgidiscabies Possesses a Functional Cytokinin Biosynthetic Pathway and Produces Leafy Galls. Mol. Plant Microbe. Interact. 2007;20:751–758. doi: 10.1094/MPMI-20-7-0751. PubMed DOI
Pertry I., Vaclavikova K., Depuydt S., Galuszka P., Spichal L., Temmerman W., Vereecke D. Identification of Rhodococcusfascianscytokinins and their modus Operandi to Reshape the Plant. PNAS. 2009;106:929–934. doi: 10.1073/pnas.0811683106. PubMed DOI PMC
Katznelson H., Cole S.E. Production of Gibberellin like Substances by Bacteria and Actinomycetes. Can. J. Microbiol. 1965;11:733–741. doi: 10.1139/m65-097. PubMed DOI
Merckx R., Dijkra A., Hartog A.D., Veen J.A.V. Production of Root-Derived Material and Associated Microbial Growth in Soil at Different Nutrient Levels. Biol. Fertil. Soil. 1987;5:126–132. doi: 10.1007/BF00257647. DOI
Jadhav H.P., Sayyed R.Z. Hydrolytic Enzymes of Rhizospheric Microbes in Crop Protection. MOJ Cell. Sci. Rep. 2016;3:135–136.
Mishra J., Tewari S., Singh S., Arora N.K. Plant Microbes Symbiosis: Applied Facets. Springer; New Delhi, India: 2015. Biopesticides: Where we Stand? Plant Microbes Symbiosis: Applied Facets; pp. 37–75.
Mishra N., Khan S.S., Sundari S.K. Native Isolate of Trichoderma: A Biocontrol Agent with Unique Stress Tolerance Properties. World J. Microbiol. Biotechnol. 2016;32:130. doi: 10.1007/s11274-016-2086-4. PubMed DOI
Banat I.M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M.G., Fracchia L., Smyth T.J., Marchant R. Microbial Biosurfactants Production, Applications and Future Potential. Appl. Microbiol. Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI
López-Millán A.F., Ellis D.R., Grusak M.A. Effect of Zinc and Manganese Supply on the Activities of Superoxide Dismutase and Carbonic Anhydrase in Medicago Truncatula Wild Type and Raz Mutant Plants. Plant Sci. 2005;168:1015–1022. doi: 10.1016/j.plantsci.2004.11.018. DOI
Pathak D., Lone R., Koul K.K. Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Association in Potato (Solanum Tuberosum L.): A Brief Review. In: Kumar V., Kumar M., Sharma S., Prasad R., editors. Probiotics and Plant Health. Springer; Singapore: 2017. pp. 401–420.
Walters D.R., Ratsep J., Havis N.D. Controlling Crop Diseases Using Induced Resistance: Challenges for the Future. J. Exp. Bot. 2013;64:1263–1280. doi: 10.1093/jxb/ert026. PubMed DOI
Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. Induces Systemic Resistance by Beneficial Microbes. Ann. Rev. Phytopathol. 2014;52:347–375. doi: 10.1146/annurev-phyto-082712-102340. PubMed DOI
Shockman G., Waksman S.A. Rhodomycin-An Antibiotic Produced by A Red-Pigmented Mutant of Streptomyces Griseus. Antibiot Chem. 1951;1:68–75. PubMed
Shih H.D., Liu Y.C., Hsu F.L., Mulabagal V., Dodda R., Huang J.W. Fungichromin: A Substance from Streptomyces Padanus with Inhibitory Effects on Rhizoctoniasolani. J. Agric. Food Chem. 2003;51:95–99. doi: 10.1021/jf025879b. PubMed DOI
Ezra D., Castillo U.F., Strobel G.A., Hess W.M., Porter H., Jensen J.B., Condron M.A., Teplow D.B., Sears J., Maranta M., et al. Coronamycins, Peptide Antibiotics Produced by A Verticillate Streptomyces Sp. (MSU-2110) Endophytic On Monstera Sp. Microbiology. 2004;150:785–793. doi: 10.1099/mic.0.26645-0. PubMed DOI
Weinstein M.J., Luedemann G.M., Oden E.M., Wagman G.H. Everninomicin, A New Antibiotic Complex From Micromonosporacarbonacea. Antimicrob. Agents Chemother. 1964;10:24–32. PubMed
Coronelli C., Pagani H., Bardone M.R., Lancini. G.C. Purpuromycin, a New Antibiotic Isolated from Actinoplanesianthinogenes N. sp. J. Antibiot. 1974;27:161–168. doi: 10.7164/antibiotics.27.161. PubMed DOI
Reimann H., Cooper D.J., Mallams A.K., Jaret R.S., Yehaskel A., Kugelman M., Vernay H.F., Schumacher D. Structure of Sisomicin, a Novel Unsaturated Aminocyclitol Antibiotic from Micromonosporainyoensis. J. Org. Chem. 1974;39:1451–1457. doi: 10.1021/jo00924a001. PubMed DOI
Coronelli C., White R.J., Lancini G.C., Parenti F. Lipiarmycin, a New Antibiotic from Actinoplanes. II. Isolation, Chemical, Biological and Biochemical Characterization. J. Antibiot. 1975;28:253–259. doi: 10.7164/antibiotics.28.253. PubMed DOI
Patel M., Horan A.C., Gullo V.P., Loebenberg D., Marquez J.A., Miller G.H., Waitz J.A. Oxanthromicin, a Novel Antibiotic from Actinomadura. J. Antibiot. 1984;37:413–415. doi: 10.7164/antibiotics.37.413. PubMed DOI
Maskey R.P., Li F.C., Qin S., Fiebig H.H., Laatsch H. Chandrananimycins AC: Production of Novel Anticancer Antibiotics from a Marine Actinomadura Sp. Isolate M048 By Variation of Medium Composition and Growth Conditions. J. Antibiot. 2003;56:622–629. doi: 10.7164/antibiotics.56.622. PubMed DOI
Parenti F., Beretta G., Berti M., Arioli V. Teichomycins, New Antibiotics from Actinoplaneseichomyceticus Nov. Sp. I. Description of the Producer Strain, Fermentation Studies and Biological Properties. J. Antibiot. 1978;1:276–283. doi: 10.7164/antibiotics.31.276. PubMed DOI
Somma S., Gastaldo L., Corti A. Teicoplanin, a New Antibiotic from Actinoplanesteichomyceticusnov.sp. Antimicrob. Agents Chemother. 1984;26:917–923. doi: 10.1128/AAC.26.6.917. PubMed DOI PMC
Omura S., Imamura N., Oiwa R., Kuga H., Iwata R., Masuma R., Iwai Y. Clostomicins, new antibiotics produced by Micromonosporaechinospora subsp. armeniaca Subsp. Nov.I Production, Isolation, and Physico-Chemical And Biological Properties. J Antibiot. 1986;39:1407–1412. doi: 10.7164/antibiotics.39.1407. PubMed DOI
Boeck V.D., Fukuda D.S., Abbott B.J., Debono M. Deacylation of Echinocandin B by Actinoplanesutahensis. J. Antibiot. 1989;42:382–388. doi: 10.7164/antibiotics.42.382. PubMed DOI
Kawamura N., Sawa R., Takahashi Y., Issiki K., Sawa T., Kinoshita N., Naganawa H., Hamada M., Takeuchi T. Pyralomicins, New Antibiotics from Actinomadura Spiralis. J. Antibiot. 1995;48:435–437. doi: 10.7164/antibiotics.48.435. PubMed DOI
Igarashi Y., Takagi K., Kajiura T., Furumai T., Oki T. Glucosylquestiomycin, A Novel Antibiotic from Microbispora Sp. TP-A0184 Fermentation, Isolation, Structure Determination, Synthesis and Biological Activities. J. Antibiot. 1998;51:915–920. doi: 10.7164/antibiotics.51.915. PubMed DOI
Lam Y.T., Williams D.L., Sigmund J.M., Sanchez M., Genilloud O., Kong Y.L., Stevens-Miles S.I.O.B.H.A.N., Huang L., Garrity G.M. Cochinmicins, Novel and Potent Cyclodepsipeptideendothelin Antagonists from a Microbispora sp. I. Production, Isolation, and Characterization. J. Antibiot. 1992;45:1709–1716. doi: 10.7164/antibiotics.45.1709. PubMed DOI
He H., Ding W.D., Bernan V.S., Richardson A.D., Ireland C.M., Greenstein M., Ellestad G.A., Carter G.T. Lomaiviticins A and B, Potent Antitumor Antibiotics from Micromonosporalomaivitiensis. J. Am. Chem. Soc. 2001;123:5362–5363. doi: 10.1021/ja010129o. PubMed DOI
Vertesy L., Ehlers E., Kogler H., Kurz M., Meiwes J., Seibert G., Vogel M., Hammann P. Friulimicins: Novel Lipopeptide Antibiotics with Peptidoglycan Synthesis Inhibiting Activity from Actinoplanesfriuliensis Sp. Nov. II. Isolation and Structural Characterization. J. Antibiot. 2000;53:816–827. doi: 10.7164/antibiotics.53.816. PubMed DOI
Ivanova N.V., Zemlak T.S., Hanner R.H., Hebert P.D.N. Universal Primer Cocktails for Fish DNA Barcoding. Mol. Ecol. Notes. 2007;7:544–548. doi: 10.1111/j.1471-8286.2007.01748.x. DOI
Li W., Leet J.E., Ax H.A., Gustavson D.R., Brown D.M., Turner L., Brown K., Clark J., Yang H., Fung-Tomc J., et al. Nocathiacins, New Thiazolyl Peptide Antibiotics From Nocardia Sp. I. Taxonomy, Fermentation and Biological Activities. J. Antibiot. 2003;56:226–231. doi: 10.7164/antibiotics.56.226. PubMed DOI
Sun C.H., Wang Y., Wang Z., Zhou J.Q., Jin W.Z., You X.F., Gao H., Zhao L.X., Si S.Y., Li X. Chemomicin A: A New Angucyclinone Antibiotic Produced by Nocardiamediterranei subsp. Kanglensis 1747–64. J. Antibiot. 2007;60:211–215. doi: 10.1038/ja.2007.25. PubMed DOI
Engelhardt K., Degnes K.F., Kemmler M., Bredholt H., Fjaervik E., Klinkenberg G., Sletta H., Ellingsen T.E., Zotchev S.B. Production of a New Thiopeptide Antibiotic, TP-1161, By A Marine Nocardiopsis Species. Appl. Environ. Microbiol. 2010;76:4969–4976. doi: 10.1128/AEM.00741-10. PubMed DOI PMC
El-Tarabily K.A., Nassar A.H., Hardy G.E.S.J., Sivasithamparam K. Plant Growth-Promotion and Biological Control Of Pythiumaphanidermatum, A Pathogen of Cucumber, by Endophyticactin omycetes. J. Appl. Microbiol. 2009;106:13–26. doi: 10.1111/j.1365-2672.2008.03926.x. PubMed DOI
Loliam B., Morinaga T., Chaiyanan S. Biocontrol of Pythiumaphanidermatumby the Cellulolytic Actinomycetes Streptomyces Rubrolavendulae S4. Sci. Asia. 2013;39:584–590. doi: 10.2306/scienceasia1513-1874.2013.39.584. DOI
Ashokvardhan T., Rajithasri A.B., Prathyusha P., Satyaprasad K. Actinomycetes from Capsicum annuum L. Rhizosphere Soil have the Bio control Potential Against Pathogenic Fungi. Int. J. Curr. Microbiol. App. Sci. 2014;3:894–903.
El-Tarabily K.A. Anendophyticchitinase-Producing Isolate of Actinoplanesmissouriensis, with Potential for Biological Control of Root Rot of Lupine Caused by Plectosporium tabacinum. Aust. J. Bot. 2003;51:257–266. doi: 10.1071/BT02107. DOI
Yandigeri M.S., Malviya N., Solanki M.K., Shrivastava P., Sivakumar G. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctoniasolani. World J. Microbiol. Biotechnol. 2015;31:1217–1225. doi: 10.1007/s11274-015-1870-x. PubMed DOI
Trejo-Estrada S.R., Sepulveda I., Crawford D.L. In Vitro and in Vivo Antagonism of Streptomyces Violaceusniger YCED9 against Fungal Pathogens of Turfgrass. World J. Microbiol. Biotechnol. 1998;14:865–872. doi: 10.1023/A:1008877224089. DOI
Shekhar N., Bhattacharya D., Kumar D., Gupta R.K. Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL2. Can. J. Microbiol. 2006;52:805–808. doi: 10.1139/w06-035. PubMed DOI
Arasu M.V., Esmail G.A., Al-Dhabi N.A., Ponmurugan K. Managing Pests and Diseases of Grain Legumes with Secondary Metabolites from Actinomycetes. In: Gopalakrishnan S., Sathya A., Vijayabharathi R., editors. Plant Growth Promoting Actinobacteria. Springer; Singapore: 2016. pp. 83–98.
USDA-ARS Research Databases. [(accessed on 12 July 2021)];2008 Available online: http://www.ars.usda.gov/Services/docs.htm?docid=8908.
Munns R. Genes and Salt Tolerance: Bringing them together. Plant Physiol. 2005;167:645–663. doi: 10.1111/j.1469-8137.2005.01487.x. PubMed DOI
Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press; London, UK: 1995.
Isayenkov S.V. Physiological and Molecular Aspects of Salt Stress in Plants. Cytol. Genet. 2012;46:302–318. doi: 10.3103/S0095452712050040. DOI
Hernández J.A., Aguilar A.B., Portillo B., López-Gómez E., Beneyto J.M., García-Legaz M.F. The Effect of Calcium on the Antioxidant Enzymes from Salt-Treated Loquat and Anger Plants. Funct. Plant Biol. 2003;30:1127–1137. doi: 10.1071/FP03098. PubMed DOI
Mittova V., Guy M., Tal M., Volokita M. Salinity Up-Regulates the Antioxidative System in Root Mitochondria and Peroxisomes of the Wild Salt-Tolerant Tomato Species Lycopersicon pennellii. J. Exp. Bot. 2004;399:1105–1113. doi: 10.1093/jxb/erh113. PubMed DOI
Taffouo V.D., Wamba O.F., Yombi E., Nono G.V., Akoe A. Growth, Yield, Water Status and Ionic Distribution Response of Three Bambara Groundnut (Vigna subterranean (L.) verdc.) Landraces Grown Under Saline Conditions. Int. J. Bot. 2010;6:53–58. doi: 10.3923/ijb.2010.53.58. DOI
Murillo-Amador B., Yamada S., Yamaguchi T., Rueda-Puente E., Ávila-Serrano N., García-Hernández J.L., López-Aguilar R., Troyo-Diéguez E., Nieto-Garibay A. Salinity Toxicity Influence of Calcium Silicate on Growth Physiological Parameters and Mineral Nutrition in Two Legume Species under Salt Stress. J. Agron. Crop. Sci. 2007;193:413–421. doi: 10.1111/j.1439-037X.2007.00273.x. DOI
Incheira P., Quiroz A. Microbial Volatiles as Plant Growth Inducers. Microbiol. Res. 2018;208:63–75. doi: 10.1016/j.micres.2018.01.002. PubMed DOI
Allard-Massicotte R., Tessier L., Lécuyer F., Lakshmanan V., Lucier J., Garneau D., Caudwell L., Vlamakis H., Bais H.P., Beauregard P.B. Bacillus Subtilis Early Colonization of Arabidopsis Thaliana Roots Involves Multiple Chemotaxis Receptors. Microbe. Bio. 2016;7:e01664-16. doi: 10.1128/mBio.01664-16. PubMed DOI PMC
Zhang T., Hu F., Ma L. Phosphate-solubilizing Bacteria from Safflower Rhizosphere and their Effect on Seedling Growth. Open. Life Sci. 2019;14:246–254. doi: 10.1515/biol-2019-0028. PubMed DOI PMC
Vaishnav A., Kumari S., Jain S., Verma A., Tuteja N., Choudhary D.K. PGPR-Mediated Expression of Salt Tolerance Gene in Soybean through Volatiles under Sodium Nitroprusside. J. Basic Microbiol. 2016;56:1274–1288. doi: 10.1002/jobm.201600188. PubMed DOI
Singh S. A Review on Possible Elicitor Molecules of Cyanobacteria: Their Role in Improving Plant Growth and Providing Tolerance against Biotic or Abiotic Stress. J. App. Microbiol. 2014;117:1221–1244. doi: 10.1111/jam.12612. PubMed DOI
Kasotia A., Varma A., Choudhary D.K. Pseudomonas-Mediated Mitigation of Salt Stress and Growth Promotion in Glycine Max. Agric. Res. 2015;4:31–41. doi: 10.1007/s40003-014-0139-1. DOI
Basu S., Ramegowda V., Kumar A., Pereira A. Plant Adaptation to Drought Stress. Res. Fac. Rev. 2016;5:1554. doi: 10.12688/f1000research.7678.1. PubMed DOI PMC
Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., et al. Crop Production Under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017;8:1147. doi: 10.3389/fpls.2017.01147. PubMed DOI PMC
Lamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018;6:26. doi: 10.3389/fchem.2018.00026. PubMed DOI PMC
Wang Z., Li G., Sun H., Ma L., Guo Y., Zhao Z., Gao H., Mei L. Effects of Drought Stress on Photosynthesis and Photosynthetic Electron Transport Chain in Young Apple Tree Leaves. Biol. Open. 2018;7:bio035279. doi: 10.1242/bio.035279. PubMed DOI PMC
Bista D.R., Heckathorn S.A., Jayawardena D.M., Mishra S., Boldt J.K. Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and Tolerant Grasses. Plants. 2018;7:28. doi: 10.3390/plants7020028. PubMed DOI PMC
Mariotte P., Cresswell T., Johansen M.P., Harrison J.J., Keitel C., Dijkstra F.A. Plant Uptake of Nitrogen and Phosphorus among Grassland Species Affected by Drought Along a Soil Available Phosphorus Gradient. Plant Soil. 2020;448:121–132. doi: 10.1007/s11104-019-04407-0. DOI
Nadeem M., Li J., Yahya M., Sher A., Ma C., Wang X., Qiu L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int. J. Mol. Sci. 2019;20:2541. doi: 10.3390/ijms20102541. PubMed DOI PMC
Zheng M., Tao Y., Hussain S., Jiang Q., Peng S., Huang J., Cui K., Nie L. Seed priming in Dry Direct-Seeded Rice: Consequences For Emergence, Seedling Growth and Associated Metabolic Events under Drought Stress. Plant Growth Regul. 2016;78:167–178. doi: 10.1007/s10725-015-0083-5. DOI
Du Y., Zhao Q., Chen L., Yao X., Zhang H., Wu J., Xie F. Effect of Drought Stress during Soybean R2–R6 Growth Stages on Sucrose Metabolism in Leaf and Seed. Int. J. Mol. Sci. 2020;21:618. doi: 10.3390/ijms21020618. PubMed DOI PMC
Thalmann M.S. Starch as a Determinant of Plant Fitness under Abiotic Stress. New Phytol. 2017;214:943–951. doi: 10.1111/nph.14491. PubMed DOI
Majumdar R., Barchi B., Turlapati S.A., Gagne M., Minocha R., Long S., Minocha S.C. Glutamate, Ornithine, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway is regulated at the Post-Transcriptional Level. Fronti Plant Sci. USA. 2016;7:78. doi: 10.3389/fpls.2016.00078. PubMed DOI PMC
Figueiredo M.V.B., Burity H.A., Martinez C.R., Chanway C.P. Alleviation of Drought Stress in Common Bean (Phaseolus Vulgaris L.) by Coinoculation Withpaenibacillus Polymyxa and Rhizobium Tropici. Appl. Soil Ecol. 2008;40:182–188. doi: 10.1016/j.apsoil.2008.04.005. DOI
Wang D., Yang S., Tang F., Zhu H. Symbiosis Specifi City in the Legume Rhizobial Mutualism. Cell Microbiol. 2012;14:334–342. doi: 10.1111/j.1462-5822.2011.01736.x. PubMed DOI
Pavithra D., Yapa N. Arbuscular Mycorrhizal Fungi Inoculation Enhances Drought Stress Tolerance of Plants. Ground Water Sust. Dev. 2018;7:490–494. doi: 10.1016/j.gsd.2018.03.005. DOI
Farooq M., Hussain M., Wahid A., Siddique K.H.M. Drought Stress in Plants: An Overview. In: Aroca R., editor. Plant Responses to Drought Stress. Springer Press; Berlin/Heidelberg, Germany: 2012. pp. 1–12. DOI
Mittler R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006;11:15–19. doi: 10.1016/j.tplants.2005.11.002. PubMed DOI
Rojas-Downing M.M., Nejadhashemi A.P., Harrigan W. Climate change and livestock: Impacts, adaptation and mitigation. Climate Risk. Manag. 2017;16:145–163. doi: 10.1016/j.crm.2017.02.001. DOI
Crafts-Brander S.J., Salvucci M.E. Sensitivity to Photosynthesis in the C4 Plant Maize to Heat Stress. Plant Cell. 2002;12:54–68. PubMed PMC
Qu M., Chen G., Bunce J.A., Zhu X., Richard C.S. Systematic biology analysis on photosynthetic carbon metabolism of maize leaf following sudden heat shock under elevated CO2. Sci. Rep. 2018;8:7849. doi: 10.1038/s41598-018-26283-x. PubMed DOI PMC
Nguyen N.V. Global Climate Changes and Rice Food Security. [(accessed on 1 July 2021)];IRC Rep. 2012 :24–31. Available online: http://www.fao.org/climatechange/1552603ecb62366f779d1ed45287e698a44d2e.pdf.
Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat Tolerance in Plants: An Over View. Environ. Exp. Bot. 2007;61:199–223. doi: 10.1016/j.envexpbot.2007.05.011. DOI
Koop L.K., Tadi P. Stat Pearls. Stat Pearls Publishing; Treasure Island, FL, USA: 2020. [(accessed on 1 July 2021)]. Physiology, Heat Loss (Convection, Evaporation, Radiation) Available online: https://www.ncbi.nlm.nih.gov/books/NBK541107/
Pei Z.M., Ghassemian M., Kwak C.M., McCourt P., Schroeder J.I. Role of Farnesyl Transferase in ABA Regulation of Guard Cell Anion Channels and Plant Water Loss. Science. 1998;282:287–290. doi: 10.1126/science.282.5387.287. PubMed DOI
De Zelicourt A., Al-Yousif M., Hirt H. Rhizosphere Microbes as Essential Partners for Plant Stress Tolerance. Mol. Plant. 2013;6:242–245. doi: 10.1093/mp/sst028. PubMed DOI
Kao C.H. Role of Glutathione in Abiotic Stress Tolerance of Rice Plants. J. Taiwan Agric. Res. 2015;164:167–176.
Herawati N., Suzuki S., Hayashi K., Rivai I.F., Koyoma H. Cadmium, Copper and Zinc Levels in Rice and Soil of Japan, Indonesia and China by Soil Type. Bull. Environ. Contam. Toxicol. 2000;64:33–39. doi: 10.1007/s001289910006. PubMed DOI
Farooq M.A., Ali S., Hameed A., Bharwana S.A., Rizwan M., Ishaque W., Farid M., Mahmood K., Iqbal Z. Cadmium Stress in Cotton Seedlings: Physiological, Photosynthesis and Oxidative Damages Alleviated by Glycine Betaine. South. African. J. Bot. 2016;104:61–68. doi: 10.1016/j.sajb.2015.11.006. DOI
Hall J.L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002;53:1–11. doi: 10.1093/jexbot/53.366.1. PubMed DOI
Farid M., Ali S., Rizwan M., Saeed R., Tauqeer H.M., Sallah-Ud-Din R., Azam A., Raza N. Microwave Irradiation and Citric Acid Assisted Seed Germination and Phytoextraction Of Nickel (Ni) By Brassica Napus L.; Morphophysiological And Biochemical Alterations Under Ni Stress. Environ Sci. Pollution Res. Int. 2017;24:21050–21064. doi: 10.1007/s11356-017-9751-5. PubMed DOI
.Lin A., Zhang X., Zhu Y.G. Arsenate-Induced Toxicity: Effects on Antioxidative Enzymes and DNA Damage In Vicia Faba. Environ. Toxicol. Chem. 2008;27:413–419. doi: 10.1897/07-266R.1. PubMed DOI
Sarkar B. Metal replacement in DNA-binding Zinc finger Proteins and its Relevance to Mutagenicity and Carcinogenicity through Free Radical Generation. Nutrition. 1995;11:646–649. PubMed
Ghasemi F., Heidari R., Jameii R. Effects of Ni2+ Toxicity on Hill Reaction and Membrane Functionality in Maize. J. Stress. Physiol. Biochem. 2012;8:55–61.
Emamverdian A., Ding Y., Mokhberdoran F. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Sci. World J. 2015;2015:18. doi: 10.1155/2015/756120. PubMed DOI PMC
Lombardi L., Sebastiani L. Copper Toxicity in Prunus Cerasifera: Growth and Antioxidant Enzymes Responses of In Vitro Grown Plants. Plant Sci. 2005;168:797–802. doi: 10.1016/j.plantsci.2004.10.012. DOI
Ventrella A., Catucci L., Placido T. Biomaterials Based on Photosynthetic Membranes as Potential Sensors for Herbicides. Biosens. Bioelectron. 2011;26:4747–4752. doi: 10.1016/j.bios.2011.05.043. PubMed DOI
Li X., Yang Y., Jia L. Zinc-Induced Oxidative Damage, Antioxidant Enzyme Response and Proline Metabolism in Roots and Leaves of Wheat Plants. Ecotoxicol. Environ. Saf. 2013;89:150–157. doi: 10.1016/j.ecoenv.2012.11.025. PubMed DOI
Ahmad M.S.A., Ashraf M., Tabassam Q. Lead (Pb)-Induced Regulation of Growth, Photosynthesis, and Mineral Nutrition in Maize (Zea mays L.) Plants at Early Growth Stages. Biol. Trace. Elem. Res. 2011;144:1229–1239. doi: 10.1007/s12011-011-9099-5. PubMed DOI
Farid M., Ali S., Rizwan M., Ali Q., Abbas F., Bukhari S.A.H., Saeed R., Wu L. Citric Acid Assisted Phyto-Extraction of Chromium By Sunflower; Morpho-Physiological And Biochemical Alterations In Plants. Ecotoxicol. Environ. Saf. 2017;145:90–102. doi: 10.1016/j.ecoenv.2017.07.016. PubMed DOI
Per T.S., Khan S., Asgher M. Photosynthetic and Growth Responses of two Mustard Cultivars Differing in Phytocystatin Activity under Cadmium stress. Photosynthetica. 2016;54:491–501. doi: 10.1007/s11099-016-0205-y. DOI
Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI
Mangano S., Juarez S.P.D., Estevez J.M. ROS Regulation of Polar Growth in Plant Cells. Plant Physiol. 2016;171:1593–1605. doi: 10.1104/pp.16.00191. PubMed DOI PMC
O’Brien J.A., Daudi A., Butt V.S., Bolwell G.P. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta. 2012;236:765–779. doi: 10.1007/s00425-012-1696-9. PubMed DOI
Xu Z., Shimizu H., Ito S., Yagasaki Y., Zou C., Zhou G., Zheng Y. Effects of Elevated CO2, Warming and Precipitation Change on Plant Growth, Photosynthesis and Peroxidation in Dominant Species from North China Grassland. Planta. 2014;239:421–435. doi: 10.1007/s00425-013-1987-9. PubMed DOI
Pitzschke A., Hirt H. Disentangling the Complexity of Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling. Plant Physiol. 2009;149:606–615. doi: 10.1104/pp.108.131557. PubMed DOI PMC
Rizwan M., Ali S., Adrees M. Cadmium Stress in Rice: Toxic Effects, Tolerance Mechanisms, and Management: A Critical Review. Environ. Sci. Poll. Res. 2016;23:17859–17879. doi: 10.1007/s11356-016-6436-4. PubMed DOI
Akram N.A., Shafiq F., Ashraf M. Ascorbic Acid- A Potential Oxidant Scavenger and its Role in Plant Development and Abiotic Stress Tolerance. Front. Plant Sci. 2017;8:613. doi: 10.3389/fpls.2017.00613. PubMed DOI PMC
Anjum N.A., Ahmad I., Mohmood I. Modulation of Glutathione and its Related Enzymes in Plants’ Responses to Toxic Metals and Metalloids –A Review. Environ. Exp. Bot. 2012;75:307–324. doi: 10.1016/j.envexpbot.2011.07.002. DOI
Sofo A., Cicco N., Paraggio M. Regulation of the ascorbate–glutathione cycle in plants under drought stress. In: Anjum N.A., Umar S., Chan M.T., editors. Ascorbate-glutathione pathway and stress tolerance in plants. Springer; Dordrecht, The Netherlands: 2010. pp. 137–190.
Srivastava S., Verma P.C., Chaudhry V., Singh N., Abhilash P.C., Kumar K.V., Sharma N., Singh N. Influence of Inoculation of Arsenic-Resistant Staphylococcus arlettae on GRowth and Arsenic UPtake in Brassica juncea (L.) Czern.Var. R-46. J. Hazard Mater. 2013;262:1039–1047. doi: 10.1016/j.jhazmat.2012.08.019. PubMed DOI
Ma Y., Rajkumar M., Luo Y., Freitas H. Phytoextraction of Heavy Metal Polluted Soils Using Sedum Plumbizincicola Inoculated with Metal Mobilizing Phyllobacterium Myrsinacearum RC6b. Chemosphere. 2013;93:1386–1392. doi: 10.1016/j.chemosphere.2013.06.077. PubMed DOI
Adediran G.A., Ngwenya B.T., Mosselmans J.F.W., Heal K.V. Bacteria–zinc Co localization Implicates Enhanced Synthesis of Cysteine-Richpeptides in Zinc Detoxification when Brassica Juncea is inoculated with Rhizobium leguminosarum. New Phytol. 2016;209:280–293. doi: 10.1111/nph.13588. PubMed DOI PMC
Kiely P.D., Haynes J.M., Higgins C.H., Franks A., Mark G.L., Morrissey J.P., O’Gara F. Exploiting New Systems-Based Strategies to Elucidate Plant-Bacterial Interactions in the Rhizosphere. Microb. Ecol. 2006;51:257–266. doi: 10.1007/s00248-006-9019-y. PubMed DOI
Bevivino A., Dalmastri C., Tabacchioni S., Chiarini L. Efficacy of Burkholderia Cepacia MCI 7 In Disease Suppression and Growth Promotion of Maize. Biol. Fertil. Soils. 2000;31:225–231. doi: 10.1007/s003740050649. DOI
Harthmann O.E.L., Mógor Á.F., Wordell-Filho J.A., Luz W.C., Biasi L.A. Tratamento De Sementes Com Rizobactérias Na Produção De Cebola. Cienc. Rural. 2009;39:2533–2538. doi: 10.1590/S0103-84782009000900023. DOI
Hungria M., Campo R.J., Souza E.M., Pedrosa F.O. Inoculation with Selected Strains of Azospirillum Brasilense and A. Lipoferum Improves Yields of Maize and Wheat in Brazil. Plant Soil. 2010;331:413–425. doi: 10.1007/s11104-009-0262-0. DOI
Barraquio W.L., Segubre E.M., Gonzalez M.A.S., Verma S.C., James E.K., Ladha J.K., Tripathi A.K. Diazotrophicenterobacteria: What is their Role in the Rhizosphere of Rice. In: Ladha J.K., Reddy P.M., editors. The Quest for Nitrogen Fixation in Rice. International Rice Research Institute; Manila, Philippines: 2000. pp. 93–118.
Compant S., Mitter B., Colli-Mull J.G., Gangl H., Sessitsch A. Endophytes of Grapevine Fl owers, Berries, and Seeds: Identifi Cation of Cultivable Bacteria, Comparison with Other Plant Parts, and Visualization of Niches of Colonization. Microb. Ecol. 2011;62:188–197. doi: 10.1007/s00248-011-9883-y. PubMed DOI
Szilagyi-Zecchin V.J., Ikeda A.C., Hungria M., Adamoski D., Kava-Cordeiro V., Glienke C., Galli-Terasawa L.V. Identification and Characterization of Endophytic Bacteria from Corn (Zea mays L.) Roots with Biotechnological Potential in Agriculture. AMB. Exp. 2014;4:26. doi: 10.1186/s13568-014-0026-y. PubMed DOI PMC
Cruz A.F., Ishii T., Matsumoto I., Kadoya K. Network Establishment of Vesicular Arbuscular Mycorrhizal Hyphae in the Rhizosphere between Trifoliate Orange and Some Plants. J. Jpn. Soc. Hortic. Sci. 2002;71:19–25. doi: 10.2503/jjshs.71.19. DOI
Barea J.M., Pozo M.J., Azcon R., Azcon-Aguilar C. Microbial Co-operation in the Rhizosphere. J. Exp. Bot. 2005;56:1761–1778. doi: 10.1093/jxb/eri197. PubMed DOI
Mishra N., Sundari K.S. Native PGPM Consortium: A Beneficial Solution to Support Plant Growth in the Presence of Phytopathogens and Residual Organophosphate Pesticides. J. Bioproces Biotech. 2015;5:1–8.
Rodriguez H., Fraga R., Gonzalez T., Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Dev. Plant Soil Sci. 2007;102:15–21.
Simiyu S., Mumma J., Aseyo E., Cumming O., Czerniewska A., Baker K., Dreibelbis R. Designing a Food Hygiene Intervention for Children 6–9 Months in an Informal Settlement in Kisumu, Kenya. Loughborough University; Loughborough, UK: 2018.
Simiyu S., Czerniewska A., Aseyo E.R., Baker K.K., Cumming O., Mumma J.A.O., Dreibelbis R. Designing a Food Hygiene Intervention in Low-Income, Peri-Urban Context of Kisumu, Kenya: Application of the Trials of Improved Practices Methodology. Am. J. Trop. Med. Hyg. 2020;102:1116. doi: 10.4269/ajtmh.19-0629. PubMed DOI PMC
Borriss R. Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture. In: Maheshwari D.K., editor. Bacteria in Agrobiology: Plant Growth Responses. Springer; Berlin/Heidelberg, Germany: 2011. pp. 41–76.
Jannin L., Arkoun M., Etienne P., Laine P., Goux D., Garnica M., Fuentes M., San Francisco S., Baigorri R., Cruz F., et al. Brassica Napus Growth Is Promoted By Ascophyllumnodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. J. Plant Growth Regul. 2013;32:31–52. doi: 10.1007/s00344-012-9273-9. DOI
Lonhienne T., Mason M.G., Ragan M.A., Hugenholtz P., Paungfoo Lonhienne S.S.C. Yeast as a Biofertilizer Alters Plant Growth and Morphology. Crop. Sci. 2014;54:785–790. doi: 10.2135/cropsci2013.07.0488. DOI
Bettoni M.M., Mógor Á.F., Pauletti V., Goicoechea N. Growth and Metabolism of Onion Seedlings as Affected By The Application of Humic Substances, Mycorrhizal Inoculation and Elevated CO2. Sci. Hortic. 2014;180:227–235. doi: 10.1016/j.scienta.2014.10.037. DOI
Civiero C., Armitage J.J., Goes S., Hammond J.O. The Seismic Signature of Upper-Mantle Plumes: Application to the Northern East African Rift. Geochem. Geophy. Geosys. 2019;20:6106–6122. doi: 10.1029/2019GC008636. DOI
Vinale F. Biopesticides and Biofertilizers Based on Fungal Secondary Metabolites. J. Biofert. Biopest. 2014;5:e119. doi: 10.4172/2155-6202.1000e119. DOI
Kasiotis K.M. Biopesticides Analysis: An Editorial. J. Biofertil. Biopestici. 2013;4:e115. doi: 10.4172/2155-6202.1000e115. DOI
Brasil, Ministério da Agricultura, Pecuária e Abastecimento . Lei de Fertilizantes, Corretivos, Inoculantes, Estimulantes ou Biofertilizantes. Decreton 4.954 de 14 de janeiro de 2004. Brasil, Ministério da Agricultura, Pecuária e Abastecimento; Brasília, Brazil: 2004.
Brasil, Ministério da Agricultura, Pecuária e Abastecimento . Regulamento Técnico que estabelece as normas técnicas para os Sistemas Orgânicos de Produção. Instrução Normativa n° 64 de 18 de dezembro de 2008. Brasil, Ministério da Agricultura, Pecuária e Abastecimento; Brasília, Brazil: 2008.
Kumar A., Bahadur I., Maurya B.R., Raghuwanshi R., Meena V.S., Singh D.K., Dixit J. Does a Plant Growth-Promoting Rhizobacteria Enhance Agricultural Sustainability? J. Pure Appl. Microbiol. 2015;9:715–724.
Ahmad M., Nadeem S.M., Naveed M., Zahir Z.A. Potassium-Solubilizing Bacteria and their Application in Agriculture. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 293–313. DOI
Meena M.K., Gupta S., Datta S. Antifungal Potential of PGPR, Their Growth Promoting Activity on Seed Germination and Seedling Growth of Winter Wheat and Genetic Variabilities Among Bacterial Isolates. Int. J. Cur. Microbiol. Appl. Sci. 2016;5:235–243. doi: 10.20546/ijcmas.2016.501.022. DOI
Jha Y., Subramanian R.B. Regulation of Plant Physiology and Antioxidant Enzymes for Alleviating Salinity Stress by Potassium-Mobilizing Bacteria. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 149–162. DOI
Rosselló-Mora R., Amann R. The species concept for prokaryotes. FEMS Microbiol. Rev. 2001;25:39–67. doi: 10.1016/S0168-6445(00)00040-1. PubMed DOI
Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 1996;60:407–438. doi: 10.1128/mr.60.2.407-438.1996. PubMed DOI PMC
Gevers D., Cohan F.M., Lawrence J.G., Spratt B.G., Coenye T., Feil E.J., Stackebrandt E., Van de Peer Y., Vandamme P., Thompson F.L., et al. Opinion: Re-Evaluating Prokaryotic Species. Nat. Rev. Microbiol. 2005;3:733–739. doi: 10.1038/nrmicro1236. PubMed DOI
Silva H.D.O., Pires A.J.V., da Silva F.F., Veloso C.M., de Carvalho G.G.P., Cezario A.S., Santos C.C. Effects of Feeding Cocoa Meal (Theobroma cacao L.) and Palm Kernel Cake (Elaeis guineensis, Jacq) on Milk Intake and Yield For Lactating Goats. Rev. Bras. Zootec. 2005;34:1786–1794. doi: 10.1590/S1516-35982005000500040. DOI
Martens M., Delaere M., CoopmanDe Vos R.P., Gillis M., Willems A. Multilocus Sequence Analysis of Ensifer and Related Taxa. Int. J. SystEvol. Microbiol. 2007;57:489–503. doi: 10.1099/ijs.0.64344-0. PubMed DOI
Naser S., Thompson F.L., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Thompson C.C., Vancanneyt M., Swings J. Phylogeny and Identification of Enterococci Using Atpa Gene Sequence Analysis. J. Clin. Microbiol. 2005;43:2224–2230. doi: 10.1128/JCM.43.5.2224-2230.2005. PubMed DOI PMC
Ribeiro R.A., Barcellos F.G., Thompson F.L., Hungria M. Multilocus sequence analysis of Brazilian Rhizobium Microsymbionts of Common Bean (Phaseolus vulgaris L.) Reveals Unexpected Taxonomic Diversity. Res. Microbiol. 2009;160:297–306. doi: 10.1016/j.resmic.2009.03.009. PubMed DOI
Thompson F.L., Gevers D., Thompson C.C., Dawyndt P., Naser S., Hoste B., Munn C.B., Swings J. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. App. Environ. Microbiol. 2005;71:5107–5115. doi: 10.1128/AEM.71.9.5107-5115.2005. PubMed DOI PMC
Laranjo M., Young J.P.W., Oliveira S. Multilocus Sequence Analysis Reveals Multiple Symbiovars within Mesorhizobium Species. Syst. Appl. Microbiol. 2012;35:359–367. doi: 10.1016/j.syapm.2012.06.002. PubMed DOI
Dall’Agnol R.F., Ribeiro R.A., Ormeno-Orrillo E., Rogel M.A., Delamuta J.R.M., Andrade D.S., Martínez-Romero E., Hungria M. Rhizobium Freirei sp. nov., a Symbiont of Phaseolus Vulgaris that is Very Effective At Fi Xing Nitrogen. Int. J. Syst. Evol. Microbiol. 2013;63:4167–4173. doi: 10.1099/ijs.0.052928-0. PubMed DOI
Amutha R., Karunakaran S., Dhanasekaran S., Hemalatha K., Monika R., Shanmugapriya P., Sornalatha T. Isolation and Mass Production of Biofertilizer (Azotobacter and phosphobacter) Int. J. Lat. Res. Sci. Tech. 2014;3:79–81.
Palai J.B., Malik G.C., Maitra S., Banerjee M. Role of Rhizobium on Growth and Development of Groundnut: A Review. Int. J. Agric. Environ. Biotechnol. 2021;14:63–73. doi: 10.30954/0974-1712.01.2021.7. DOI
Baset Mia M.A., Shamsuddin Z.H. Rhizobium as a Crop Enhancer and Biofertilizer for Increased Cereal Production. Afr. J. Biotechnol. 2010;9:6001–6009.
Parewa H.P., Yadav J., Rakshit A., Meena V.S., Karthikeyan N. Plant Growth Promoting Rhizobacteriaenhance Growth and Nutrient Uptake of Crops. Agric. Sustain. Dev. 2014;2:101–116.
Prakash S., Verma J.P. Global Perspective of Potash for Fertilizer Production. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 327–331. DOI
Dominguez-Nunez J.A., Benito B., Berrocal-Lobo M., Albanesi A. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. Mycorrhizal Fungi: Role in the Solubilization of Potassium; pp. 77–98. DOI
Dotaniya M.L., Meena V.D., Basak B.B., Meena R.S. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. Potassium Uptake by Crops as Well As Microorganisms; pp. 267–280. DOI
Jaiswal D.K., Verma J.P., Prakash S., Meena V.S., Meena R.S. Potassium as an Important Plant Nutrient In Sustainable Agriculture, A State of the Art. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 21–29. DOI
Rossman A.Y., Palm M.E. Why are Phytophthora and other Oomycota not true fungi? Outlooks Pest Manag. 2007;17:217–219. doi: 10.1564/17oct08. DOI
Kang S., Mansfi-eld Park M.A., Geiser D.M., Ivors K.L., Coffey M.D., Grünwald N.J., Martin F.N., Lévesque C.A., Blair J.E. The Promise and Pitfalls of Sequence– Based Identifi Cation of Plant–Pathogenic Fungi and Oomycetes. Phytopathology. 2010;100:732–737. doi: 10.1094/PHYTO-100-8-0732. PubMed DOI
Brun S., Madrid H.B., Gerrits-Van-Den-Ende B., Andersen B., Marinach–Patrice C., Mazier D., De Hoog G.S. Multilocus Phylogeny and MALDI–TOF Analysis of the Plant Pathogenic Species Alternaria Dauci and Relatives. Fungal Biol. 2013;117:32–40. doi: 10.1016/j.funbio.2012.11.003. PubMed DOI
Slippers B., Boissin E., Phillips A.J.L., Groenewald J.Z., Wingfi-eld M.J., Postma A., Burgess T., Crous P.W. Phylogenetic Lineages in the Botryosphaeriales: A Systematic and Evolutionary Framework. Stud. Mycol. 2013;76:31–49. doi: 10.3114/sim0020. PubMed DOI PMC
Sharma R., Polkade A.V., Shouche Y.S. Species Concept in Microbial Taxonomy and Systematics. Curr. Sci. 2015;108:1804–1814.
Shivas R.G., Beasley D.R., McTaggart A.R. Online Identifi Cation Guides for Australian Smut Fungi (Ustilagino mycotina) and Rust Fungi (Pucciniales) IMA Fungus. 2014;5:195–202. doi: 10.5598/imafungus.2014.05.02.03. PubMed DOI PMC
Lugtenberg B., Kamilova F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009;63:541–556. doi: 10.1146/annurev.micro.62.081307.162918. PubMed DOI
Malfanova N. Ph.D. Thesis. Leiden University; Leiden, The Netherlands: 2013. Endophytic Bacteria with Plant Growth Promoting Properties and Biocontrol Abilities; p. 166.
Raven J.A., Beardall J., Flynn K.J., Maberly S.C. Phagotrophy in the Origins of Photosynthesis in Eukaryotes and as Complementary Mode of Nutrition in Phototrophs: Relation to Darwin’s Insectivorous Plants. J. Exp. Bot. 2009;60:3975–3987. doi: 10.1093/jxb/erp282. PubMed DOI
Seghers D., Wittebolle L., Top E.M., Verstraete W., Siciliano S.D. Impact of agricultural Practices on the Zea mays L. Endophytic Community. App. Environ. Microbiol. 2004;70:1475–1482. doi: 10.1128/AEM.70.3.1475-1482.2004. PubMed DOI PMC
Podolich O., Ardanov P., Zaets I., Maria Pirttilä A., Kozyrovska N. Reviving of the Endophytic Bacterial Community as a Putative Mechanism of Plant Resistance. Plant Soil. 2014;388:367–377. doi: 10.1007/s11104-014-2235-1. DOI
Tan H.M., Cao L.X., He Z.F., Su G.J., Lin B., Zhou S.N. Isolation of Endophytic Actinobacteria from Different Cultivars of Tomato and their Activities Against Ralstonia solanacearum in vitro. World J. Microbiol. Biotechnol. 2006;22:1275–1280. doi: 10.1007/s11274-006-9172-y. DOI
Rosenblueth M., Martinez-Romero E. Bacterial Endophytes and their Interactions with Hosts. Mol. Plant. Microb. Interact. 2006;19:827–837. doi: 10.1094/MPMI-19-0827. PubMed DOI
Hardoim P.R., van Overbeek L.S., van Elsas J.D. Properties of Bacterial Endophytes and Their Proposed Role in Plant Growth. Trends Microbiol. 2008;16:463–471. doi: 10.1016/j.tim.2008.07.008. PubMed DOI
Miyamoto T., Kawahara M., Minamisawa K. Novel Endophytic Nitrogen-Fixing Clostridia from the Grass Miscanthus Sinensis as Revealed by Terminal Restriction Fragment Length Polymorphism Analysis. Appl. Environ. Microbiol. 2004;70:6580–6586. doi: 10.1128/AEM.70.11.6580-6586.2004. PubMed DOI PMC
Benhizia Y., Benhizia H., Benguedouar A., Muresu R., Giacomini A., Squartini A. Gamma Proteobacteria can Nodulate Legumes of the Genus Hedysarum. Syst. Appl. Microbiol. 2004;27:462–468. doi: 10.1078/0723202041438527. PubMed DOI
Hardoim P.R., Hardoim C.C., Van Overbeek L.S., Van Elsas J.D. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages. PLoS ONE. 2012;7:e30438. doi: 10.1371/journal.pone.0030438. PubMed DOI PMC
Manter D.K., Delgado J.A., Holm D.G., Stong R.A. Pyrosequencing Reveals a Highly Diverse and Cultivar Specific Bacterial Endophyte Community in Potato Roots. Microb. Ecol. 2010;60:157–166. doi: 10.1007/s00248-010-9658-x. PubMed DOI
Bulgarelli A., Rott M., Schlaeppi K., Loren van Themaat E., Ahmadinejad N., Assenza F., Rauf P., Huettel B., Reinhardt R., Schmelzer E., et al. Revealing Structure and Assembly Cues for Arabidopsis Root-Inhabiting Bacterial Microbiota. Nature. 2012;488:91–95. doi: 10.1038/nature11336. PubMed DOI
Sessitsch A., Hardoim P., Döring J., Weilharter A., Krause A., Woyke T., Mitter B., Hauberg-Lotte L., Friedrich F., Rahalkar M., et al. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Mol Plant Microb. Interact. 2012;25:28–36. doi: 10.1094/MPMI-08-11-0204. PubMed DOI
Bodenhausen N., Horton M.W., Bergelson J. Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana. PLoS ONE. 2013;8:e56329. doi: 10.1371/journal.pone.0056329. PubMed DOI PMC
Gond S.K., Verma V.C., Mishra A., Kumar A., Kharwar R.N. Role of Fungal Endophytes in Plant Protection. In: Arya A., Perello A.E., editors. Management of Fungal Plant Pathogens. CAB; London, UK: 2010. pp. 183–197.
Brem A.D. Leuchtmann Epichloë Grass Endophytes Increase Herbivore Resistance in the Woodland Grass Brachypodium sylvaticum. Oecologia. 2001;126:522–530. doi: 10.1007/s004420000551. PubMed DOI
Li H., Wei D., Shen M., Zhou Z. Endophytes and Their Role in Phytoremediation. Fungal Divers. 2012;54:11–18. doi: 10.1007/s13225-012-0165-x. DOI
Redman R.S., Sheehan K.B., Stout R.G., Rodriguez R.J., Henson J.M. Thermo Tolerance Conferred to Plant Host and Fungal Endophyte During Mutualistic Symbiosis. Science. 2002;298:1581. doi: 10.1126/science.1078055. PubMed DOI
Kharwar R.N., Verma S.K., Mishra A., Gond S.K., Sharma V.K., Afreen T., Kumar A. Assessment of Diversity, Distribution and Antibacterial Activity of Endophytic Fungi Isolated from a Medicinal Plant Adenocalymma Alliaceum Miers. Symbiosis. 2011;55:39–46. doi: 10.1007/s13199-011-0142-2. DOI
Selvakumar G., Kim K., Hu S., Sa T. Effect of Salinity on Plants and the Role of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting rhizobacteria in Alleviation of Salt Stress. In: Ahmad P., Wani M.R., editors. Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment. Springer; New York, NY, USA: 2014. pp. 115–144.
Hu C., Qi Y. Long-term Effective Microorganisms Application Promote Growth and Increase Yields and Nutrition of Wheat in China. Euro. J. Agron. 2013;46:63–67. doi: 10.1016/j.eja.2012.12.003. DOI
Muttalib S.A.A., Ismail S.N.S., Praveena S.M. Application of Effective Microorganism (EM) in Food Waste Composting: A Review. Asia Pacific Environ. Occup. Health J. 2016;2:37–47.
Isa D.M., Abdullah S., Noor N.M., Ismail H.B. The Natural Way for Water Quality Improvement Using Effective Microorganism. Int. J. Environ. Engin. 2021;11:169–182. doi: 10.1504/IJEE.2021.118462. DOI
Tsai S.Q., Joung J.K. Defining and Improving the Genomewide Specificities of CRISPR–Cas9 Nucleases. Nat. Rev. Gene. 2016;17:300. doi: 10.1038/nrg.2016.28. PubMed DOI PMC
Dale P.J., Clarke B., Fontes E.M.G. Potential for the Environmental Impact of Transgenic Crops. Nat. Biotechnol. 2002;20:567. doi: 10.1038/nbt0602-567. PubMed DOI
Thal B., Braun H.P., Eubel H. Proteomic Analysis Dissects the Impact of Nodulation and Biological Nitrogen Fixation on Vicia faba Root Nodule Physiology. Plant. Mol. Biol. 2018;97:233–251. doi: 10.1007/s11103-018-0736-7. PubMed DOI
Azhar A., Deris S., Napis S., Sinnott R.O. A Hybrid of Ant Colony Optimization and F Lux Variability Analysis to Improve the Production of L-Phenylalanine and Biohydrogen. Int. J. Adv. Soft. Comp. App. 2016;8:161–180.
Sanghera G.S., Wani S.H., Hussainm W., Singhm N.B. Engineering Cold Stress Tolerance in Crop Plants. Curr. Genomic. 2011;12:30–43. doi: 10.2174/138920211794520178. PubMed DOI PMC
Markovich N.A., Kononova G.L. Lytic Enzymes of Trichoderma and their Role in Protecting Plants from Fungal Diseases. Prikl. Biokhim. Mikrobiol. 2003;39:389–400. PubMed
Gajera H.P., Bambharolia R.P., Patel S.V., Khatrani T.J., Goalkiya B.A. Antagonism Of Trichoderma Spp. Against Macrophominaphaseolina: Evaluation of Coiling and Cell Wall Degrading Enzymatic Activities. Plant Pathol. Microb. 2012;3:1000149.
Swiontek-Brzezinska M., Jankiewicz U., Burkowska A., Walczak M. Chitinolytic Microorganisms and Their Possible Application in Environmental Protection. Curr. Microbiol. 2014;68:71–81. doi: 10.1007/s00284-013-0440-4. PubMed DOI PMC
Olanrewaju O.S., Glick B.R., Babalola O.O. Mechanisms of Action of Plant Growth Promoting Bacteria. World J. Microbiol. Biotechnol. 2017;33:197. doi: 10.1007/s11274-017-2364-9. PubMed DOI PMC
Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., Notz R., Défago G., Haas D., et al. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol. 2000;182:1215–1225. doi: 10.1128/JB.182.5.1215-1225.2000. PubMed DOI PMC
Souza J.T., Raaijmakers J.M. Polymorphisms within the prnD and pltC genes from Pyrrolnitrin and Pyoluteorin-Producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 2003;43:21–34. doi: 10.1111/j.1574-6941.2003.tb01042.x. PubMed DOI
.Kurth C., Kage H., Nett M. Siderophores as Molecular Tools in Medical and Environmental Applications. Org. Biomol. Chem. 2016;14:8212–8227. doi: 10.1039/C6OB01400C. PubMed DOI
Ahmed E., Holmström S.J.M. Siderophores in Environmental Research: Roles and Applications. Microb. Biotechnol. 2014;7:196–208. doi: 10.1111/1751-7915.12117. PubMed DOI PMC
.Kim J.G., Park B.K., Kim S.U., Choi D., Nahm B.H., Moon J.S., Reader J.S., Farrand S.K., Hwang I. Bases of Biocontrol, Sequence Predicts Synthesis And Mode Of Action Of Agrocin 84, the Trojan Horse Antibiotic That Controls Crown Gall. Proc. Natl. Acad. Sci. USA. 2006;103:8846–8851. doi: 10.1073/pnas.0602965103. PubMed DOI PMC
Yang S.C., Lin C.H., Sung C.T., Fang J.Y. Antibacterial Activities of Bacteriocins: Application in Foods and Pharmaceuticals. Front. Microbiol. 2014;5:241. PubMed PMC
Zhong J., Chen D., Zhu H.J., Gao B.D., Zhou Q. Hypovirulence of Sclerotiumrolfsii Caused by Associated RNA Mycovirus. Front. Microbiol. 2016;7:1798. doi: 10.3389/fmicb.2016.01798. PubMed DOI PMC
Hoegger P.J., Heiniger U., Holdenrieder O., Rigling D. Differential Transfer and Dissemination of Hypovirus and Nuclear and Mitochondrial Genomes of a Hypovirus-Infected Cryphonectria 3 Biological Control Agents: Diversity, Ecological Significance Parasitica Strain after Introduction into a Natural Population. Appl. Environ. Microbiol. 2003;69:3767–3771. doi: 10.1128/AEM.69.7.3767-3771.2003. PubMed DOI PMC
Lan X., Yao Z., Zhou Y., Shang J., Lin H., Nuss D.L., Chen B. Deletion of the cpku80 Gene In The Chestnut Blight Fungus, Cryphonectria Parasitica, Enhances Gene Disruption Efficiency. Curr. Genet. 2008;53:59–66. doi: 10.1007/s00294-007-0162-x. PubMed DOI
Bardin M., Ajouz S., Comby M., Lopez-Ferber M., Graillot B., Siegwart M., Nicot P.C. Is the Efficacy of Biological Control against Plant Diseases Likely to be More Durable than That of Chemical Pesticides? Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00566. PubMed DOI PMC
Brunner K., Zeilinger S., Ciliento R., Woo S.L., Lorito M., Kubicek C.P., Mach. R.L. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride to Enhance Both Antagonism and Induction of Plant Systemic Disease Resistance. Appl. Environ. Microbiol. 2005;71:3959–3965. doi: 10.1128/AEM.71.7.3959-3965.2005. PubMed DOI PMC
Bubici G., Kaushal M., Prigigallo M.I., Gómez-Lama Cabanás C., Mercado-Blanco J. Biological Control Agents Against Fusarium Wilt of Banana. Front. Microbiol. 2019;10:616. doi: 10.3389/fmicb.2019.00616. PubMed DOI PMC
Higa T., Parr J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment. Volume 1 International Nature Farming Research Center; Atami, Japan: 1994.
Bhattacharyya P.N., Goswami M.P., Bhattacharyya L.H. Perspective of beneficial microbes in agriculture under changing climatic scenario: A review. J. Phytol. 2016;8:26–41. doi: 10.19071/jp.2016.v8.3022. DOI