Bioinoculants-Natural Biological Resources for Sustainable Plant Production

. 2021 Dec 27 ; 10 (1) : . [epub] 20211227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35056500

Grantová podpora
APVV-20-0071 and EPPN2020-OPVaI-VA-ITMS313011T813' This research was funded by the 'Slovak University of Agriculture,' Nitra, Tr. A. Hlinku 2,949 01 Nitra, Slovak Republic under the projects 'APVV-20-0071 and EPPN2020-OPVaI-VA-ITMS313011T813'.

Odkazy

PubMed 35056500
PubMed Central PMC8780112
DOI 10.3390/microorganisms10010051
PII: microorganisms10010051
Knihovny.cz E-zdroje

Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture.

Zobrazit více v PubMed

United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) 2019. [(accessed on 7 July 2020)]. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf.

FAO Plant Health and Food Security. International Plant Protection Convention, Rome, Italy. 2017. [(accessed on 4 August 2020)]. Available online: http://www.fao.org/3/a-i7829e.pdf.

Lichtfouse E., Navarrete M., Debaeke P., Souchère V., Alberola C., Ménassieu J. Agronomy for Sustainable Agriculture, A Review. Agron. Sustain. Dev. 2009;29:1–6. doi: 10.1051/agro:2008054. DOI

Maitra S., Pine S. Smart Irrigation for Food Security and Agricultural Sustainability. Ind. J. Nat. Sci. 2020;10:20435–20439.

John D.A., Babu G.R. Lessons from the Aftermaths of Green Revolution on Food System and Health. Front. Sustain. Food Syst. 2021;5:644559. doi: 10.3389/fsufs.2021.644559. PubMed DOI PMC

Scherr S.J., McNeely J.A. Biodiversity Conservation and Agricultural Sustainability: Towards a new Paradigm of ‘Ecoagriculture’ Landscapes. Philos. Trans. Royal. Soc. B. 2008;363:477–494. doi: 10.1098/rstb.2007.2165. PubMed DOI PMC

WCED (World Commission on Environment and Development) Our Common Future. Oxford University Press; Oxford, UK: 1987.

Arora N.K., Fatima T., Mishra I., Verma M., Mishra J., Mishra V. Environmental Sustainability: Challenges and Viable Solutions. Environ. Sustain. 2018;1:309–350. doi: 10.1007/s42398-018-00038-w. DOI

Akinsemolu A.A. The Role of Microorganisms in Achieving the Sustainable Development Goals. J. Clean Prod. 2018;182:139–155. doi: 10.1016/j.jclepro.2018.02.081. DOI

Committee on World Food Security Coming to Terms with Terminology: Food Security, Nutrition Security, Food Security and Nutrition, Food and Nutrition Security. 2012. [(accessed on 10 June 2020)]. Available online: http://www.fao.org/fsnforum/sites/default/files/file/Terminology/MD776(CFS_Coming_to_terms_with_Terminology).pdf.

Butterbach-Bahl K., Baggs E.M., Dannenmann M., Kiese R., Zechmeister-Boltenstern S. Nitrous Oxide Emissions from Soils: How well do we understand the Processes and their Controls? Philos. Trans. R. Soc. Lond. Biol. Sci. 2013;5:368. doi: 10.1098/rstb.2013.0122. PubMed DOI PMC

Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science. 2008;320:889–892. doi: 10.1126/science.1136674. PubMed DOI

Chen S., Zhao H., Zou C., Li Y., Chen Y., Wang Z., Ahammed G.J. Combined Inoculation with Multiple Arbuscular mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front. Microbiol. 2017;8:2516. doi: 10.3389/fmicb.2017.02516. PubMed DOI PMC

Jensen E.S., Peoples M.B., Boddey R.M., Gresshoff P.M., Hauggaard-Nielsen H., Alves B.J., Morrison M.J. Legumes for Mitigation of Climate Change and the Provision of Feedstock for Biofuels and Biorefineries. A Review. Agron. Sustain. Dev. 2012;32:329–364. doi: 10.1007/s13593-011-0056-7. DOI

Maitra S., Hossain A., Brestic M., Skalicky M., Ondrisik P., Gitari H., Brahmachari K., Shankar T., Bhadra P., Palai J.B., et al. Intercropping–A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy. 2021;11:343. doi: 10.3390/agronomy11020343. DOI

Rai P.K., Singh M., Anand K., Saurabh S., Kaur T., Kour D., Yadav A.N., Kumar M. Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Elsevier; Amsterdam, The Netherlands: 2020. Role and Potential Applications of Plant Growth-Promoting Rhizobacteria for Sustainable Agriculture; pp. 49–60. DOI

Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., et al. Agriculture. In: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A., editors. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2007. p. 497.

Morrissey J.P., Dow J.M., Mark G.L., O’Gara F. Are Microbes at the Root of a Solution to World Food Production? Rational Exploitation of Interactions Between Microbes and Plants Can Help to Transform Agriculture. EMBO Rep. 2004;5:922–926. doi: 10.1038/sj.embor.7400263. PubMed DOI PMC

Glick B.R. Bacteria and ACC Deaminase can Promote Plant Growth and Help to Feed the World. Microbial. Res. 2014;169:30–39. doi: 10.1016/j.micres.2013.09.009. PubMed DOI

Olubukola O., Babalola O., Glick B.R. The use of Microbial Inoculants in African agriculture. Food Agric. Environ. 2012;10:540–549.

Lugtenberg B. Life of Microbes in the Rhizosphere. In: Lugtenberg B., editor. Principles of Plant-Microbe Interactions. Springer; Cham, Switzerland: 2015. DOI

Kang S.M., Khan A.L., Waqas M., You Y.H., Kim J.H., Kim J.G., Hamayun M., Lee I.J. Plant Growth Promoting Rhizobacteria Reduce Adverse Effects of Salinity and Osmotic Stress by Regulating Phytohormones and Antioxidants in Cucumis Sativus. J. Plant Interact. 2014;9:673–682. doi: 10.1080/17429145.2014.894587. DOI

Wang C., Yang W., Wang C., Gu C., Niu D., Liu H. Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth promoting Rhizobacterium Strains. PLoS ONE. 2012;7:e52565. doi: 10.1371/journal.pone.0052565. PubMed DOI PMC

Harika J.V., Maitra S., Shankar T., Bera M., Manasa P. Effect of Integrated Nutrient Management on Productivity, Nutrient Uptake and Economics of Finger Millet (Eleusine coracana L. Gaertn) Int. J. Agric. Environ. Biotech. 2019;12:273–279. doi: 10.30954/0974-1712.08.2019.11. DOI

Scagliola M., Valentinuzzi F., Mimmo T., Cesco S., Crecchio C., Pii Y. Bioinoculants as Promising Complement of Chemical Fertilizers for a More Sustainable Agricultural Practice. Front. Sustain. Food Syst. 2021;4:622169. doi: 10.3389/fsufs.2020.622169. DOI

Armada E., Portela G., Roldán A., Azcón R. Combined Use of Beneficial Soil Microorganism and Agrowaste Residue to Cope with Plant Water Limitation Under Semiarid Conditions. Geoderma. 2014;232–234:640–648. doi: 10.1016/j.geoderma.2014.06.025. DOI

Glick B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation Scientifica; London, UK: 2012. PubMed DOI PMC

Mustafa S., Kabir S., Shabbir U., Batool R. Plant Growth Promoting Rhizobacteria in Sustainable Agriculture: From Theoretical to Pragmatic Approach. Symbiosis. 2019;78:115–123. doi: 10.1007/s13199-019-00602-w. DOI

Barnawal D., Bharti N., Maji D., Chanotiya C.S., Kalra A. 1-Aminocyclopropane-1-carboxylic acid (ACC) Deaminase Containing Rhizobacteria Protect Ocimum Sanctum Plants during Water Logging Stress via Reduced Ethylene Generation. Plant Physiol. Biochem. 2012;58:227–235. doi: 10.1016/j.plaphy.2012.07.008. PubMed DOI

Ali S.Z., Sandhya V., Rao L.V. Isolation and Characterization of Drought Tolerant Acc Deaminase and Exopolysaccharide Producing Fl Uorescent Pseudomonas spp. Ann. Microbiol. 2014;64:493–502. doi: 10.1007/s13213-013-0680-3. DOI

Compant S., Duffy B., Nowak J., Clement C., Barka E.A. Use of Plant Growth Promoting Bacteria for Biocontrol of Diseases: Principles, Mechanisms of Action and Future Prospects. Appl. Environ. Microbiol. 2005;71:4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005. PubMed DOI PMC

Herzner A.M., Dischinger J., Szekat C., Josten M., Schmitz S., Yakéléba A., Reinartz R., Jansen A., Sahl H.G., Piel J., et al. Expression of the Lantibiotic Mersacidin in Bacillus Amyloliquefaciens FZB42. PLoS ONE. 2011;6:e22389. doi: 10.1371/journal.pone.0022389. PubMed DOI PMC

Raza W., Yuan J., Ling N., Huang Q., Shen Q. Production of Volatile Organic Compounds by an Antagonistic Strain Paenibacillus Polymyxa WR-2 in the Presence of Root Exudates and Organic Fertilizer and their Antifungal Activity Against Fusarium oxysporum f. sp. niveum. Biol. Control. 2015;80:89–95. doi: 10.1016/j.biocontrol.2014.09.004. DOI

Hartman W.H., Richardson C.J. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (Qco2): Is There a Biological Stoichiometry of Soil Microbes. PLoS ONE. 2013;8:e57127. doi: 10.1371/journal.pone.0057127. PubMed DOI PMC

Baez-Rogelio A., Morales-García Y.E., Quintero-Hernández V., Muñoz-Rojas J. Next Generation of Microbial Inoculants for Agriculture and Bioremediation. Microb. Biotechnol. 2017;10:19–21. doi: 10.1111/1751-7915.12448. PubMed DOI PMC

Nobbe F., Hiltner L. Inoculation of the Soil for Cultivating Leguminous Plants. 1896,570,813. US. Patent. 1895 August 9;

Prashar P., Shah S. Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E., editor. Bambara Groundnut for Food Security in the Changing African Climate. Volume 19. Springer; Berlin/Heidelberg, Germany: 2016. pp. 331–362.

Alori E.T., Glick B.R., Babalola O.O. Microbial Phosphorus Solubilization and its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017;8:971. doi: 10.3389/fmicb.2017.00971. PubMed DOI PMC

Etesami H., Emami S., Alikhani H.A. Potassium Solubilizing Bacteria (KSB): Mechanisms, Promotion of Plant Growth, and Future Prospects—A Review. J. Soil Sci. Plant Nutr. 2017;17:897–911. doi: 10.4067/S0718-95162017000400005. DOI

Adams D.G., Duggan P.S. Cyanobacteria-bryophytes Symbioses. J. Exp. Bot. 2008;59:1047–1058. doi: 10.1093/jxb/ern005. PubMed DOI

Abhilash P.C., Dubey R.K., Tripathi V., Gupta V.K., Singh H.B. Plant Growth-Promoting Microorganisms for Environmental Sustainability. Trends Biotechnol. 2016;34:847–850. doi: 10.1016/j.tibtech.2016.05.005. PubMed DOI

Batra P., Barkodia M., Ahlawat U., Sansanwal R., Wati L. Effect of Compatible and Incompatible Endophytic Bacteria on Growth of Chickpea Plant. Def. Life Sci. J. 2020;5:45–48. doi: 10.14429/dlsj.5.15119. DOI

Gray E.J., Smith D.L. Intracellular and Extracellular Pgpr: Commonalities and Distinctions in the Plant-Bacterium Signaling Processes. Soil. Biol. Biochem. 2005;37:395–412. doi: 10.1016/j.soilbio.2004.08.030. DOI

Malusá E., Sas-Paszt L., Ciesielska J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Sci. World J. 2012:491206. doi: 10.1100/2012/491206. PubMed DOI PMC

Owen D., Williams A.P., Griffith G.W., Withers P.J.A. Use of Commercial Bio-Inoculants to Increase Agricultural Production through Improved Phosphrous Acquisition. Appl. Soil. Ecol. 2015;86:41–54. doi: 10.1016/j.apsoil.2014.09.012. DOI

Santos M.S., Nogueira M.A., Hungria M. Microbial Inoculants: Reviewing the past, Discussing the Present and Previewing an Outstanding Future for the use of Benefcial Bacteria in Agriculture. AMB Exp. 2019;9:205. doi: 10.1186/s13568-019-0932-0. PubMed DOI PMC

Koohafkan P., Altieri M.A., Gimenez E.H. Green Agriculture: Foundations For Biodiverse, Resilient and Productive Agricultural Systems. Int. J. Agric. Sust. 2012;10:61–75. doi: 10.1080/14735903.2011.610206. DOI

Altieri M.A., Nicholls C.I. Biodiversity and Pest Management in Agroecosystems. Haworth Press; New York, NY, USA: 2004.

Uphoff N. Agroecological Innovations: Increasing Food Production with Participatory Development. Earthscan; London, UK: 2002.

Toledo V.M., Barrera-Bassals N. La Memoria Biocultural: La Importancia Ecologica de las Sabidurias Tradicionales. ICARIA Editorial; Barcelona, Spain: 2009.

Pretty J., Sutherland W.J., Ashby J., Auburn J., Baulcombe D., Bell M., Bentley J., Bickersteth S., Brown K., Burke J., et al. The top 100 Questions of Importance to the Future of Global Agriculture. Int. J. Agric. Sust. 2011;9:1–20. doi: 10.3763/ijas.2010.0534. DOI

Herren H.R., Bassi A.M., Tan Z., Binns W.P. Green Jobs for a Revitalized Food and Agriculture Sector. Natural Resources Management and Environment Department Food and Agriculture Organization of the United Nations; Rome, Italy: 2012. p. 4.

Lovo S., Bezabih M., Singer G. Green Agricultural Policies and Poverty Reduction, Policy Brief. The Grantham Research Institute on Climate Change and the Environment, London and Global Green Growth Institute; Seoul, Korea: 2015. [(accessed on 30 August 2021)]. p. 24. Available online: https://gregorsinger.com/files/papers/GRI_LSE-Agriculture-GGGI-policy.pdf.

Berg G., Rybakova D., Grube M., Koberl M. The Plant Microbiome Explored: Implications for Experimental Botany. J. Exp. Bot. 2016;67:995–1002. doi: 10.1093/jxb/erv466. PubMed DOI PMC

Smith D.L., Gravel V., Yergeau E. Editorial: Signaling in the Phytomicrobiome. Front. Plant Sci. 2017;8:611. doi: 10.3389/fpls.2017.00611. PubMed DOI PMC

Backer R., Rokem J.S., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S., Smith D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018;9:1473. doi: 10.3389/fpls.2018.01473. PubMed DOI PMC

Turner T.R., James E.K., Poole P.S. The Plant Microbiome. Genome. Biol. 2013;14:209. doi: 10.1186/gb-2013-14-6-209. PubMed DOI PMC

Lebeis S.L. The Potential for Give and Take in Plant-Microbiome Relationships. Front. Plant Sci. 2014;5:287. doi: 10.3389/fpls.2014.00287. PubMed DOI PMC

Smith D.L., Subramanian S., Lamont J.R., Bywater-Ekegard M. Signaling in the phytomicrobiome: Breadth and potential. Front. Plant Sci. 2015;6:709. doi: 10.3389/fpls.2015.00709. PubMed DOI PMC

Trabelsi D., Mhamdi R. Microbial Inoculants and their Impact on Soil Microbial Communities: A Review. Biomed. Res. Int. 2013:863240. doi: 10.1155/2013/863240. PubMed DOI PMC

Nelson M.S., Sadowsky M.J. Secretion Systems and Signal Exchange Between Nitrogen-Fixing Rhizobia and Legumes. Front. Plant Sci. 2015;6:491. doi: 10.3389/fpls.2015.00491. PubMed DOI PMC

Leach J.E., Triplett L.R., Argueso C.T., Trivedi P. Communication in the Phytobiome. Cell. 2017;169:587–596. doi: 10.1016/j.cell.2017.04.025. PubMed DOI

Massalha H., Korenblum E., Tholl D., Aharoni A. Small Molecules Below-Ground: The Role of Specialized Metabolites in the Rhizosphere. Plant J. 2017;90:788–807. doi: 10.1111/tpj.13543. PubMed DOI

Uchida R. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms, Chapter 3. In: Silva J.A., Uchida R., editors. Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa; Honolulu, HI, USA: 2000. [(accessed on 13 July 2020)]. pp. 31–55. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/pnm3.pdf.

White P.J., Brown P.H. Plant Nutrition for Sustainable Development and Global Health. Ann. Bot. 2010;105:1073–1080. doi: 10.1093/aob/mcq085. PubMed DOI PMC

Polacco J.C. Nitrogen Metabolism in Soybean Tissue Culture: II. Urea Utilization and Urease Synthesis Require Ni. Plant Physiol. 1977;59:827–830. doi: 10.1104/pp.59.5.827. PubMed DOI PMC

Eskew D.L., Welch R.M., Cary E.E. Nickel: An Essential Micronutrient for Legumes and Possibly all Higher Plants. Science. 1983;222:621–623. doi: 10.1126/science.222.4624.621. PubMed DOI

Gerendás J., Sattelmacher B. Influence of Ni Supply on Growth and Nitrogen Metabolism of Brassica Napus L. Grown with NH4NO3 or Urea As N Source. Ann. Bot. 1999;83:65–71. doi: 10.1006/anbo.1998.0789. DOI

Fabiano C.C., Tezotto T., Favarin J.L., Polacco J.C., Mazzafera P. Essentiality of Nickel in Plants: A Role in Plant Stresses. Front. Plant Sci. 2015;6:754. doi: 10.3389/fpls.2015.00754. PubMed DOI PMC

Grusak M.A., Broadley M.R., White P.J. Plant Macro- and Micronutrient Minerals. John Wiley & Sons, Ltd.; Chichester, UK: 2016. DOI

Rashid M.I., Mujawar L.H., Shahzad T., Almeelbi T., Ismail I.M., Oves M. Bacteria and Fungi can contribute to Nutrients Bioavailability and Aggregate Formation in Degraded Soils. Microbiol. Res. 2016;183:26–41. doi: 10.1016/j.micres.2015.11.007. PubMed DOI

Vessey J.K. Plant Growth Promoting Rhizobacteria as Biofertilizers. Plant Soil. 2003;255:571–586. doi: 10.1023/A:1026037216893. DOI

Stamenković S., Beškoski V., Karabegović I., Lazić M., Nikolić N. Microbial fertilizers: A Comprehensive Review of Current Findings and Future Perspectives. Span. J. Agric. Res. 2018;16:e09R01. doi: 10.5424/sjar/2018161-12117. DOI

Patil M.G., Sayyed R.Z., Chaudhari A.B., Chincholkar S.B. Phosphate Solubilizing Microbes: A Potential Bioinoculant for Efficient use of Phosphate Fertilizers. Bioinoculants for Sustainable Agriculture and Forestry. Sci. Pub. 2002;l107:118.

Dey R., Pal K.K., Bhatt D.M., Chauhan S.M. Growth Promotion and Yield Enhancement of Peanut (Arachis Hypogaea L) by Application of Plant Growth Promoting Rhizobacteria. Microbiol. Res. 2004;159:371–394. doi: 10.1016/j.micres.2004.08.004. PubMed DOI

Ponmurugan P., Gopi C. Distribution Pattern and Screening of Phosphate Solubilizing Bacteria Isolated from Different Food and Forage Crops. J. Agron. 2006;5:600–604.

Afzal A., Asghari B. Rhizobium and Phosphate Solubilizing Bacteria Improve the Yield and Phosphorus Uptake in Wheat. (Triticum aestivum L.) Int. J. Agric. Biotec. 2008;10:85–88.

Hayat R., Ali S., Amara U., Khalid R., Ahmed I. Soil Beneficial Bacteria and Their Role in Plant Growth Promotion: A review. Ann. Microbiol. 2010;60:579–598. doi: 10.1007/s13213-010-0117-1. DOI

Kammar S.C., Gundappagol R.C., Santhosh G.P., Shubha S., Ravi M.V. Influence of Potassium Solubilizing Bacteria on Growth and Yield of Sunflower (Helianthus annuus L.) Environ. Ecol. 2016;34:33–37.

Korir H., Mungai N.W., Thuita M., Hamba Y., Masso C. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil. Front. Plant. Sci. 2017;8:141. doi: 10.3389/fpls.2017.00141. PubMed DOI PMC

Leggett M., Diaz-Zorita M., Koivunen M., Bowman R., Pesek R., Stevenson C., Leister T. Soybean Response Ti Inoculation with Bradyrhizobium Japonicum in the Unites States and Argentina. Agron. J. 2017;109:1031–1038. doi: 10.2134/agronj2016.04.0214. DOI

Rosa P.A.L., Mortinho E.S., Jalal A., Galindo F.S., Buzetti S., Fernandes G.C., Barco Neto M., Pavinato P.S., Teixeira Filho M.C.M. Inoculation With Growth-Promoting Bacteria Associated With the Reduction of Phosphate Fertilization in Sugarcane. Front. Environ. Sci. 2020;8:32. doi: 10.3389/fenvs.2020.00032. DOI

Bourion V.K., Heulin-Gotty V., Aubert P., Tisseyre M., Chabert-Martinello M., Pervent C., Delaitre D., Vile M., Siol G., Duc B., et al. Co-Inoculation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation are Distinct Traits in the Interaction. Front. Plant Sci. 2018;8:2249. doi: 10.3389/fpls.2017.02249. PubMed DOI PMC

Galindo F.S., Filho M.C.M.T., Buzetti S., Pagliari P.H., Santini J.M.K., Alves C.J., Megda M.M., Nogueira T.A.R., Reotti M., Arf O. Maize Yield Response to Nitrogen Rates and Sources Associated with Azospirillum Brasilense. Agron. J. 2019;111:1985–1997. doi: 10.2134/agronj2018.07.0481. DOI

Galindo F.S., Rodrigues W.L., Biagini A.L.C., Fernandes G.C., Baratella E.B., Junior C.A.d., Buzetti S., Filho M.C.M. Assessing Forms of Application of Azospirillum Brasilense Associated With Silicon Use on Wheat. Agronomy. 2019;9:678. doi: 10.3390/agronomy9110678. DOI

Zeffa D.M., Perini L.J., Silva M.B., de Sousa N.V., Scapim C.A., Oliveira A.L.M.D., Amaral Júnior A.T.D., Azeredo Goncalves L.S. Azospirillum Brasilense Promotes Increases in Growth and Nitrogen Use Efficiency of Maize Genotypes. PLoS ONE. 2019;14:e0215332. doi: 10.1371/journal.pone.0215332. PubMed DOI PMC

Zeffa D.M., Fantin L.H., Koltun A., de Oliveira A.L., Nunes M.P., Canteri M.G., Gonçalves L.S. Effects of Plant Growth-Promoting Rhizobacteria on Co-Inoculation with Bradyrhizobium in Soybean Crop: A Meta-Analysis of Studies from 1987 to 2018. PeerJ. 2020;8:e7905. doi: 10.7717/peerj.7905. PubMed DOI PMC

Bouguyon E., Brun F., Meynard D., Kubeš M., Pervent M., Leran S., Lacombe B., Krouk G., Guiderdoni E., Zažímalová E., et al. Multiple Mechanisms of Nitrate Sensing by Arabidopsis Nitrate Transceptor NRT1.1. Nat. Plants. 2015;1:15015. doi: 10.1038/nplants.2015.15. PubMed DOI

Bae H., Morrison E., Chanton J.P., Ogram A. Methanogens are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades. Appl. Environ. Microbiol. 2018;84:7. doi: 10.1128/AEM.02222-17. PubMed DOI PMC

Gothwal R., Nigam V., Mohan M., Sasmal D., Ghosh P. Screening of Nitrogen Fixers From Rhizospehric Bacterial Isolates Associated with Important Desert Plants. Appl. Ecol. Environ. Res. 2009;6:101–109. doi: 10.15666/aeer/0602_101109. DOI

Kuan K.B., Othman R., Abdul Rahim K., Shamsuddin Z.H. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize Under Greenhouse Conditions. PLoS ONE. 2016;11:e0152478. doi: 10.1371/journal.pone.0152478. PubMed DOI PMC

Gouda S., Kerry R.G., Das G., Paramithiotis S., Shin H.S., Patra J.K. Revitalization of Plant Growth Promoting Rhizobacteria for Sustainable Development in Agriculture. Microbiol. Res. 2018;206:131–140. doi: 10.1016/j.micres.2017.08.016. PubMed DOI

Sulieman S., Tran L.S.P. Symbiotic nitrogen fixation in legume nodules: Metabolism and regulatory mechanisms. Int. J. Mol. Sci. 2014;15:19389–19393. doi: 10.3390/ijms151119389. PubMed DOI PMC

Mus F., Crook M.B., Garcia K., Garcia Costas A., Geddes B.A., Kouri E.D., Paramasivan P., Ryu M.H., Oldroyd G.E., Poole P.S., et al. Symbiotic Nitrogen Fixation and the Challenges to its Extension to Nonlegumes. Appl. Environ. Microbiol. 2016;82:3698–3710. doi: 10.1128/AEM.01055-16. PubMed DOI PMC

Oke V., Long S.R. Bacteroid formation in the Rhizobium–legume symbiosis. Curr. Opin. Microbiol. 1999;2:641–646. doi: 10.1016/S1369-5274(99)00035-1. PubMed DOI

Mazid M., Khan T.A. Future of Bio-Fertilizers in Indian Agriculture: An Overview. Int. J. Agric. Food Res. 2014;3:1–23. doi: 10.24102/ijafr.v3i3.132. DOI

Herridge D.F., Peoples M.B., Boddey R.M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant Soil. 2008;311:1–18. doi: 10.1007/s11104-008-9668-3. DOI

Maróti G., Kondorosi E. Nitrogen-Fixing Rhizobium-Legume Symbiosis: Are Polyploidy and Host Peptide-Governed Symbiont Differentiation General Principles of Endosymbiosis. Front. Microbiol. 2014;5:326. PubMed PMC

Saikia S.P., Jain V., Srivastava G.C. Nitrogen Fixation in Nodules of Maize (Zea mays) Roots by Introduced Free-Living Diazo-Troph. Indian J. Agric. Sci. 2004;74:213–214.

Dawson T.L. It must be Green: Meeting Society’s Environmental Concerns. Color. Technol. 2008;124:67–78. doi: 10.1111/j.1478-4408.2008.00124.x. DOI

Santi C., Bogusz D., Franche C. Biological Nitrogen Fixation in Non-Legume Plants. Ann. Bot. 2013;111:743–767. doi: 10.1093/aob/mct048. PubMed DOI PMC

Glick B.R., Patten C.L., Holguin G., Penrose D.M. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press; London, UK: 1999.

Kloepper J.W., Lifshitz R., Zablotowicz R.M. Free-Living Bacterial Inocula for Enhancing Crop Productivity. Trends Technol. 1989;7:39–44. doi: 10.1016/0167-7799(89)90057-7. DOI

Brady N.C., Well R.R. The Nature and Properties of Soils. 13th ed. Pearson Education Pvt. Ltd.; Bengaluru, India: 2002. p. 735.

Wang Y., Yang Z., Kong Y., Li X., Li W., Du H., Zhang C. GmPAP12 Is Required for Nodule Development and Nitrogen Fixation under Phosphorus Starvation in Soybean. Front. Plant Sci. 2020;11:450. doi: 10.3389/fpls.2020.00450. PubMed DOI PMC

Taliman N.A., Dong Q., Echigo K., Raboy V., Saneoka H. Effect of Phosphorus Fertilization on the Growth, Photosynthesis, Nitrogen Fixation, Mineral Accumulation, Seed Yield, and Seed Quality of a Soybean Low-Phytate Line. Plants. 2019;8:119. doi: 10.3390/plants8050119. PubMed DOI PMC

Kadam D.V., Indulkar B.S., Kadam L.S., Jadhav V.S., Jadhav P.N. Effect of Phosphorus and Zinc and Quality of Groundnut (Arachis hypogaea L.) in Inceptisol. Int. J. Pure App. Biosci. 2018;6:105–110.

Ray K., Banerjee H., Dutta S., Hazra A.K., Majumdar K. Macronutrients Influence Yield and Oil Quality of Hybrid Maize (Zea mays L.) PLoS ONE. 2019;14:e0216939. doi: 10.1371/journal.pone.0216939. PubMed DOI PMC

Whitelaw M.A. Growth Promotion of Plants Inoculated With Phosphate-Solubilizing Fungi. Adv. Agron. 2000;69:100–151.

Rodriguez H., Fraga R. Phosphate Solubilizing Bacteria and their Role in Plant Growth Promotion. Biotechnol. Adv. 1999;17:319–339. doi: 10.1016/S0734-9750(99)00014-2. PubMed DOI

Hajjam Y., Cherkaoui S. The Influence of Phosphate Solubilizing Microorganisms on Symbiotic Nitrogen Fixation: Perspectives for Sustainable Agriculture. J. Mater. 2017;8:801–808.

Dhull S., Gera R., Singh H.S., Kakar R. Phosphate Solubilization Activity of Rhizobial Strains Isolated from Root Nodule of Cluster Bean Plant Native to Indian Soils. Int. J. Curr. Microbiol. App. Sci. 2018;7:255–266. doi: 10.20546/ijcmas.2018.704.029. DOI

Sharon J.A., Hathwaik L.T., Glenn G.M., Imam S.H., Lee C.C. Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. J. Soil Sci. Plant Nut. 2016;16:525–536. doi: 10.4067/S0718-95162016005000043. DOI

Subbarao N.S. Biofertilizers in Agriculture and Forestry. Regional Biofert Dev Centre; Hissar, India: 1998. Phosphate solubilizing microorganisms; pp. 133–142.

Kucey R.M.N., Janzen H.H., Legget M.E. Microbial Mediated Increases in Plant-Available Phosphorus. Adv. Agron. 1989;42:199–228.

Sridevi M., Mallaiah K.V. Phosphate solubilization by Rhizobium strains. Ind. J. Microbiol. 2009;49:98–102. doi: 10.1007/s12088-009-0005-1. PubMed DOI PMC

Anand K., Kumari B., Mallick M.A. Phosphate Solubilizing Microbes: An Effective and Alternative Approach as Biofertilizers. Int. J. Pharm. Pharm. Sci. 2016;8:37–40.

Sharma S.B., Sayyed R.Z., Trivedi M.H., Gobi T.A. Phosphate Solubilizing Microbes, Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Springer Plus. 2013;2:587. doi: 10.1186/2193-1801-2-587. PubMed DOI PMC

Baykov A.A., Malinen A.M., Luoto H.H., Lahti R. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes. Microbiol. Mol. Biol. Rev. 2013;77:267–276. doi: 10.1128/MMBR.00003-13. PubMed DOI PMC

Yan F., Zhu Y., Muller C., Zörb C., Schubert S. Adaptation of H+-Pumping and Plasma Membrane H+ Atpase Activity in Proteoid Roots of White Lupin Under Phosphate Deficiency. Plant Physiol. 2002;129:50–63. doi: 10.1104/pp.010869. PubMed DOI PMC

Begum N., Qin C., Ahanger M.A., Raza S., Khan M.I., Ashraf M., Ahmed N., Zhang L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019;10:1068. doi: 10.3389/fpls.2019.01068. PubMed DOI PMC

Nacoon S., Jogloy S., Riddech N., Mongkolthanaruk W., Kuyper T., Boonlue S. Interaction Between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Sci. Rep. 2020;10:4916. doi: 10.1038/s41598-020-61846-x. PubMed DOI PMC

Salam E.A., Alatar A., El-Sheikh M.A. Inoculation with Arbuscular Mycorrhizal Fungi Alleviates Harmful Effects of Drought Stress on Damask Rose. Saudi. J. Biol. Sci. 2017;25:1772–1780. doi: 10.1016/j.sjbs.2017.10.015. PubMed DOI PMC

Nanjundappa A., Bagyaraj D.J., Saxena A.K., Kumar M., Chakdar H. Interaction between Arbuscular Mycorrhizal Fungi and Bacillus Spp. in Soil Enhancing Growth of Crop Plants. Fungal Biol. Biotechnol. 2019;6:23. doi: 10.1186/s40694-019-0086-5. PubMed DOI PMC

Pal D., Sinha S.N. Isolation and Characterization of Phosphate Solubilizing Bacterium Pseudomonas aeruginosa KUPSB12 with Antibacterial Potential from River Ganga, India. Ann. Agrarian. Sci. 2017;15:130–136. doi: 10.1016/j.aasci.2016.10.001. DOI

Prajapati K., Modi H.A. The importance of Potassium in Plant Growth—A Review. Indian J. Plant Sci. 2012;1:177–186.

Cakmak I. The Role of Potassium in Alleviating Detrimental Effects of Abiotic Stresses in Plants. J. Plant. Nutr. Soil. Sci. 2005;168:521–530. doi: 10.1002/jpln.200420485. DOI

O’Neill S.D., Spanswick R.M. Characterization of Native and Reconstituted Plasma Membrane H+ -ATPase from the Plasma Membrane of Beta vulgaris. J. Mem. Biol. 1984;79:245–256. doi: 10.1007/BF01871063. DOI

Hasanuzzaman M., Bhuyan M.H.M.B., Nahar K., Hossain M.S., Mahmud J.A., Hossen M.S., Masud I.D., Moumita A.A.C., Fujita M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy. 2018;8:31. doi: 10.3390/agronomy8030031. DOI

Meena V.S., Maurya B.R., Bahadur I. Potassium Solubilization by Bacterial Strain in Waste Mica. J. Bot. 2015;43:235–237. doi: 10.3329/bjb.v43i2.21680. DOI

Ruiz J.L., Salas M.D.C. Evaluation of Organic Substrates and Microorganisms as Bio-Fertilisation Tool in Container Crop Production. Agronomy. 2019;9:705. doi: 10.3390/agronomy9110705. DOI

Meena V.S., Maurya B.R., Verma J.P. Does a Rhizospheric Microorganism Enhance K+ Availability in Agricultural Soils? Microbiol. Res. 2014;169:337–347. doi: 10.1016/j.micres.2013.09.003. PubMed DOI

Velazquez E., Silva L.R., Ramirez-Bahena M.H., Peix A. Diversity of Potassium-Solubilizing Microorganisms and Their Interactions with Plants. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 1–331.

Haro R., Benito B. The Role of Soil Fungi In K+ Plant Nutrition. Int. J. Mol. Sci. 2019;20:3169. doi: 10.3390/ijms20133169. PubMed DOI PMC

Rana A., Saharan B., Joshi M. Identification of Multi-Trait PGPR Isolates and Evaluating Their Potential as Inoculants for Wheat. Ann. Microbiol. 2011;61:893–900. doi: 10.1007/s13213-011-0211-z. DOI

Kobayashi T., Nishizawa N.K. Iron Uptake, Translocation, and Regulation in Higher Plants. Ann. Rev. Plant Biol. 2012;63:131–152. doi: 10.1146/annurev-arplant-042811-105522. PubMed DOI

Jin C.W., Ye Y.Q., Zheng S.J. An Underground Tale: Contribution of Microbial Activity to Plant Iron Acquisition via Ecological Processes. Ann. Bot. 2014;113:7–18. doi: 10.1093/aob/mct249. PubMed DOI PMC

Shenker M., Chen Y. Increasing Iron Availability to Crops: Fertilizers, Organo-Fertilizers, and Biological Approaches. Soil Sci. Plant Nut. 2005;51:1–17. doi: 10.1111/j.1747-0765.2005.tb00001.x. DOI

Schalk I.J., Hannauer M., Braud A. New roles for Bacterial Siderophores in Metal Transport and Tolerance. Environ. Microbiol. 2011;13:2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x. PubMed DOI

Jin C.W., Li G.X., Yu X.H., Zheng S.J. Plant Fe Status Affects the Composition of Siderophore-Secreting Microbes in the Rhizosphere. Ann. Bot. 2010;105:835–841. doi: 10.1093/aob/mcq071. PubMed DOI PMC

Mishra P.K., Bisht S.C., Mishra S., Selvakumar G., Bisht J.K., Gupta H.S. Co-inoculation of Rhizobium Leguminosarum-PR1 With a Cold Tolerant Pseudomonas sp. Improves Iron Acquisition, Nutrient Uptake and Growth of Field Pea (Pisum sativum L.) J. Plant Nutr. 2012;35:243–256. doi: 10.1080/01904167.2012.636127. DOI

Zhang H., Sun Y., Xie X., Kim M.S., Dowd S.E., Paré P.W. A Soil Bacterium Regulates Plant Acquisition of Iron via Deficiency-Inducible Mechanisms. Plant J. 2009;58:568–577. doi: 10.1111/j.1365-313X.2009.03803.x. PubMed DOI

Bonnet M., Camares O., Veisseire P. Effect of Zinc and Influence of Acremonium Lolii on Growth Parameters, Chlorophyll A Fluorescence and Antioxidant Enzyme Activities of Ryegrass (Lolium perenne L. cv Apollo) J. Exp. Bot. 2000;51:945–953. PubMed

Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. Zinc in Plants. New Phytol. 2007;173:677–702. doi: 10.1111/j.1469-8137.2007.01996.x. PubMed DOI

Tsonev T., Lidon F.J.C. Zinc in Plants—An Overview. Emir. J. Food Agric. 2012;24:322–333.

Disante K.B., Fuentes D., Cortina J. Response to Drought of Zn-Stressed Quercus Suber L. Seedlings. Env. Exp. Bot. 2010;70:96–103. doi: 10.1016/j.envexpbot.2010.08.008. DOI

Peck A.W., McDonald G.K. Adequate Zinc Nutrition Alleviates the Adverse Effects of Heat Stress in Bread Wheat. Plant Soil. 2010;337:355–374. doi: 10.1007/s11104-010-0532-x. DOI

Tavallali V., Rahemi M., Eshghi S., Kholdebarin B., Ramezanian A. Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings, Turk. J. Agric. Forest. 2010;34:349–359.

López-Pazos S.A., Cortazar J.E., Cerón J. Cry1B and Cry3A are Active against Hypothenemus Hampei Ferrari (coleoptera Scolytidae) J. Invertebr. Pathol. 2009;101:242–245. doi: 10.1016/j.jip.2009.05.011. PubMed DOI

Hänsch R., Mendel R.R. Physiological Functions of Mineral Micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. Opin. Plant Biol. 2009;12:259–266. PubMed

Coleman J.E. Zinc Proteins: Enzymes, Storage Proteins, Transcription Factors, and Replication Proteins. Annu. Rev. Biochem. 1992;61:897–946. doi: 10.1146/annurev.bi.61.070192.004341. PubMed DOI

Iratkar A.G., Giri J.D., Kadam M.M., Giri J.N., Dabhade M.B. Distribution of DTPA Extractable Micronutrients and their Relationship with Soil Properties in soil of Parsori Watershed of Nagpur District of Maharashtra. Asian J. Soil Sci. 2014;9:297–299.

Yang X.W., Tian X.H., Lu X.C., Cao Y.X., Chen Z.H. Impacts of Phosphorus and Zinc Levels on Phosphorus and Zinc Nutrition and Phytic Acid Concentration in Wheat (Triticum aestivum L.) J. Sci. Food Agri. 2011;91:2322–2328. doi: 10.1002/jsfa.4459. PubMed DOI

Rengel Z. Availability of Mn, Zn and Fe in the Rhizosphere. J. Soil Sci. Plant Nutr. 2015;15:397–409. doi: 10.4067/S0718-95162015005000036. DOI

Mumtaz M.Z., Ahmad M., Jamil M., Hussain T. Zinc Solubilizing Bacillus Spp. Potential Candidates for Biofortification in Maize. Microbial. Res. 2017;202:51–60. doi: 10.1016/j.micres.2017.06.001. PubMed DOI

Kamran S., Shahid I., Baig D.N., Rizwan M., Malik K.A., Mehnaz S. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Front. Microbiol. 2017;8:2593. doi: 10.3389/fmicb.2017.02593. PubMed DOI PMC

Ramesh A., Sharma S.K., Sharma M.P., Yadav N., Joshi O.P. Inoculation of Zinc Solubilizing Bacillus Aryabhattai Strains for Improved Growth, Mobilization and Biofortification of Zinc In Soybean And Wheat Cultivated In Vertisols Of Central India. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2014;73:87–96. doi: 10.1016/j.apsoil.2013.08.009. DOI

Hussain A., Arshad M., Zahir Z.A., Asghar M. Prospects of Zinc Solubilizing Bacteria for Enhancing Growth of Maize. Pak. J. Agric. Sci. 2015;52:915–922.

Deepak J., Geeta N., Sachin V., Anita S. Enhancement of Wheat Growth and Zn Content in Grains by Zinc Solubilizing Bacteria. Int. J. Agric. Environ. Biotechnol. 2013;6:363–370. doi: 10.5958/j.2230-732X.6.3.004. DOI

Naz I., Ahmad H., Khokhar S.N., Khan K., Shah A.H. Impact of Zinc Solubilizing Bacteria on Zinc Contents of Wheat. Am. Euras. J. Agric. Environ. Sci. 2016;16:449–454. doi: 10.5829/idosi.aejaes.2016.16.3.12886. DOI

Fasim F., Ahmed N., Parsons R., Gadd G.M. Solubilization of Zinc Salts By A Bacterium Isolated from the Air Environment of a Tannery. FEMS. Microbiol. Lett. 2002;213:1–6. doi: 10.1111/j.1574-6968.2002.tb11277.x. PubMed DOI

Abaid-Ullah M., Nadeem M., Hassan M., Ganter J., Muhammad B., Nawaz K., Shah A.S., Hafeez F.Y. Plant Growth Promoting Rhizobacteria: An Alternate Way to Improve Yield and Quality of Wheat (Triticum aestivum) Int. J. Agric. Biol. 2015;17:51–60.

Saravanan V.S., Madhaiyan M., Thangaraju M. Solubilization of Zinc Compounds by the Diazotrophic, Plant Growth Promoting Bacterium Gluconacetobacter diazotrophicus. Chemosphere. 2007;66:1794–1798. doi: 10.1016/j.chemosphere.2006.07.067. PubMed DOI

Saravanan V.S., Kumar M.R., Sa T.M. Microbial Zinc Solubilization and Their Role on Plants, Chapter 3. In: Maheshwari D.K., editor. Bacteria in Agrobiology: Plant Nutrient Management. Springer-Verlag; Berlin/Heidelberg, Germany: 2011. DOI

Pawar A., Ismail S., Mundhe S., Patil V.D. Solubilization of Insoluble Zinc Compounds by Different Microbial Isolates in Vitro Condition. Int. J. Trop. Agric. 2015;33:865–869.

Othman N.M.I., Othman R., Saud H.M., Wahab P.E.M. Effects of Root Colonization by Zinc-Solubilizing Bacteria on Rice Plant (Oryza sativa MR219) Growth. Agric. Nat. Res. 2017;51:532–537. doi: 10.1016/j.anres.2018.05.004. DOI

Alejandro S., Höller S., Meier B., Peiter E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020;11:300. doi: 10.3389/fpls.2020.00300. PubMed DOI PMC

Xie L., Bi Y., Ma S., Shang J., Hu Q., Christie P. Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: Synergistic or competitive growth effects on maize? BMC Plant Biol. 2021;21:498. doi: 10.1186/s12870-021-03267-0. PubMed DOI PMC

Oerke E.C. Crop Losses to Pests. J. Agric. Sci. 2006;144:31–43. doi: 10.1017/S0021859605005708. DOI

.Ficke A., Cowger C., Bergstrom G., Brodal G. Understanding Yield Loss and Pathogen Biology to Improvement Disease Management: Septoria Nodorum Blotch- A case study In Wheat. Plant. Dis. 2018;102:696–707. doi: 10.1094/PDIS-09-17-1375-FE. PubMed DOI

Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M., Sharma M.P., Yadav G.S., Jhariya M.K., Jangir C.K., et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land. 2020;9:34. doi: 10.3390/land9020034. DOI

Wang M.C., Gong M., Zang H.B., Hua X.M., Yao J., Pang Y.J., Yang Y.H. Effect of Methamidophos and Urea Application on Microbial Communities in Soils as Determined by Microbial Biomass and Community Level Physiological Profiles. J. Environ. Sci. Health B. 2006;41:399–413. doi: 10.1080/03601230600616155. PubMed DOI

Miller G.T. Sustaining the Earth. Brooks/Cole; Monterey County, CA, USA: 2004.

Aktar W., Sengupta D., Chowdhury A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009;2:1–12. doi: 10.2478/v10102-009-0001-7. PubMed DOI PMC

Bowmer K.H. Ecosystem Effects from Nutrient and Pesticide Pollutants: Catchment Care as a Solution. Resources. 2013;2:439–456. doi: 10.3390/resources2030439. DOI

Hussain S., Siddique T., Saleem M., Arshad M., Khalid A. Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions. Adv. Agron. 2009;102:159–200.

Lo C.C. Effect of Pesticides on Soil Microbial Community. J. Environ. Sci. Health. Part B. 2010;45:348–359. doi: 10.1080/03601231003799804. PubMed DOI

Chagnon M., Kreutzweiser D., Mitchell E.A., Morrissey C.A., Noome D.A., Van der Sluijs J.P. Risks of Large-Scale Use of Systemic Insecticides to Ecosystem Functioning and Services. Environ. Sci. Pollut. Res. 2015;22:119–134. doi: 10.1007/s11356-014-3277-x. PubMed DOI PMC

Wezel A., Casagrande M., Celette F., Vian J., Ferrer A., Peigné J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014;34:1–20. doi: 10.1007/s13593-013-0180-7. DOI

Barratt B.I.P., Moran V.C., Bigler F., van Lanteren J.C. The Status of Biological Control and Recommendations for Improving Uptake for the Future. Biol. Control. 2018;63:155–167. doi: 10.1007/s10526-017-9831-y. DOI

Wright M.G., Bennett G.M. Evolution of Biological Control Agents Following Introduction to New Environments. Biol. Control. 2017;63:105–116. doi: 10.1007/s10526-017-9830-z. DOI

Wyckhuys K.A., Lu Y., Morales H., Vazquez L.L., Legaspi J.C., Eliopoulos P.A., Hernandez L.M. Current Status and Potential of Conservation Biological Control for Agriculture in the Developing World. Biol. Control. 2013;65:152–167. doi: 10.1016/j.biocontrol.2012.11.010. DOI

Arora N.K., Fatima T., Mishra I., Verma S. Microbe-based Inoculants: Role in Next Green Revolutio. In: Shukla V., Kumar N., editors. Environmental Concerns and Sustainable Development. Springer Nature; Singapore: 2020. pp. 191–246. DOI

Sulistyo A., Inayati A. Mechanisms of Antixenosis, Antibiosis, and Tolerance of Fourteen Soybean Genotypes in Response to Whiteflies (Bemisia tabaci) Biodiversitas. 2016;17:447–453. doi: 10.13057/biodiv/d170207. DOI

Nascimento F.X., Rossi M.J., Soares C.R., McConkey B.J., Glick B.R. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLoS ONE. 2014;6:e99168. doi: 10.1371/journal.pone.0099168. PubMed DOI PMC

Swarnalakshmi K., Senthilkumar M., Ramakrishnan B. Endophytic Actinobacteria: Nitrogen Fixation, Phytohormone Production, and Antibiosis. In: Subramaniam G., Arumugam S., Rajendran V., editors. Plant Growth Promoting Actinobacteria. Springer; Singapore: 2016. DOI

Kaunat H. Bidung Von Indolderivaten Durch Rhizospha Reenspezifisch Bakterien Und Aktinomyzeten. Zent. Bak. Abt. II. 1969;123:501–515. PubMed

Brown M.E. Plant Growth Substances Produced by Micro Organisms of Soil and Rhizosphere. J. Appl. Bacteriol. 1972;35:443–451. doi: 10.1111/j.1365-2672.1972.tb03721.x. DOI

Wheeler C.T., Crozier A., Sandberg G. The biosynthesis of Indole-3-Acetic Acid by Frankia. Plant Soil. 1984;78:99–104. doi: 10.1007/BF02277843. DOI

Abd-Alla M.H. Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia. Microbiol. 1994;39:53–56. doi: 10.1007/BF02814530. DOI

Mahadevan B., Crawford D.L. Properties of the Chitinase of the Antifungal Biocontrol Agent Streptomyces Lydicus WYEC108. Enzym. Microb. Technol. 1997;20:489–493. doi: 10.1016/S0141-0229(96)00175-5. DOI

Tokala R.K., Strap J.L., Jung C.M., Crawford D.L., Salove M.H., Deobald L.A., Bailey J.F., Morra M.J. Novel Plant-Microbe Rhizosphere Interaction Involving Streptomyces Lydicus WYEC108 and the pea plant (Pisums ativum) App. Environ. Microbiol. 2002;68:2161–2171. doi: 10.1128/AEM.68.5.2161-2171.2002. PubMed DOI PMC

Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A., Netrusov A.I. Microbial producers of Plant Growth-Stimulators and their Practical Use: A Review. App. Biochem. Microbiol. 2006;42:117–126. doi: 10.1134/S0003683806020013. PubMed DOI

El-Tarabily K.A. Promotion of Tomato (Lycopersicon esculentum Mill.) Plant Growth by Rhizosphere Competent 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing Streptomyceteactino mycetes. Plant Soil. 2008;308:161–174. doi: 10.1007/s11104-008-9616-2. DOI

Khamna S., Yokota A., Peberdy J.F., Lumyong S. Indole-3-Acetic Acid Production by Streptomyces Sp. Isolated from Some Thai Medicinal Plant Rhizosphere Soils. EurAsian J. BioSci. 2010;4:23–32. doi: 10.5053/ejobios.2010.4.0.4. DOI

Verma V.C., Singh S.K., Prakash S. Bio-control and plant growth-promotion potential of siderophore producing endophytic Streptomyces from Azadirachtaindica A. Juss. J. Basic Microbiol. 2011;51:550–556. doi: 10.1002/jobm.201000155. PubMed DOI

Abd-Alla M.H., El-Sayed E.S.A., Rasmey A.H.M. Indole-3-acetic acid (IAA) Production by Streptomyces Atrovirens Isolated from Rhizospheric Soil in Egypt. J. Biol. Earth Sci. 2013;3:B182–B193.

Lin L., Xu X. Indole-3-acetic acid Production by Endophytic Streptomyces Sp. En-1 Isolated from Medicinal Plants. Curr. Microbiol. 2013;67:209–217. doi: 10.1007/s00284-013-0348-z. PubMed DOI

Subramanian P., Kim K., Krishnamoorthy R., Sundaram S., Sa T. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobiumjaponicum MN110. Plant Growth Regul. 2014;76:327–332. doi: 10.1007/s10725-014-9993-x. DOI

Sang-Mo K., Abdul-Latif K., Young-Hyun Y., Muhammad K. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J. Microbiol. Biotechnol. 2014;24:106–112. PubMed

Cacciari I., Grappelli A., Lippi D., Pietrosanti W. Effect of Growth Rate on The Production of Phytohormone-Like Substances by an Arthrobacter Sp. in Chemostat Culture. J. Gen. Microbiol. 1980;118:549–552. doi: 10.1099/00221287-118-2-549. DOI

Stevens G., Berry A.M. Cytokinin secretion by Frankia sp. HFP ArI3 in defined medium. Plant Physiol. 1988;87:15–16. doi: 10.1104/pp.87.1.15. PubMed DOI PMC

Joshi M.V., Loria R. Streptomyces Turgidiscabies Possesses a Functional Cytokinin Biosynthetic Pathway and Produces Leafy Galls. Mol. Plant Microbe. Interact. 2007;20:751–758. doi: 10.1094/MPMI-20-7-0751. PubMed DOI

Pertry I., Vaclavikova K., Depuydt S., Galuszka P., Spichal L., Temmerman W., Vereecke D. Identification of Rhodococcusfascianscytokinins and their modus Operandi to Reshape the Plant. PNAS. 2009;106:929–934. doi: 10.1073/pnas.0811683106. PubMed DOI PMC

Katznelson H., Cole S.E. Production of Gibberellin like Substances by Bacteria and Actinomycetes. Can. J. Microbiol. 1965;11:733–741. doi: 10.1139/m65-097. PubMed DOI

Merckx R., Dijkra A., Hartog A.D., Veen J.A.V. Production of Root-Derived Material and Associated Microbial Growth in Soil at Different Nutrient Levels. Biol. Fertil. Soil. 1987;5:126–132. doi: 10.1007/BF00257647. DOI

Jadhav H.P., Sayyed R.Z. Hydrolytic Enzymes of Rhizospheric Microbes in Crop Protection. MOJ Cell. Sci. Rep. 2016;3:135–136.

Mishra J., Tewari S., Singh S., Arora N.K. Plant Microbes Symbiosis: Applied Facets. Springer; New Delhi, India: 2015. Biopesticides: Where we Stand? Plant Microbes Symbiosis: Applied Facets; pp. 37–75.

Mishra N., Khan S.S., Sundari S.K. Native Isolate of Trichoderma: A Biocontrol Agent with Unique Stress Tolerance Properties. World J. Microbiol. Biotechnol. 2016;32:130. doi: 10.1007/s11274-016-2086-4. PubMed DOI

Banat I.M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M.G., Fracchia L., Smyth T.J., Marchant R. Microbial Biosurfactants Production, Applications and Future Potential. Appl. Microbiol. Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI

López-Millán A.F., Ellis D.R., Grusak M.A. Effect of Zinc and Manganese Supply on the Activities of Superoxide Dismutase and Carbonic Anhydrase in Medicago Truncatula Wild Type and Raz Mutant Plants. Plant Sci. 2005;168:1015–1022. doi: 10.1016/j.plantsci.2004.11.018. DOI

Pathak D., Lone R., Koul K.K. Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Association in Potato (Solanum Tuberosum L.): A Brief Review. In: Kumar V., Kumar M., Sharma S., Prasad R., editors. Probiotics and Plant Health. Springer; Singapore: 2017. pp. 401–420.

Walters D.R., Ratsep J., Havis N.D. Controlling Crop Diseases Using Induced Resistance: Challenges for the Future. J. Exp. Bot. 2013;64:1263–1280. doi: 10.1093/jxb/ert026. PubMed DOI

Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. Induces Systemic Resistance by Beneficial Microbes. Ann. Rev. Phytopathol. 2014;52:347–375. doi: 10.1146/annurev-phyto-082712-102340. PubMed DOI

Shockman G., Waksman S.A. Rhodomycin-An Antibiotic Produced by A Red-Pigmented Mutant of Streptomyces Griseus. Antibiot Chem. 1951;1:68–75. PubMed

Shih H.D., Liu Y.C., Hsu F.L., Mulabagal V., Dodda R., Huang J.W. Fungichromin: A Substance from Streptomyces Padanus with Inhibitory Effects on Rhizoctoniasolani. J. Agric. Food Chem. 2003;51:95–99. doi: 10.1021/jf025879b. PubMed DOI

Ezra D., Castillo U.F., Strobel G.A., Hess W.M., Porter H., Jensen J.B., Condron M.A., Teplow D.B., Sears J., Maranta M., et al. Coronamycins, Peptide Antibiotics Produced by A Verticillate Streptomyces Sp. (MSU-2110) Endophytic On Monstera Sp. Microbiology. 2004;150:785–793. doi: 10.1099/mic.0.26645-0. PubMed DOI

Weinstein M.J., Luedemann G.M., Oden E.M., Wagman G.H. Everninomicin, A New Antibiotic Complex From Micromonosporacarbonacea. Antimicrob. Agents Chemother. 1964;10:24–32. PubMed

Coronelli C., Pagani H., Bardone M.R., Lancini. G.C. Purpuromycin, a New Antibiotic Isolated from Actinoplanesianthinogenes N. sp. J. Antibiot. 1974;27:161–168. doi: 10.7164/antibiotics.27.161. PubMed DOI

Reimann H., Cooper D.J., Mallams A.K., Jaret R.S., Yehaskel A., Kugelman M., Vernay H.F., Schumacher D. Structure of Sisomicin, a Novel Unsaturated Aminocyclitol Antibiotic from Micromonosporainyoensis. J. Org. Chem. 1974;39:1451–1457. doi: 10.1021/jo00924a001. PubMed DOI

Coronelli C., White R.J., Lancini G.C., Parenti F. Lipiarmycin, a New Antibiotic from Actinoplanes. II. Isolation, Chemical, Biological and Biochemical Characterization. J. Antibiot. 1975;28:253–259. doi: 10.7164/antibiotics.28.253. PubMed DOI

Patel M., Horan A.C., Gullo V.P., Loebenberg D., Marquez J.A., Miller G.H., Waitz J.A. Oxanthromicin, a Novel Antibiotic from Actinomadura. J. Antibiot. 1984;37:413–415. doi: 10.7164/antibiotics.37.413. PubMed DOI

Maskey R.P., Li F.C., Qin S., Fiebig H.H., Laatsch H. Chandrananimycins AC: Production of Novel Anticancer Antibiotics from a Marine Actinomadura Sp. Isolate M048 By Variation of Medium Composition and Growth Conditions. J. Antibiot. 2003;56:622–629. doi: 10.7164/antibiotics.56.622. PubMed DOI

Parenti F., Beretta G., Berti M., Arioli V. Teichomycins, New Antibiotics from Actinoplaneseichomyceticus Nov. Sp. I. Description of the Producer Strain, Fermentation Studies and Biological Properties. J. Antibiot. 1978;1:276–283. doi: 10.7164/antibiotics.31.276. PubMed DOI

Somma S., Gastaldo L., Corti A. Teicoplanin, a New Antibiotic from Actinoplanesteichomyceticusnov.sp. Antimicrob. Agents Chemother. 1984;26:917–923. doi: 10.1128/AAC.26.6.917. PubMed DOI PMC

Omura S., Imamura N., Oiwa R., Kuga H., Iwata R., Masuma R., Iwai Y. Clostomicins, new antibiotics produced by Micromonosporaechinospora subsp. armeniaca Subsp. Nov.I Production, Isolation, and Physico-Chemical And Biological Properties. J Antibiot. 1986;39:1407–1412. doi: 10.7164/antibiotics.39.1407. PubMed DOI

Boeck V.D., Fukuda D.S., Abbott B.J., Debono M. Deacylation of Echinocandin B by Actinoplanesutahensis. J. Antibiot. 1989;42:382–388. doi: 10.7164/antibiotics.42.382. PubMed DOI

Kawamura N., Sawa R., Takahashi Y., Issiki K., Sawa T., Kinoshita N., Naganawa H., Hamada M., Takeuchi T. Pyralomicins, New Antibiotics from Actinomadura Spiralis. J. Antibiot. 1995;48:435–437. doi: 10.7164/antibiotics.48.435. PubMed DOI

Igarashi Y., Takagi K., Kajiura T., Furumai T., Oki T. Glucosylquestiomycin, A Novel Antibiotic from Microbispora Sp. TP-A0184 Fermentation, Isolation, Structure Determination, Synthesis and Biological Activities. J. Antibiot. 1998;51:915–920. doi: 10.7164/antibiotics.51.915. PubMed DOI

Lam Y.T., Williams D.L., Sigmund J.M., Sanchez M., Genilloud O., Kong Y.L., Stevens-Miles S.I.O.B.H.A.N., Huang L., Garrity G.M. Cochinmicins, Novel and Potent Cyclodepsipeptideendothelin Antagonists from a Microbispora sp. I. Production, Isolation, and Characterization. J. Antibiot. 1992;45:1709–1716. doi: 10.7164/antibiotics.45.1709. PubMed DOI

He H., Ding W.D., Bernan V.S., Richardson A.D., Ireland C.M., Greenstein M., Ellestad G.A., Carter G.T. Lomaiviticins A and B, Potent Antitumor Antibiotics from Micromonosporalomaivitiensis. J. Am. Chem. Soc. 2001;123:5362–5363. doi: 10.1021/ja010129o. PubMed DOI

Vertesy L., Ehlers E., Kogler H., Kurz M., Meiwes J., Seibert G., Vogel M., Hammann P. Friulimicins: Novel Lipopeptide Antibiotics with Peptidoglycan Synthesis Inhibiting Activity from Actinoplanesfriuliensis Sp. Nov. II. Isolation and Structural Characterization. J. Antibiot. 2000;53:816–827. doi: 10.7164/antibiotics.53.816. PubMed DOI

Ivanova N.V., Zemlak T.S., Hanner R.H., Hebert P.D.N. Universal Primer Cocktails for Fish DNA Barcoding. Mol. Ecol. Notes. 2007;7:544–548. doi: 10.1111/j.1471-8286.2007.01748.x. DOI

Li W., Leet J.E., Ax H.A., Gustavson D.R., Brown D.M., Turner L., Brown K., Clark J., Yang H., Fung-Tomc J., et al. Nocathiacins, New Thiazolyl Peptide Antibiotics From Nocardia Sp. I. Taxonomy, Fermentation and Biological Activities. J. Antibiot. 2003;56:226–231. doi: 10.7164/antibiotics.56.226. PubMed DOI

Sun C.H., Wang Y., Wang Z., Zhou J.Q., Jin W.Z., You X.F., Gao H., Zhao L.X., Si S.Y., Li X. Chemomicin A: A New Angucyclinone Antibiotic Produced by Nocardiamediterranei subsp. Kanglensis 1747–64. J. Antibiot. 2007;60:211–215. doi: 10.1038/ja.2007.25. PubMed DOI

Engelhardt K., Degnes K.F., Kemmler M., Bredholt H., Fjaervik E., Klinkenberg G., Sletta H., Ellingsen T.E., Zotchev S.B. Production of a New Thiopeptide Antibiotic, TP-1161, By A Marine Nocardiopsis Species. Appl. Environ. Microbiol. 2010;76:4969–4976. doi: 10.1128/AEM.00741-10. PubMed DOI PMC

El-Tarabily K.A., Nassar A.H., Hardy G.E.S.J., Sivasithamparam K. Plant Growth-Promotion and Biological Control Of Pythiumaphanidermatum, A Pathogen of Cucumber, by Endophyticactin omycetes. J. Appl. Microbiol. 2009;106:13–26. doi: 10.1111/j.1365-2672.2008.03926.x. PubMed DOI

Loliam B., Morinaga T., Chaiyanan S. Biocontrol of Pythiumaphanidermatumby the Cellulolytic Actinomycetes Streptomyces Rubrolavendulae S4. Sci. Asia. 2013;39:584–590. doi: 10.2306/scienceasia1513-1874.2013.39.584. DOI

Ashokvardhan T., Rajithasri A.B., Prathyusha P., Satyaprasad K. Actinomycetes from Capsicum annuum L. Rhizosphere Soil have the Bio control Potential Against Pathogenic Fungi. Int. J. Curr. Microbiol. App. Sci. 2014;3:894–903.

El-Tarabily K.A. Anendophyticchitinase-Producing Isolate of Actinoplanesmissouriensis, with Potential for Biological Control of Root Rot of Lupine Caused by Plectosporium tabacinum. Aust. J. Bot. 2003;51:257–266. doi: 10.1071/BT02107. DOI

Yandigeri M.S., Malviya N., Solanki M.K., Shrivastava P., Sivakumar G. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctoniasolani. World J. Microbiol. Biotechnol. 2015;31:1217–1225. doi: 10.1007/s11274-015-1870-x. PubMed DOI

Trejo-Estrada S.R., Sepulveda I., Crawford D.L. In Vitro and in Vivo Antagonism of Streptomyces Violaceusniger YCED9 against Fungal Pathogens of Turfgrass. World J. Microbiol. Biotechnol. 1998;14:865–872. doi: 10.1023/A:1008877224089. DOI

Shekhar N., Bhattacharya D., Kumar D., Gupta R.K. Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL2. Can. J. Microbiol. 2006;52:805–808. doi: 10.1139/w06-035. PubMed DOI

Arasu M.V., Esmail G.A., Al-Dhabi N.A., Ponmurugan K. Managing Pests and Diseases of Grain Legumes with Secondary Metabolites from Actinomycetes. In: Gopalakrishnan S., Sathya A., Vijayabharathi R., editors. Plant Growth Promoting Actinobacteria. Springer; Singapore: 2016. pp. 83–98.

USDA-ARS Research Databases. [(accessed on 12 July 2021)];2008 Available online: http://www.ars.usda.gov/Services/docs.htm?docid=8908.

Munns R. Genes and Salt Tolerance: Bringing them together. Plant Physiol. 2005;167:645–663. doi: 10.1111/j.1469-8137.2005.01487.x. PubMed DOI

Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press; London, UK: 1995.

Isayenkov S.V. Physiological and Molecular Aspects of Salt Stress in Plants. Cytol. Genet. 2012;46:302–318. doi: 10.3103/S0095452712050040. DOI

Hernández J.A., Aguilar A.B., Portillo B., López-Gómez E., Beneyto J.M., García-Legaz M.F. The Effect of Calcium on the Antioxidant Enzymes from Salt-Treated Loquat and Anger Plants. Funct. Plant Biol. 2003;30:1127–1137. doi: 10.1071/FP03098. PubMed DOI

Mittova V., Guy M., Tal M., Volokita M. Salinity Up-Regulates the Antioxidative System in Root Mitochondria and Peroxisomes of the Wild Salt-Tolerant Tomato Species Lycopersicon pennellii. J. Exp. Bot. 2004;399:1105–1113. doi: 10.1093/jxb/erh113. PubMed DOI

Taffouo V.D., Wamba O.F., Yombi E., Nono G.V., Akoe A. Growth, Yield, Water Status and Ionic Distribution Response of Three Bambara Groundnut (Vigna subterranean (L.) verdc.) Landraces Grown Under Saline Conditions. Int. J. Bot. 2010;6:53–58. doi: 10.3923/ijb.2010.53.58. DOI

Murillo-Amador B., Yamada S., Yamaguchi T., Rueda-Puente E., Ávila-Serrano N., García-Hernández J.L., López-Aguilar R., Troyo-Diéguez E., Nieto-Garibay A. Salinity Toxicity Influence of Calcium Silicate on Growth Physiological Parameters and Mineral Nutrition in Two Legume Species under Salt Stress. J. Agron. Crop. Sci. 2007;193:413–421. doi: 10.1111/j.1439-037X.2007.00273.x. DOI

Incheira P., Quiroz A. Microbial Volatiles as Plant Growth Inducers. Microbiol. Res. 2018;208:63–75. doi: 10.1016/j.micres.2018.01.002. PubMed DOI

Allard-Massicotte R., Tessier L., Lécuyer F., Lakshmanan V., Lucier J., Garneau D., Caudwell L., Vlamakis H., Bais H.P., Beauregard P.B. Bacillus Subtilis Early Colonization of Arabidopsis Thaliana Roots Involves Multiple Chemotaxis Receptors. Microbe. Bio. 2016;7:e01664-16. doi: 10.1128/mBio.01664-16. PubMed DOI PMC

Zhang T., Hu F., Ma L. Phosphate-solubilizing Bacteria from Safflower Rhizosphere and their Effect on Seedling Growth. Open. Life Sci. 2019;14:246–254. doi: 10.1515/biol-2019-0028. PubMed DOI PMC

Vaishnav A., Kumari S., Jain S., Verma A., Tuteja N., Choudhary D.K. PGPR-Mediated Expression of Salt Tolerance Gene in Soybean through Volatiles under Sodium Nitroprusside. J. Basic Microbiol. 2016;56:1274–1288. doi: 10.1002/jobm.201600188. PubMed DOI

Singh S. A Review on Possible Elicitor Molecules of Cyanobacteria: Their Role in Improving Plant Growth and Providing Tolerance against Biotic or Abiotic Stress. J. App. Microbiol. 2014;117:1221–1244. doi: 10.1111/jam.12612. PubMed DOI

Kasotia A., Varma A., Choudhary D.K. Pseudomonas-Mediated Mitigation of Salt Stress and Growth Promotion in Glycine Max. Agric. Res. 2015;4:31–41. doi: 10.1007/s40003-014-0139-1. DOI

Basu S., Ramegowda V., Kumar A., Pereira A. Plant Adaptation to Drought Stress. Res. Fac. Rev. 2016;5:1554. doi: 10.12688/f1000research.7678.1. PubMed DOI PMC

Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., et al. Crop Production Under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017;8:1147. doi: 10.3389/fpls.2017.01147. PubMed DOI PMC

Lamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018;6:26. doi: 10.3389/fchem.2018.00026. PubMed DOI PMC

Wang Z., Li G., Sun H., Ma L., Guo Y., Zhao Z., Gao H., Mei L. Effects of Drought Stress on Photosynthesis and Photosynthetic Electron Transport Chain in Young Apple Tree Leaves. Biol. Open. 2018;7:bio035279. doi: 10.1242/bio.035279. PubMed DOI PMC

Bista D.R., Heckathorn S.A., Jayawardena D.M., Mishra S., Boldt J.K. Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and Tolerant Grasses. Plants. 2018;7:28. doi: 10.3390/plants7020028. PubMed DOI PMC

Mariotte P., Cresswell T., Johansen M.P., Harrison J.J., Keitel C., Dijkstra F.A. Plant Uptake of Nitrogen and Phosphorus among Grassland Species Affected by Drought Along a Soil Available Phosphorus Gradient. Plant Soil. 2020;448:121–132. doi: 10.1007/s11104-019-04407-0. DOI

Nadeem M., Li J., Yahya M., Sher A., Ma C., Wang X., Qiu L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int. J. Mol. Sci. 2019;20:2541. doi: 10.3390/ijms20102541. PubMed DOI PMC

Zheng M., Tao Y., Hussain S., Jiang Q., Peng S., Huang J., Cui K., Nie L. Seed priming in Dry Direct-Seeded Rice: Consequences For Emergence, Seedling Growth and Associated Metabolic Events under Drought Stress. Plant Growth Regul. 2016;78:167–178. doi: 10.1007/s10725-015-0083-5. DOI

Du Y., Zhao Q., Chen L., Yao X., Zhang H., Wu J., Xie F. Effect of Drought Stress during Soybean R2–R6 Growth Stages on Sucrose Metabolism in Leaf and Seed. Int. J. Mol. Sci. 2020;21:618. doi: 10.3390/ijms21020618. PubMed DOI PMC

Thalmann M.S. Starch as a Determinant of Plant Fitness under Abiotic Stress. New Phytol. 2017;214:943–951. doi: 10.1111/nph.14491. PubMed DOI

Majumdar R., Barchi B., Turlapati S.A., Gagne M., Minocha R., Long S., Minocha S.C. Glutamate, Ornithine, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway is regulated at the Post-Transcriptional Level. Fronti Plant Sci. USA. 2016;7:78. doi: 10.3389/fpls.2016.00078. PubMed DOI PMC

Figueiredo M.V.B., Burity H.A., Martinez C.R., Chanway C.P. Alleviation of Drought Stress in Common Bean (Phaseolus Vulgaris L.) by Coinoculation Withpaenibacillus Polymyxa and Rhizobium Tropici. Appl. Soil Ecol. 2008;40:182–188. doi: 10.1016/j.apsoil.2008.04.005. DOI

Wang D., Yang S., Tang F., Zhu H. Symbiosis Specifi City in the Legume Rhizobial Mutualism. Cell Microbiol. 2012;14:334–342. doi: 10.1111/j.1462-5822.2011.01736.x. PubMed DOI

Pavithra D., Yapa N. Arbuscular Mycorrhizal Fungi Inoculation Enhances Drought Stress Tolerance of Plants. Ground Water Sust. Dev. 2018;7:490–494. doi: 10.1016/j.gsd.2018.03.005. DOI

Farooq M., Hussain M., Wahid A., Siddique K.H.M. Drought Stress in Plants: An Overview. In: Aroca R., editor. Plant Responses to Drought Stress. Springer Press; Berlin/Heidelberg, Germany: 2012. pp. 1–12. DOI

Mittler R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006;11:15–19. doi: 10.1016/j.tplants.2005.11.002. PubMed DOI

Rojas-Downing M.M., Nejadhashemi A.P., Harrigan W. Climate change and livestock: Impacts, adaptation and mitigation. Climate Risk. Manag. 2017;16:145–163. doi: 10.1016/j.crm.2017.02.001. DOI

Crafts-Brander S.J., Salvucci M.E. Sensitivity to Photosynthesis in the C4 Plant Maize to Heat Stress. Plant Cell. 2002;12:54–68. PubMed PMC

Qu M., Chen G., Bunce J.A., Zhu X., Richard C.S. Systematic biology analysis on photosynthetic carbon metabolism of maize leaf following sudden heat shock under elevated CO2. Sci. Rep. 2018;8:7849. doi: 10.1038/s41598-018-26283-x. PubMed DOI PMC

Nguyen N.V. Global Climate Changes and Rice Food Security. [(accessed on 1 July 2021)];IRC Rep. 2012 :24–31. Available online: http://www.fao.org/climatechange/1552603ecb62366f779d1ed45287e698a44d2e.pdf.

Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat Tolerance in Plants: An Over View. Environ. Exp. Bot. 2007;61:199–223. doi: 10.1016/j.envexpbot.2007.05.011. DOI

Koop L.K., Tadi P. Stat Pearls. Stat Pearls Publishing; Treasure Island, FL, USA: 2020. [(accessed on 1 July 2021)]. Physiology, Heat Loss (Convection, Evaporation, Radiation) Available online: https://www.ncbi.nlm.nih.gov/books/NBK541107/

Pei Z.M., Ghassemian M., Kwak C.M., McCourt P., Schroeder J.I. Role of Farnesyl Transferase in ABA Regulation of Guard Cell Anion Channels and Plant Water Loss. Science. 1998;282:287–290. doi: 10.1126/science.282.5387.287. PubMed DOI

De Zelicourt A., Al-Yousif M., Hirt H. Rhizosphere Microbes as Essential Partners for Plant Stress Tolerance. Mol. Plant. 2013;6:242–245. doi: 10.1093/mp/sst028. PubMed DOI

Kao C.H. Role of Glutathione in Abiotic Stress Tolerance of Rice Plants. J. Taiwan Agric. Res. 2015;164:167–176.

Herawati N., Suzuki S., Hayashi K., Rivai I.F., Koyoma H. Cadmium, Copper and Zinc Levels in Rice and Soil of Japan, Indonesia and China by Soil Type. Bull. Environ. Contam. Toxicol. 2000;64:33–39. doi: 10.1007/s001289910006. PubMed DOI

Farooq M.A., Ali S., Hameed A., Bharwana S.A., Rizwan M., Ishaque W., Farid M., Mahmood K., Iqbal Z. Cadmium Stress in Cotton Seedlings: Physiological, Photosynthesis and Oxidative Damages Alleviated by Glycine Betaine. South. African. J. Bot. 2016;104:61–68. doi: 10.1016/j.sajb.2015.11.006. DOI

Hall J.L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002;53:1–11. doi: 10.1093/jexbot/53.366.1. PubMed DOI

Farid M., Ali S., Rizwan M., Saeed R., Tauqeer H.M., Sallah-Ud-Din R., Azam A., Raza N. Microwave Irradiation and Citric Acid Assisted Seed Germination and Phytoextraction Of Nickel (Ni) By Brassica Napus L.; Morphophysiological And Biochemical Alterations Under Ni Stress. Environ Sci. Pollution Res. Int. 2017;24:21050–21064. doi: 10.1007/s11356-017-9751-5. PubMed DOI

.Lin A., Zhang X., Zhu Y.G. Arsenate-Induced Toxicity: Effects on Antioxidative Enzymes and DNA Damage In Vicia Faba. Environ. Toxicol. Chem. 2008;27:413–419. doi: 10.1897/07-266R.1. PubMed DOI

Sarkar B. Metal replacement in DNA-binding Zinc finger Proteins and its Relevance to Mutagenicity and Carcinogenicity through Free Radical Generation. Nutrition. 1995;11:646–649. PubMed

Ghasemi F., Heidari R., Jameii R. Effects of Ni2+ Toxicity on Hill Reaction and Membrane Functionality in Maize. J. Stress. Physiol. Biochem. 2012;8:55–61.

Emamverdian A., Ding Y., Mokhberdoran F. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Sci. World J. 2015;2015:18. doi: 10.1155/2015/756120. PubMed DOI PMC

Lombardi L., Sebastiani L. Copper Toxicity in Prunus Cerasifera: Growth and Antioxidant Enzymes Responses of In Vitro Grown Plants. Plant Sci. 2005;168:797–802. doi: 10.1016/j.plantsci.2004.10.012. DOI

Ventrella A., Catucci L., Placido T. Biomaterials Based on Photosynthetic Membranes as Potential Sensors for Herbicides. Biosens. Bioelectron. 2011;26:4747–4752. doi: 10.1016/j.bios.2011.05.043. PubMed DOI

Li X., Yang Y., Jia L. Zinc-Induced Oxidative Damage, Antioxidant Enzyme Response and Proline Metabolism in Roots and Leaves of Wheat Plants. Ecotoxicol. Environ. Saf. 2013;89:150–157. doi: 10.1016/j.ecoenv.2012.11.025. PubMed DOI

Ahmad M.S.A., Ashraf M., Tabassam Q. Lead (Pb)-Induced Regulation of Growth, Photosynthesis, and Mineral Nutrition in Maize (Zea mays L.) Plants at Early Growth Stages. Biol. Trace. Elem. Res. 2011;144:1229–1239. doi: 10.1007/s12011-011-9099-5. PubMed DOI

Farid M., Ali S., Rizwan M., Ali Q., Abbas F., Bukhari S.A.H., Saeed R., Wu L. Citric Acid Assisted Phyto-Extraction of Chromium By Sunflower; Morpho-Physiological And Biochemical Alterations In Plants. Ecotoxicol. Environ. Saf. 2017;145:90–102. doi: 10.1016/j.ecoenv.2017.07.016. PubMed DOI

Per T.S., Khan S., Asgher M. Photosynthetic and Growth Responses of two Mustard Cultivars Differing in Phytocystatin Activity under Cadmium stress. Photosynthetica. 2016;54:491–501. doi: 10.1007/s11099-016-0205-y. DOI

Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI

Mangano S., Juarez S.P.D., Estevez J.M. ROS Regulation of Polar Growth in Plant Cells. Plant Physiol. 2016;171:1593–1605. doi: 10.1104/pp.16.00191. PubMed DOI PMC

O’Brien J.A., Daudi A., Butt V.S., Bolwell G.P. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta. 2012;236:765–779. doi: 10.1007/s00425-012-1696-9. PubMed DOI

Xu Z., Shimizu H., Ito S., Yagasaki Y., Zou C., Zhou G., Zheng Y. Effects of Elevated CO2, Warming and Precipitation Change on Plant Growth, Photosynthesis and Peroxidation in Dominant Species from North China Grassland. Planta. 2014;239:421–435. doi: 10.1007/s00425-013-1987-9. PubMed DOI

Pitzschke A., Hirt H. Disentangling the Complexity of Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling. Plant Physiol. 2009;149:606–615. doi: 10.1104/pp.108.131557. PubMed DOI PMC

Rizwan M., Ali S., Adrees M. Cadmium Stress in Rice: Toxic Effects, Tolerance Mechanisms, and Management: A Critical Review. Environ. Sci. Poll. Res. 2016;23:17859–17879. doi: 10.1007/s11356-016-6436-4. PubMed DOI

Akram N.A., Shafiq F., Ashraf M. Ascorbic Acid- A Potential Oxidant Scavenger and its Role in Plant Development and Abiotic Stress Tolerance. Front. Plant Sci. 2017;8:613. doi: 10.3389/fpls.2017.00613. PubMed DOI PMC

Anjum N.A., Ahmad I., Mohmood I. Modulation of Glutathione and its Related Enzymes in Plants’ Responses to Toxic Metals and Metalloids –A Review. Environ. Exp. Bot. 2012;75:307–324. doi: 10.1016/j.envexpbot.2011.07.002. DOI

Sofo A., Cicco N., Paraggio M. Regulation of the ascorbate–glutathione cycle in plants under drought stress. In: Anjum N.A., Umar S., Chan M.T., editors. Ascorbate-glutathione pathway and stress tolerance in plants. Springer; Dordrecht, The Netherlands: 2010. pp. 137–190.

Srivastava S., Verma P.C., Chaudhry V., Singh N., Abhilash P.C., Kumar K.V., Sharma N., Singh N. Influence of Inoculation of Arsenic-Resistant Staphylococcus arlettae on GRowth and Arsenic UPtake in Brassica juncea (L.) Czern.Var. R-46. J. Hazard Mater. 2013;262:1039–1047. doi: 10.1016/j.jhazmat.2012.08.019. PubMed DOI

Ma Y., Rajkumar M., Luo Y., Freitas H. Phytoextraction of Heavy Metal Polluted Soils Using Sedum Plumbizincicola Inoculated with Metal Mobilizing Phyllobacterium Myrsinacearum RC6b. Chemosphere. 2013;93:1386–1392. doi: 10.1016/j.chemosphere.2013.06.077. PubMed DOI

Adediran G.A., Ngwenya B.T., Mosselmans J.F.W., Heal K.V. Bacteria–zinc Co localization Implicates Enhanced Synthesis of Cysteine-Richpeptides in Zinc Detoxification when Brassica Juncea is inoculated with Rhizobium leguminosarum. New Phytol. 2016;209:280–293. doi: 10.1111/nph.13588. PubMed DOI PMC

Kiely P.D., Haynes J.M., Higgins C.H., Franks A., Mark G.L., Morrissey J.P., O’Gara F. Exploiting New Systems-Based Strategies to Elucidate Plant-Bacterial Interactions in the Rhizosphere. Microb. Ecol. 2006;51:257–266. doi: 10.1007/s00248-006-9019-y. PubMed DOI

Bevivino A., Dalmastri C., Tabacchioni S., Chiarini L. Efficacy of Burkholderia Cepacia MCI 7 In Disease Suppression and Growth Promotion of Maize. Biol. Fertil. Soils. 2000;31:225–231. doi: 10.1007/s003740050649. DOI

Harthmann O.E.L., Mógor Á.F., Wordell-Filho J.A., Luz W.C., Biasi L.A. Tratamento De Sementes Com Rizobactérias Na Produção De Cebola. Cienc. Rural. 2009;39:2533–2538. doi: 10.1590/S0103-84782009000900023. DOI

Hungria M., Campo R.J., Souza E.M., Pedrosa F.O. Inoculation with Selected Strains of Azospirillum Brasilense and A. Lipoferum Improves Yields of Maize and Wheat in Brazil. Plant Soil. 2010;331:413–425. doi: 10.1007/s11104-009-0262-0. DOI

Barraquio W.L., Segubre E.M., Gonzalez M.A.S., Verma S.C., James E.K., Ladha J.K., Tripathi A.K. Diazotrophicenterobacteria: What is their Role in the Rhizosphere of Rice. In: Ladha J.K., Reddy P.M., editors. The Quest for Nitrogen Fixation in Rice. International Rice Research Institute; Manila, Philippines: 2000. pp. 93–118.

Compant S., Mitter B., Colli-Mull J.G., Gangl H., Sessitsch A. Endophytes of Grapevine Fl owers, Berries, and Seeds: Identifi Cation of Cultivable Bacteria, Comparison with Other Plant Parts, and Visualization of Niches of Colonization. Microb. Ecol. 2011;62:188–197. doi: 10.1007/s00248-011-9883-y. PubMed DOI

Szilagyi-Zecchin V.J., Ikeda A.C., Hungria M., Adamoski D., Kava-Cordeiro V., Glienke C., Galli-Terasawa L.V. Identification and Characterization of Endophytic Bacteria from Corn (Zea mays L.) Roots with Biotechnological Potential in Agriculture. AMB. Exp. 2014;4:26. doi: 10.1186/s13568-014-0026-y. PubMed DOI PMC

Cruz A.F., Ishii T., Matsumoto I., Kadoya K. Network Establishment of Vesicular Arbuscular Mycorrhizal Hyphae in the Rhizosphere between Trifoliate Orange and Some Plants. J. Jpn. Soc. Hortic. Sci. 2002;71:19–25. doi: 10.2503/jjshs.71.19. DOI

Barea J.M., Pozo M.J., Azcon R., Azcon-Aguilar C. Microbial Co-operation in the Rhizosphere. J. Exp. Bot. 2005;56:1761–1778. doi: 10.1093/jxb/eri197. PubMed DOI

Mishra N., Sundari K.S. Native PGPM Consortium: A Beneficial Solution to Support Plant Growth in the Presence of Phytopathogens and Residual Organophosphate Pesticides. J. Bioproces Biotech. 2015;5:1–8.

Rodriguez H., Fraga R., Gonzalez T., Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Dev. Plant Soil Sci. 2007;102:15–21.

Simiyu S., Mumma J., Aseyo E., Cumming O., Czerniewska A., Baker K., Dreibelbis R. Designing a Food Hygiene Intervention for Children 6–9 Months in an Informal Settlement in Kisumu, Kenya. Loughborough University; Loughborough, UK: 2018.

Simiyu S., Czerniewska A., Aseyo E.R., Baker K.K., Cumming O., Mumma J.A.O., Dreibelbis R. Designing a Food Hygiene Intervention in Low-Income, Peri-Urban Context of Kisumu, Kenya: Application of the Trials of Improved Practices Methodology. Am. J. Trop. Med. Hyg. 2020;102:1116. doi: 10.4269/ajtmh.19-0629. PubMed DOI PMC

Borriss R. Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture. In: Maheshwari D.K., editor. Bacteria in Agrobiology: Plant Growth Responses. Springer; Berlin/Heidelberg, Germany: 2011. pp. 41–76.

Jannin L., Arkoun M., Etienne P., Laine P., Goux D., Garnica M., Fuentes M., San Francisco S., Baigorri R., Cruz F., et al. Brassica Napus Growth Is Promoted By Ascophyllumnodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. J. Plant Growth Regul. 2013;32:31–52. doi: 10.1007/s00344-012-9273-9. DOI

Lonhienne T., Mason M.G., Ragan M.A., Hugenholtz P., Paungfoo Lonhienne S.S.C. Yeast as a Biofertilizer Alters Plant Growth and Morphology. Crop. Sci. 2014;54:785–790. doi: 10.2135/cropsci2013.07.0488. DOI

Bettoni M.M., Mógor Á.F., Pauletti V., Goicoechea N. Growth and Metabolism of Onion Seedlings as Affected By The Application of Humic Substances, Mycorrhizal Inoculation and Elevated CO2. Sci. Hortic. 2014;180:227–235. doi: 10.1016/j.scienta.2014.10.037. DOI

Civiero C., Armitage J.J., Goes S., Hammond J.O. The Seismic Signature of Upper-Mantle Plumes: Application to the Northern East African Rift. Geochem. Geophy. Geosys. 2019;20:6106–6122. doi: 10.1029/2019GC008636. DOI

Vinale F. Biopesticides and Biofertilizers Based on Fungal Secondary Metabolites. J. Biofert. Biopest. 2014;5:e119. doi: 10.4172/2155-6202.1000e119. DOI

Kasiotis K.M. Biopesticides Analysis: An Editorial. J. Biofertil. Biopestici. 2013;4:e115. doi: 10.4172/2155-6202.1000e115. DOI

Brasil, Ministério da Agricultura, Pecuária e Abastecimento . Lei de Fertilizantes, Corretivos, Inoculantes, Estimulantes ou Biofertilizantes. Decreton 4.954 de 14 de janeiro de 2004. Brasil, Ministério da Agricultura, Pecuária e Abastecimento; Brasília, Brazil: 2004.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento . Regulamento Técnico que estabelece as normas técnicas para os Sistemas Orgânicos de Produção. Instrução Normativa n° 64 de 18 de dezembro de 2008. Brasil, Ministério da Agricultura, Pecuária e Abastecimento; Brasília, Brazil: 2008.

Kumar A., Bahadur I., Maurya B.R., Raghuwanshi R., Meena V.S., Singh D.K., Dixit J. Does a Plant Growth-Promoting Rhizobacteria Enhance Agricultural Sustainability? J. Pure Appl. Microbiol. 2015;9:715–724.

Ahmad M., Nadeem S.M., Naveed M., Zahir Z.A. Potassium-Solubilizing Bacteria and their Application in Agriculture. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 293–313. DOI

Meena M.K., Gupta S., Datta S. Antifungal Potential of PGPR, Their Growth Promoting Activity on Seed Germination and Seedling Growth of Winter Wheat and Genetic Variabilities Among Bacterial Isolates. Int. J. Cur. Microbiol. Appl. Sci. 2016;5:235–243. doi: 10.20546/ijcmas.2016.501.022. DOI

Jha Y., Subramanian R.B. Regulation of Plant Physiology and Antioxidant Enzymes for Alleviating Salinity Stress by Potassium-Mobilizing Bacteria. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 149–162. DOI

Rosselló-Mora R., Amann R. The species concept for prokaryotes. FEMS Microbiol. Rev. 2001;25:39–67. doi: 10.1016/S0168-6445(00)00040-1. PubMed DOI

Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 1996;60:407–438. doi: 10.1128/mr.60.2.407-438.1996. PubMed DOI PMC

Gevers D., Cohan F.M., Lawrence J.G., Spratt B.G., Coenye T., Feil E.J., Stackebrandt E., Van de Peer Y., Vandamme P., Thompson F.L., et al. Opinion: Re-Evaluating Prokaryotic Species. Nat. Rev. Microbiol. 2005;3:733–739. doi: 10.1038/nrmicro1236. PubMed DOI

Silva H.D.O., Pires A.J.V., da Silva F.F., Veloso C.M., de Carvalho G.G.P., Cezario A.S., Santos C.C. Effects of Feeding Cocoa Meal (Theobroma cacao L.) and Palm Kernel Cake (Elaeis guineensis, Jacq) on Milk Intake and Yield For Lactating Goats. Rev. Bras. Zootec. 2005;34:1786–1794. doi: 10.1590/S1516-35982005000500040. DOI

Martens M., Delaere M., CoopmanDe Vos R.P., Gillis M., Willems A. Multilocus Sequence Analysis of Ensifer and Related Taxa. Int. J. SystEvol. Microbiol. 2007;57:489–503. doi: 10.1099/ijs.0.64344-0. PubMed DOI

Naser S., Thompson F.L., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Thompson C.C., Vancanneyt M., Swings J. Phylogeny and Identification of Enterococci Using Atpa Gene Sequence Analysis. J. Clin. Microbiol. 2005;43:2224–2230. doi: 10.1128/JCM.43.5.2224-2230.2005. PubMed DOI PMC

Ribeiro R.A., Barcellos F.G., Thompson F.L., Hungria M. Multilocus sequence analysis of Brazilian Rhizobium Microsymbionts of Common Bean (Phaseolus vulgaris L.) Reveals Unexpected Taxonomic Diversity. Res. Microbiol. 2009;160:297–306. doi: 10.1016/j.resmic.2009.03.009. PubMed DOI

Thompson F.L., Gevers D., Thompson C.C., Dawyndt P., Naser S., Hoste B., Munn C.B., Swings J. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. App. Environ. Microbiol. 2005;71:5107–5115. doi: 10.1128/AEM.71.9.5107-5115.2005. PubMed DOI PMC

Laranjo M., Young J.P.W., Oliveira S. Multilocus Sequence Analysis Reveals Multiple Symbiovars within Mesorhizobium Species. Syst. Appl. Microbiol. 2012;35:359–367. doi: 10.1016/j.syapm.2012.06.002. PubMed DOI

Dall’Agnol R.F., Ribeiro R.A., Ormeno-Orrillo E., Rogel M.A., Delamuta J.R.M., Andrade D.S., Martínez-Romero E., Hungria M. Rhizobium Freirei sp. nov., a Symbiont of Phaseolus Vulgaris that is Very Effective At Fi Xing Nitrogen. Int. J. Syst. Evol. Microbiol. 2013;63:4167–4173. doi: 10.1099/ijs.0.052928-0. PubMed DOI

Amutha R., Karunakaran S., Dhanasekaran S., Hemalatha K., Monika R., Shanmugapriya P., Sornalatha T. Isolation and Mass Production of Biofertilizer (Azotobacter and phosphobacter) Int. J. Lat. Res. Sci. Tech. 2014;3:79–81.

Palai J.B., Malik G.C., Maitra S., Banerjee M. Role of Rhizobium on Growth and Development of Groundnut: A Review. Int. J. Agric. Environ. Biotechnol. 2021;14:63–73. doi: 10.30954/0974-1712.01.2021.7. DOI

Baset Mia M.A., Shamsuddin Z.H. Rhizobium as a Crop Enhancer and Biofertilizer for Increased Cereal Production. Afr. J. Biotechnol. 2010;9:6001–6009.

Parewa H.P., Yadav J., Rakshit A., Meena V.S., Karthikeyan N. Plant Growth Promoting Rhizobacteriaenhance Growth and Nutrient Uptake of Crops. Agric. Sustain. Dev. 2014;2:101–116.

Prakash S., Verma J.P. Global Perspective of Potash for Fertilizer Production. In: Meena V.S., Maurya B.R., Verma J.P., Meena R.S., editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 327–331. DOI

Dominguez-Nunez J.A., Benito B., Berrocal-Lobo M., Albanesi A. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. Mycorrhizal Fungi: Role in the Solubilization of Potassium; pp. 77–98. DOI

Dotaniya M.L., Meena V.D., Basak B.B., Meena R.S. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. Potassium Uptake by Crops as Well As Microorganisms; pp. 267–280. DOI

Jaiswal D.K., Verma J.P., Prakash S., Meena V.S., Meena R.S. Potassium as an Important Plant Nutrient In Sustainable Agriculture, A State of the Art. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer; New Delhi, India: 2016. pp. 21–29. DOI

Rossman A.Y., Palm M.E. Why are Phytophthora and other Oomycota not true fungi? Outlooks Pest Manag. 2007;17:217–219. doi: 10.1564/17oct08. DOI

Kang S., Mansfi-eld Park M.A., Geiser D.M., Ivors K.L., Coffey M.D., Grünwald N.J., Martin F.N., Lévesque C.A., Blair J.E. The Promise and Pitfalls of Sequence– Based Identifi Cation of Plant–Pathogenic Fungi and Oomycetes. Phytopathology. 2010;100:732–737. doi: 10.1094/PHYTO-100-8-0732. PubMed DOI

Brun S., Madrid H.B., Gerrits-Van-Den-Ende B., Andersen B., Marinach–Patrice C., Mazier D., De Hoog G.S. Multilocus Phylogeny and MALDI–TOF Analysis of the Plant Pathogenic Species Alternaria Dauci and Relatives. Fungal Biol. 2013;117:32–40. doi: 10.1016/j.funbio.2012.11.003. PubMed DOI

Slippers B., Boissin E., Phillips A.J.L., Groenewald J.Z., Wingfi-eld M.J., Postma A., Burgess T., Crous P.W. Phylogenetic Lineages in the Botryosphaeriales: A Systematic and Evolutionary Framework. Stud. Mycol. 2013;76:31–49. doi: 10.3114/sim0020. PubMed DOI PMC

Sharma R., Polkade A.V., Shouche Y.S. Species Concept in Microbial Taxonomy and Systematics. Curr. Sci. 2015;108:1804–1814.

Shivas R.G., Beasley D.R., McTaggart A.R. Online Identifi Cation Guides for Australian Smut Fungi (Ustilagino mycotina) and Rust Fungi (Pucciniales) IMA Fungus. 2014;5:195–202. doi: 10.5598/imafungus.2014.05.02.03. PubMed DOI PMC

Lugtenberg B., Kamilova F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009;63:541–556. doi: 10.1146/annurev.micro.62.081307.162918. PubMed DOI

Malfanova N. Ph.D. Thesis. Leiden University; Leiden, The Netherlands: 2013. Endophytic Bacteria with Plant Growth Promoting Properties and Biocontrol Abilities; p. 166.

Raven J.A., Beardall J., Flynn K.J., Maberly S.C. Phagotrophy in the Origins of Photosynthesis in Eukaryotes and as Complementary Mode of Nutrition in Phototrophs: Relation to Darwin’s Insectivorous Plants. J. Exp. Bot. 2009;60:3975–3987. doi: 10.1093/jxb/erp282. PubMed DOI

Seghers D., Wittebolle L., Top E.M., Verstraete W., Siciliano S.D. Impact of agricultural Practices on the Zea mays L. Endophytic Community. App. Environ. Microbiol. 2004;70:1475–1482. doi: 10.1128/AEM.70.3.1475-1482.2004. PubMed DOI PMC

Podolich O., Ardanov P., Zaets I., Maria Pirttilä A., Kozyrovska N. Reviving of the Endophytic Bacterial Community as a Putative Mechanism of Plant Resistance. Plant Soil. 2014;388:367–377. doi: 10.1007/s11104-014-2235-1. DOI

Tan H.M., Cao L.X., He Z.F., Su G.J., Lin B., Zhou S.N. Isolation of Endophytic Actinobacteria from Different Cultivars of Tomato and their Activities Against Ralstonia solanacearum in vitro. World J. Microbiol. Biotechnol. 2006;22:1275–1280. doi: 10.1007/s11274-006-9172-y. DOI

Rosenblueth M., Martinez-Romero E. Bacterial Endophytes and their Interactions with Hosts. Mol. Plant. Microb. Interact. 2006;19:827–837. doi: 10.1094/MPMI-19-0827. PubMed DOI

Hardoim P.R., van Overbeek L.S., van Elsas J.D. Properties of Bacterial Endophytes and Their Proposed Role in Plant Growth. Trends Microbiol. 2008;16:463–471. doi: 10.1016/j.tim.2008.07.008. PubMed DOI

Miyamoto T., Kawahara M., Minamisawa K. Novel Endophytic Nitrogen-Fixing Clostridia from the Grass Miscanthus Sinensis as Revealed by Terminal Restriction Fragment Length Polymorphism Analysis. Appl. Environ. Microbiol. 2004;70:6580–6586. doi: 10.1128/AEM.70.11.6580-6586.2004. PubMed DOI PMC

Benhizia Y., Benhizia H., Benguedouar A., Muresu R., Giacomini A., Squartini A. Gamma Proteobacteria can Nodulate Legumes of the Genus Hedysarum. Syst. Appl. Microbiol. 2004;27:462–468. doi: 10.1078/0723202041438527. PubMed DOI

Hardoim P.R., Hardoim C.C., Van Overbeek L.S., Van Elsas J.D. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages. PLoS ONE. 2012;7:e30438. doi: 10.1371/journal.pone.0030438. PubMed DOI PMC

Manter D.K., Delgado J.A., Holm D.G., Stong R.A. Pyrosequencing Reveals a Highly Diverse and Cultivar Specific Bacterial Endophyte Community in Potato Roots. Microb. Ecol. 2010;60:157–166. doi: 10.1007/s00248-010-9658-x. PubMed DOI

Bulgarelli A., Rott M., Schlaeppi K., Loren van Themaat E., Ahmadinejad N., Assenza F., Rauf P., Huettel B., Reinhardt R., Schmelzer E., et al. Revealing Structure and Assembly Cues for Arabidopsis Root-Inhabiting Bacterial Microbiota. Nature. 2012;488:91–95. doi: 10.1038/nature11336. PubMed DOI

Sessitsch A., Hardoim P., Döring J., Weilharter A., Krause A., Woyke T., Mitter B., Hauberg-Lotte L., Friedrich F., Rahalkar M., et al. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Mol Plant Microb. Interact. 2012;25:28–36. doi: 10.1094/MPMI-08-11-0204. PubMed DOI

Bodenhausen N., Horton M.W., Bergelson J. Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana. PLoS ONE. 2013;8:e56329. doi: 10.1371/journal.pone.0056329. PubMed DOI PMC

Gond S.K., Verma V.C., Mishra A., Kumar A., Kharwar R.N. Role of Fungal Endophytes in Plant Protection. In: Arya A., Perello A.E., editors. Management of Fungal Plant Pathogens. CAB; London, UK: 2010. pp. 183–197.

Brem A.D. Leuchtmann Epichloë Grass Endophytes Increase Herbivore Resistance in the Woodland Grass Brachypodium sylvaticum. Oecologia. 2001;126:522–530. doi: 10.1007/s004420000551. PubMed DOI

Li H., Wei D., Shen M., Zhou Z. Endophytes and Their Role in Phytoremediation. Fungal Divers. 2012;54:11–18. doi: 10.1007/s13225-012-0165-x. DOI

Redman R.S., Sheehan K.B., Stout R.G., Rodriguez R.J., Henson J.M. Thermo Tolerance Conferred to Plant Host and Fungal Endophyte During Mutualistic Symbiosis. Science. 2002;298:1581. doi: 10.1126/science.1078055. PubMed DOI

Kharwar R.N., Verma S.K., Mishra A., Gond S.K., Sharma V.K., Afreen T., Kumar A. Assessment of Diversity, Distribution and Antibacterial Activity of Endophytic Fungi Isolated from a Medicinal Plant Adenocalymma Alliaceum Miers. Symbiosis. 2011;55:39–46. doi: 10.1007/s13199-011-0142-2. DOI

Selvakumar G., Kim K., Hu S., Sa T. Effect of Salinity on Plants and the Role of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting rhizobacteria in Alleviation of Salt Stress. In: Ahmad P., Wani M.R., editors. Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment. Springer; New York, NY, USA: 2014. pp. 115–144.

Hu C., Qi Y. Long-term Effective Microorganisms Application Promote Growth and Increase Yields and Nutrition of Wheat in China. Euro. J. Agron. 2013;46:63–67. doi: 10.1016/j.eja.2012.12.003. DOI

Muttalib S.A.A., Ismail S.N.S., Praveena S.M. Application of Effective Microorganism (EM) in Food Waste Composting: A Review. Asia Pacific Environ. Occup. Health J. 2016;2:37–47.

Isa D.M., Abdullah S., Noor N.M., Ismail H.B. The Natural Way for Water Quality Improvement Using Effective Microorganism. Int. J. Environ. Engin. 2021;11:169–182. doi: 10.1504/IJEE.2021.118462. DOI

Tsai S.Q., Joung J.K. Defining and Improving the Genomewide Specificities of CRISPR–Cas9 Nucleases. Nat. Rev. Gene. 2016;17:300. doi: 10.1038/nrg.2016.28. PubMed DOI PMC

Dale P.J., Clarke B., Fontes E.M.G. Potential for the Environmental Impact of Transgenic Crops. Nat. Biotechnol. 2002;20:567. doi: 10.1038/nbt0602-567. PubMed DOI

Thal B., Braun H.P., Eubel H. Proteomic Analysis Dissects the Impact of Nodulation and Biological Nitrogen Fixation on Vicia faba Root Nodule Physiology. Plant. Mol. Biol. 2018;97:233–251. doi: 10.1007/s11103-018-0736-7. PubMed DOI

Azhar A., Deris S., Napis S., Sinnott R.O. A Hybrid of Ant Colony Optimization and F Lux Variability Analysis to Improve the Production of L-Phenylalanine and Biohydrogen. Int. J. Adv. Soft. Comp. App. 2016;8:161–180.

Sanghera G.S., Wani S.H., Hussainm W., Singhm N.B. Engineering Cold Stress Tolerance in Crop Plants. Curr. Genomic. 2011;12:30–43. doi: 10.2174/138920211794520178. PubMed DOI PMC

Markovich N.A., Kononova G.L. Lytic Enzymes of Trichoderma and their Role in Protecting Plants from Fungal Diseases. Prikl. Biokhim. Mikrobiol. 2003;39:389–400. PubMed

Gajera H.P., Bambharolia R.P., Patel S.V., Khatrani T.J., Goalkiya B.A. Antagonism Of Trichoderma Spp. Against Macrophominaphaseolina: Evaluation of Coiling and Cell Wall Degrading Enzymatic Activities. Plant Pathol. Microb. 2012;3:1000149.

Swiontek-Brzezinska M., Jankiewicz U., Burkowska A., Walczak M. Chitinolytic Microorganisms and Their Possible Application in Environmental Protection. Curr. Microbiol. 2014;68:71–81. doi: 10.1007/s00284-013-0440-4. PubMed DOI PMC

Olanrewaju O.S., Glick B.R., Babalola O.O. Mechanisms of Action of Plant Growth Promoting Bacteria. World J. Microbiol. Biotechnol. 2017;33:197. doi: 10.1007/s11274-017-2364-9. PubMed DOI PMC

Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., Notz R., Défago G., Haas D., et al. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol. 2000;182:1215–1225. doi: 10.1128/JB.182.5.1215-1225.2000. PubMed DOI PMC

Souza J.T., Raaijmakers J.M. Polymorphisms within the prnD and pltC genes from Pyrrolnitrin and Pyoluteorin-Producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 2003;43:21–34. doi: 10.1111/j.1574-6941.2003.tb01042.x. PubMed DOI

.Kurth C., Kage H., Nett M. Siderophores as Molecular Tools in Medical and Environmental Applications. Org. Biomol. Chem. 2016;14:8212–8227. doi: 10.1039/C6OB01400C. PubMed DOI

Ahmed E., Holmström S.J.M. Siderophores in Environmental Research: Roles and Applications. Microb. Biotechnol. 2014;7:196–208. doi: 10.1111/1751-7915.12117. PubMed DOI PMC

.Kim J.G., Park B.K., Kim S.U., Choi D., Nahm B.H., Moon J.S., Reader J.S., Farrand S.K., Hwang I. Bases of Biocontrol, Sequence Predicts Synthesis And Mode Of Action Of Agrocin 84, the Trojan Horse Antibiotic That Controls Crown Gall. Proc. Natl. Acad. Sci. USA. 2006;103:8846–8851. doi: 10.1073/pnas.0602965103. PubMed DOI PMC

Yang S.C., Lin C.H., Sung C.T., Fang J.Y. Antibacterial Activities of Bacteriocins: Application in Foods and Pharmaceuticals. Front. Microbiol. 2014;5:241. PubMed PMC

Zhong J., Chen D., Zhu H.J., Gao B.D., Zhou Q. Hypovirulence of Sclerotiumrolfsii Caused by Associated RNA Mycovirus. Front. Microbiol. 2016;7:1798. doi: 10.3389/fmicb.2016.01798. PubMed DOI PMC

Hoegger P.J., Heiniger U., Holdenrieder O., Rigling D. Differential Transfer and Dissemination of Hypovirus and Nuclear and Mitochondrial Genomes of a Hypovirus-Infected Cryphonectria 3 Biological Control Agents: Diversity, Ecological Significance Parasitica Strain after Introduction into a Natural Population. Appl. Environ. Microbiol. 2003;69:3767–3771. doi: 10.1128/AEM.69.7.3767-3771.2003. PubMed DOI PMC

Lan X., Yao Z., Zhou Y., Shang J., Lin H., Nuss D.L., Chen B. Deletion of the cpku80 Gene In The Chestnut Blight Fungus, Cryphonectria Parasitica, Enhances Gene Disruption Efficiency. Curr. Genet. 2008;53:59–66. doi: 10.1007/s00294-007-0162-x. PubMed DOI

Bardin M., Ajouz S., Comby M., Lopez-Ferber M., Graillot B., Siegwart M., Nicot P.C. Is the Efficacy of Biological Control against Plant Diseases Likely to be More Durable than That of Chemical Pesticides? Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00566. PubMed DOI PMC

Brunner K., Zeilinger S., Ciliento R., Woo S.L., Lorito M., Kubicek C.P., Mach. R.L. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride to Enhance Both Antagonism and Induction of Plant Systemic Disease Resistance. Appl. Environ. Microbiol. 2005;71:3959–3965. doi: 10.1128/AEM.71.7.3959-3965.2005. PubMed DOI PMC

Bubici G., Kaushal M., Prigigallo M.I., Gómez-Lama Cabanás C., Mercado-Blanco J. Biological Control Agents Against Fusarium Wilt of Banana. Front. Microbiol. 2019;10:616. doi: 10.3389/fmicb.2019.00616. PubMed DOI PMC

Higa T., Parr J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment. Volume 1 International Nature Farming Research Center; Atami, Japan: 1994.

Bhattacharyya P.N., Goswami M.P., Bhattacharyya L.H. Perspective of beneficial microbes in agriculture under changing climatic scenario: A review. J. Phytol. 2016;8:26–41. doi: 10.19071/jp.2016.v8.3022. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...