Proteomics Uncovers Novel Components of an Interactive Protein Network Supporting RNA Export in Trypanosomes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
MR/N010558/1
Medical Research Council - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
35091090
PubMed Central
PMC8938319
DOI
10.1016/j.mcpro.2022.100208
PII: S1535-9476(22)00016-0
Knihovny.cz E-zdroje
- Klíčová slova
- evolution, gene expression, mRNA export, proteomics, trypanosomes,
- MeSH
- aktivní transport - buněčné jádro MeSH
- proteomika * MeSH
- RNA MeSH
- sestřih RNA MeSH
- transport RNA MeSH
- Trypanosoma cruzi * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA MeSH
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
Instituto Carlos Chagas FIOCRUZ Curitiba Paraná Brazil
School of Life Sciences University of Dundee Dundee Scotland UK
Zobrazit více v PubMed
WHO . First WHO Report on Neglected Tropical Diseases: Working to Overcome the Global Impact of Neglected Tropical Diseases. World Health Organization; Geneva: 2010. pp. 1–184.
De Souza R.D.C.M., Gorla D.E., Chame M., Jaramillo N., Monroy C., Diotaiuti L. Chagas disease in the context of the 2030 agenda: Global warming and vectors. Mem. Inst. Oswaldo Cruz. 2021;116:1–14. PubMed PMC
Kramer S., Carrington M. Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol. 2011;27:23–30. PubMed PMC
Bartholomeu D.C., de Paiva R.M.C., Mendes T.A.O., DaRocha W.D., Teixeira S.M.R. Unveiling the intracellular survival gene Kit of trypanosomatid parasites. PLoS Pathog. 2014;10 PubMed PMC
Kamina A.D., Williams N. Ribosome assembly in trypanosomatids: A novel therapeutic target. Trends Parasitol. 2017;33:256–257. PubMed PMC
Begolo D., Vincent I.M., Giordani F., Pöhner I., Witty M.J., Rowan T.G., Bengaly Z., Gillingwater K., Freund Y., Wade R.C., Barrett M.P., Clayton C. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog. 2018;14 PubMed PMC
Gosavi U., Srivastava A., Badjatia N., Günzl A. Rapid block of pre-mRNA splicing by chemical inhibition of analog-sensitive CRK9 in Trypanosoma brucei. Mol. Microbiol. 2020;113:1225–1239. PubMed PMC
Johnson P.J., Kooter J.M., Borst P., Van Leeuwenhoekhuis A. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell. 1987;51:273–281. PubMed
Agabian N. Trans splicing of nuclear pre-mRNAs. Cell. 1990;61:1157–1160. PubMed
Martínez-Calvillo S., Yan S., Nguyen D., Fox M., Stuart K., Myler P.J., Street N. Transcription of Leishmania major friedlin chromosome 1 initiates in both. Mol. Cell. 2003;11:1291–1299. PubMed
Preußer C., Jaé N., Bindereif A. mRNA splicing in trypanosomes. Int. J. Med. Microbiol. 2012;302:221–224. PubMed
Siegel T.N., Gunasekera K., Cross G.A., Ochsenreiter T. Gene expression in Trypanosoma brucei: Lessons from high throughput RNA sequencing studies. Trends Parasitol. 2011;27:434–441. PubMed PMC
Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol. Biochem. Parasitol. 2012;181:61–72. PubMed
Smircich P., Eastman G., Bispo S., Duhagon M.A., Guerra-slompo E.P., Garat B., Goldenberg S., Munroe D.J., Dallagiovanna B., Holetz F., Sotelo-silveira J.R. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics. 2015;16:1–14. PubMed PMC
Clayton C.E. Gene expression in kinetoplastids. Curr. Opin. Microbiol. 2016;32:46–51. PubMed
Kramer S. RNA in development: How ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. Wiley Interdiscip. Rev. RNA. 2014;5:263–284. PubMed
Minia I., Merce C., Terrao M., Clayton C. Translation regulation and RNA granule formation after heat shock of procyclic form Trypanosoma brucei: Many heat-induced mRNAs are also increased during differentiation to mammalian-infective forms. PLoS Negl. Trop. Dis. 2016;10 PubMed PMC
Klein C., Terrao M., Clayton C. The role of the zinc finger protein ZC3H32 in bloodstream-form Trypanosoma brucei. PLoS One. 2017;12 PubMed PMC
Chakraborty C., Clayton C. Stress susceptibility in Trypanosoma brucei lacking the RNA-binding protein ZC3H30. PLoS Negl. Trop. Dis. 2018;12 PubMed PMC
Romaniuk M.A., Frasch A.C., Cassola A. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi. PLoS Pathog. 2018;14 PubMed PMC
Zoltner M., Krienitz N., Field M.C., Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl. Trop. Dis. 2018;12 PubMed PMC
Krüger T., Hofweber M., Kramer S., Strome S. SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation- independent manner, regulated by its Lsm and RGG domains. Mol. Biol. Cell. 2013;24:2098–2111. PubMed PMC
Holetz F.B., Alves L.R., Probst C.M., Dallagiovanna B., Marchini F.K., Manque P., Buck G., Krieger M.A., Correa A., Goldenberg S. Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J. 2010;277:3415–3426. PubMed
Alves L.R., Ávila A.R., Correa A., Holetz F.B., Mansur F.C.B., Manque P.A., De Menezes J.P.B., Buck G.A., Krieger M.A., Goldenberg S. Proteomic analysis reveals the dynamic association of proteins with translated mRNAs in Trypanosoma cruzi. Gene. 2010;452:72–78. PubMed
Ferreira J., Ferrarini M.G., Nardelli S.C., Goldenberg S., Ávila A.R., Holetz F.B. Trypanosoma cruzi XRNA granules colocalise with distinct mRNP granules at the nuclear periphery. Mem. Inst. Oswaldo Cruz. 2018;113 PubMed PMC
Kramer S., Marnef A., Standart N., Carrington M. Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J. Cell Sci. 2012;125:2896–2909. PubMed PMC
Goos C., Dejung M., Wehman A.M., M-natus E., Schmidt J., Sunter J., Engstler M., Butter F., Kramer S. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019;47:266–282. PubMed PMC
Jimeno S., Rondón A.G., Luna R., Aguilera A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 2002;21:3526–3535. PubMed PMC
Strässer K., Masuda S., Mason P., Pfannstiel J., Oppizzi M., Rodriguez-Navarro S., Rondón A.G., Aguilera A., Struhl K., Reed R., Hurt E. TREX is a conserved complex coupling transcription with messenger RNA export. Nature. 2002;417:304–308. PubMed
Chi B., Wang Q., Wu G., Tan M., Wang L., Shi M., Chang X., Cheng H. Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA. Nucleic Acids Res. 2013;41:1294–1306. PubMed PMC
Masuda S., Das R., Cheng H., Hurt E., Dorman N., Reed R. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev. 2005;19:1512–1517. PubMed PMC
Jani D., Lutz S., Hurt E., Laskey R.A., Stewart M., Wickramasinghe V.O. Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res. 2012;40:4562–4573. PubMed PMC
Jani D., Valkov E., Stewart M. Structural basis for binding the TREX2 complex to nuclear pores, GAL1 localisation and mRNA export. Nucleic Acids Res. 2014;42:6686–6697. PubMed PMC
Schubert T., Köhler A. Mediator and TREX-2: Emerging links between transcription initiation and mRNA export. Nucleus. 2016;7:126–131. PubMed PMC
Wickramasinghe V.O., Laskey R.A. Control of mammalian gene expression by selective mRNA export. Nat. Rev. Mol. Cell Biol. 2015;16:431–442. PubMed
Katahira J., Dimitrova L., Imai Y., Hurt E. NTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export. Nucleic Acids Res. 2015;43:1894–1904. PubMed PMC
Bullock T.L., Clarkson W.D., Kent H.M., Stewart M. The 1.6 Å resolution crystal structure of nuclear transport factor 2 (NTF2) J. Mol. Biol. 1996;260:422–431. PubMed
Eberhardt R.Y., Chang Y., Bateman A., Murzin A.G., Axelrod H.L., Hwang W.C., Aravind L. Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics. 2013;14:1–11. PubMed PMC
Hir H. Le, Izaurralde E., Maquat L.E., Moore M.J. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 2000;19:6860–6869. PubMed PMC
Gehring N.H., Lamprinaki S., Kulozik A.E., Hentze M.W. Disassembly of exon junction complexes by PYM. Cell. 2009;137:536–548. PubMed
Tange T.Ø., Shibuya T., Jurica M.S., Moore M.J. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA. 2005;11:1869–1883. PubMed PMC
Andreou A.Z., Klostermeier D. The DEAD-box helicase eIF4A paradigm or the odd one out? RNA Biol. 2013;10:19–32. PubMed PMC
Hir H. Le, Gatfield D., Izaurralde E., Moore M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 2001;20:4987–4997. PubMed PMC
Bercovich N., Levin M.J., Clayton C., Vazquez M.P. Identification of core components of the exon junction complex in trypanosomes. Mol. Biochem. Parasitol. 2009;166:190–193. PubMed
Bannerman B.P., Kramer S., Dorrell R.G., Carrington M. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One. 2018;13 PubMed PMC
Serpeloni M., Vidal N.M., Goldenberg S., Ávila A.R., Hoffmann F.G. Comparative genomics of proteins involved in RNA nucleocytoplasmic export. BMC Evol. Biol. 2011;11:7. PubMed PMC
Kramer S. Nuclear mRNA maturation and mRNA export control: From trypanosomes to opisthokonts. Parasitology. 2021;148:1196–1218. PubMed PMC
Serpeloni M., Moraes C.B., Muniz J.R.C., Motta M.C.M., Ramos A.S.P., Kessler R.L., Inoue A.H., DaRocha W.D., Yamada-Ogatta S.F., Fragoso S.P., Goldenberg S., Freitas-Junior L.H., Ávila A.R. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway. PLoS One. 2011;6 PubMed PMC
Schwede A., Manful T., Jha B.A., Helbig C., Bercovich N., Stewart M., Clayton C. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res. 2009;37:5511–5528. PubMed PMC
Kramer S., Kimblin N.C., Carrington M. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics. 2010;11:283. PubMed PMC
Dostalova A., Käser S., Cristodero M., Schimanski B. The nuclear mRNA export receptor Mex67-Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif. Mol. Microbiol. 2013;88:728–739. PubMed
Neumann N., Lundin D., Poole A.M. Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One. 2010;5 PubMed PMC
Bühlmann M., Walrad P., Rico E., Ivens A., Capewell P., Naguleswaran A., Roditi I., Matthews K.R. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucleic Acids Res. 2015;43:4491–4504. PubMed PMC
Rink C., Williams N. Unique interactions of the nuclear export receptors TbMex67 and TbMtr2 with components of the 5S ribonuclear particle in Trypanosoma brucei. mSphere. 2019;4 PubMed PMC
Hegedűsová E., Kulkarni S., Burgman B., Alfonzo J.D., Paris Z. The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in Trypanosoma brucei. Nucleic Acids Res. 2019;47:8620–8631. PubMed PMC
Obado S.O., Brillantes M., Uryu K., Zhang W., Ketaren N.E., Chait B.T., Field M.C., Rout M.P. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 2016;14:1–30. PubMed PMC
DuBois K.N., Alsford S., Holden J.M., Buisson J., Swiderski M., Bart J.M., Ratushny A.V., Wan Y., Bastin P., Barry J.D., Navarro M., Horn D., Aitchison J.D., Rout M.P., Field M.C. NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol. 2012;10 PubMed PMC
Akiyoshi B., Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. PubMed PMC
D’Archivio S., Wickstead B. Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J. Cell Biol. 2017;216:379–391. PubMed PMC
Inoue A.H., Serpeloni M., Hiraiwa P.M., Yamada-Ogatta S.F., Muniz J.R.C., Motta M.C.M., Vidal N.M., Goldenberg S., Avila A.R. Identification of a novel nucleocytoplasmic shuttling RNA helicase of trypanosomes. PLoS One. 2014;9 PubMed PMC
Contreras V.T., Salles J.M., Thomas N., Morel C.M., Goldenberg S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol. Biochem. Parasitol. 1985;16:315–327. PubMed
Brun R., Schonenberger M. Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979;36:289–292. PubMed
Fridy P.C., Li Y., Keegan S., Thompson M.K., Nudelman I., Scheid J.F., Oeffinger M., Nussenzweig M.C., Fenyö D., Chait B.T., Rout M.P. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods. 2014;11:1253–1260. PubMed PMC
Obado S.O., Field M.C., Chait B.T., Rout M.P. High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol. Biol. 2016;1411:67–80. PubMed
Ishihama Y., Oda Y., Tabata T., Sato T., Nagasu T., Rappsilber J., Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics. 2005;4:1265–1272. PubMed
Olsen J.V., de Godoy L.M.F., Li G., Macek B., Mortensen P., Pesch R., Makarov A., Lange O., Horning S., Mann M. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics. 2005;4:2010–2021. PubMed
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed
Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. PubMed
Luber C.A., Cox J., Lauterbach H., Fancke B., Selbach M., Tschopp J., Akira S., Wiegand M., Hochrein H., O’Keeffe M., Mann M. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity. 2010;32:279–289. PubMed
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC
Rice P., Longden I., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. PubMed
Price M.N., Dehal P.S., Arkin A.P. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5 PubMed PMC
Chang J., Tommaso P. Di, Taly J., Notredame C. Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinformatics. 2012;13:1–7. PubMed PMC
Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. PubMed PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. PubMed PMC
Edgar R.C. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC
Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. PubMed
Miller M.A., Pfeiffer W., Schwartz T. Gateway Computing Environments Workshop (GCE) IEEE; New Orleans, LA: 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; pp. 1–8.
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X., Gardner M.J., Gingle A., Grant G., Harb O.S., Heiges M., et al. TriTrypDB: A functional genomic resource for the trypanosomatidae. Nucleic Acids Res. 2010;38:D457–D462. PubMed PMC
Jones P., Binns D., Chang H.Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., Pesseat S., Quinn A.F., Sangrador-Vegas A., Scheremetjew M., Yong S.Y., et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. PubMed PMC
Eddy S.R. Profile hidden Markov models. Bioinformatics. 1998;14:755–763. PubMed
Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., Mistry J., Sonnhammer E.L.L., Tate J., Punta M. Pfam: The protein families database. Nucleic Acids Res. 2014;42:D222–D230. PubMed PMC
Batista M., Marchini F.K., Celedon P.A.F., Fragoso S.P., Probst C.M., Preti H., Ozaki L.S., Buck G.A., Goldenberg S., Krieger M.A. A high-throughput cloning system for reverse genetics in Trypanosoma cruzi. BMC Microbiol. 2010;10:259. PubMed PMC
Kugeratski F.G., Batista M., Inoue A.H., Ramos B.D., Krieger M.A., Marchini F.K. pTcGW plasmid vectors 1.1 version: A versatile tool for Trypanosoma cruzi gene characterisation. Mem. Inst. Oswaldo Cruz. 2015;110:687–690. PubMed PMC
Oberholzer M., Morand S., Kunz S., Seebeck T. A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Mol. Biochem. Parasitol. 2006;145:117–120. PubMed
Redmond S., Vadivelu J., Field M.C. RNAit: An automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Mol. Biochem. Parasitol. 2003;128:115–118. PubMed
Wickstead B., Ersfeld K., Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 2002;125:211–216. PubMed
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29 PubMed PMC
Mani J., Güttinger A., Schimanski B., Heller M., Acosta-Serrano A., Pescher P., Späth G., Roditi I. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS One. 2011;6 PubMed PMC
Das A., Bellofatto V., Rosenfeld J., Carrington M., Romero-zaliz R., Estévez A.M. High throughput sequencing analysis of Trypanosoma brucei DRBD3/PTB1-bound mRNAs. Mol. Biochem. Parasitol. 2015;199:1–4. PubMed
Wippel H.H., Malgarin J.S., Inoue A.H., Leprevost F. da V., Carvalho P.C., Goldenberg S., Alves L.R. Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiol. 2019;19:128. PubMed PMC
Pérez-díaz L., Caroline T., Teixeira S.M. Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi. Mol. Biochem. Parasitol. 2017;211:1–8. PubMed
Subota I., Rotureau B., Blisnick T., Ngwabyt S., Durand-Dubief M., Engstler M., Bastin P. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. Mol. Biol. Cell. 2011;22:4205–4219. PubMed PMC
Gupta S.K., Chikne V., Eliaz D., Tkacz I.D., Naboishchikov I., Carmi S., Ben-Asher H.W., Michaeli S. Two splicing factors carrying serine-arginine Two splicing factors carrying serine-arginine motifs, TSR1 and TSR1IP, regulate splicing, mRNA stability, and rRNA processing in Trypanosoma brucei. RNA Biol. 2014;11:715–731. PubMed PMC
Holden J.M., Koreny L., Obado S., Ratushny A.V., Chen W., Bart J., Navarro M., Chait B.T., Aitchison J.D., Rout M.P., Field M.C. Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes. Mol. Biol. Cell. 2018;29:1100–1110. PubMed PMC
Elvira-Matelot E., Bardou F., Ariel F., Jauvion V., Bouteiller N., Masson L., Cao J., Crespi M.D., Vaucheret H. The nuclear ribonucleoprotein SmD1 interplays with splicing, RNA quality control, and posttranscriptional gene silencing in Arabidopsis. Plant Cell. 2016;28:426–438. PubMed PMC
Jiang J., Liu X., Liu C., Liu G., Li S., Wang L. Integrating omics and alternative splicing reveals insights into grape response to high temperature 1 [OPEN] Plant Physiol. 2017;173:1502–1518. PubMed PMC
Buscemi G., Saracino F., Masnada D., Carbone M.L.A. The Saccharomyces cerevisiae SDA1 gene is required for actin cytoskeleton organization and cell cycle progression. J. Cell Sci. 2000;113:1199–1211. PubMed
Michaeli S. In: RNA Metabolism in Trypanosomes. Bindereif A., editor. Springer; Berlin, Heidelberg: 2012. pp. 123–148.
Cristodero M., Schimanski B., Heller M., Roditi I. Functional characterization of the trypanosome translational repressor SCD6. Biochem. J. 2014;457:57–67. PubMed
Holetz F.B., Correa A., Avila A.R., Nakamura C.V., Krieger M.A., Goldenberg S. Evidence of P-body-like structures in Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 2007;356:1062–1067. PubMed
Ebenezer T.E., Carrington M., Lebert M., Kelly S., Field M.C. Euglena gracilis genome and transcriptome: Organelles, nuclear genome assembly strategies and initial features. Adv. Exp. Med. Biol. 2017;979:125–140. PubMed
Kressler D., de la Cruz J., Rojo M., Linder P. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1997;17:7283–7294. PubMed PMC
Chang C.-T., Hautbergue G.M., Walsh M.J., Viphakone N., van Dijk T.B., Philipsen S., Wilson S.A. Chtop is a component of the dynamic TREX mRNA export complex. EMBO J. 2013;32:473–486. PubMed PMC
van Dijk T.B., Gillemans N., Stein C., Fanis P., Demmers J., van de Corput M., Essers J., Grosveld F., Bauer U.-M., Philipsen S. Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases. Mol. Cell. Biol. 2010;30:260–272. PubMed PMC
Azizi H., Dumas C., Papadopoulou B. The Pumilio-domain protein PUF6 contributes to SIDER2 retroposon-mediated mRNA decay in Leishmania. RNA. 2017;23:1874–1885. PubMed PMC
Dallagiovanna B., Correa A., Probst C.M., Holetz F., Smircich P., De Aguiar A.M., Mansur F., Vieira C., Mortara R.A., Garat B., Buck G.A., Goldenberg S., Krieger M.A. Functional genomic characterization of mRNAs associated with TcPUF6, a Pumilio-like protein from Trypanosoma cruzi. J. Biol. Chem. 2008;283:8266–8273. PubMed PMC
Simon M.J., Bindu N. Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: A comprehensive review. Mol. Biol. Rep. 2020;47:785–807. PubMed
Skaar J.R., Ferris A.L., Wu X., Saraf A., Khanna K.K., Florens L., Washburn M.P., Hughes S.H., Pagano M. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res. 2015;25:288–305. PubMed PMC
Rienzo M., Casamassimi A. Integrator complex and transcription regulation: Recent findings and pathophysiology. Biochim. Biophys. Acta. 2016;1859:1269–1280. PubMed
Liu Y., Li S., Chen Y., Kimberlin A.N., Cahoon E.B., Yu B. snRNA 3′ end processing by a CPSF73-containing complex essential for development in Arabidopsis. PLoS Biol. 2016;14 PubMed PMC
Wu Y., Albrecht T.R., Baillat D., Wagner E.J., Tong L. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance. Proc. Natl. Acad. Sci. U. S. A. 2017;114:4394–4399. PubMed PMC
Brogna S., Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 2009;16:107–113. PubMed
Kataoka N., Yong J., Kim V.N., Velazquez F., Perkinson R.A., Wang F., Dreyfuss G. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell. 2000;6:673–682. PubMed
Luo M., Zhou Z., Magni K., Christoforides C., Rappsilber J., Mann M., Reed R. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature. 2001;413:644–647. PubMed
Palacios I.M., Gatfield D., Johnston D.S., Izaurralde E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature. 2004;427:753–757. PubMed
Nott A., Hir H. Le, Moore M.J. Splicing enhances translation in mammalian cells: An additional function of the exon junction complex. Genes Dev. 2004;18:210–222. PubMed PMC
Delhi P., Queiroz R., Inchaustegui D., Carrington M., Clayton C. Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One. 2011;6 PubMed PMC
Strässer K., Hurt E. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature. 2001;413:648–652. PubMed
Naguleswaran A., Gunasekera K., Schimanski B., Heller M., Hemphill A., Ochsenreiter T., Roditi I. Trypanosoma brucei RRM1 is a nuclear RNA-binding protein and modulator of chromatin structure. mBio. 2015;6 PubMed PMC
Wippel H.H., Malgarin J.S., De Toledo S., Vidal N.M., Marcon B.H., Miot H.T., Marchini F.K., Goldenberg S., Alves L.R. The nuclear RNA-binding protein RBSR1 interactome in Trypanosoma cruzi. J. Eukaryot. Microbiol. 2019;66:244–253. PubMed
Mishra A., Kaur J.N., McSkimming D.I., Hegedűsová E., Dubey A.P., Ciganda M., Paris Z., Read L.K. Selective nuclear export of mRNAs is promoted by DRBD18 in Trypanosoma brucei. Mol. Microbiol. 2021;116:827–840. PubMed PMC
Rout M.P., Obado S.O., Schenkman S., Field M.C. Specialising the parasite nucleus: Pores, lamins, chromatin, and diversity. PLoS Pathog. 2017;13:1–16. PubMed PMC
Bayliss R., Leung S.W., Baker R.P., Quimby B.B., Corbett A.H., Stewart M. Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J. 2002;21:2843–2853. PubMed PMC
Fribourg S., Braun I.C., Izaurralde E., Conti E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell. 2001;8:645–656. PubMed
Leandro de Jesus T.C., Calderano S.G., Vitorino F.N. de L., Llanos R.P., Lopes M. de C., Araújo C. B. de, Thiemann O.H., Reis M. da S., Elias M.C., da Cunha J.P.C. Quantitative proteomic analysis of replicative and nonreplicative forms reveals important insights into chromatin biology of Trypanosoma cruzi. Mol. Cell. Proteomics. 2017;16:23–38. PubMed PMC
Coller J.M., Tucker M., Sheth U., Valencia-sanchez M.A., Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001;7:1717–1727. PubMed PMC
Kramer S., Queiroz R., Ellis L., Hoheisel J.D., Clayton C., Carrington M. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J. Cell Sci. 2010;123:699–711. PubMed PMC
Nissan T., Rajyaguru P., She M., Song H., Parker R. Article decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol. Cell. 2010;39:773–783. PubMed PMC
Köhler A., Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 2007;8:761–773. PubMed
Trypanosomes lack a canonical EJC but possess an UPF1 dependent NMD-like pathway
A lineage-specific protein network at the trypanosome nuclear envelope
Sending the message: specialized RNA export mechanisms in trypanosomes