Can prenatal methamphetamine exposure be considered a good animal model for ADHD?
Jazyk angličtina Země Česko Médium print
Typ dokumentu srovnávací studie, časopisecké články
PubMed
35099261
PubMed Central
PMC8884398
DOI
10.33549/physiolres.934815
PII: 934815
Knihovny.cz E-zdroje
- MeSH
- chování zvířat * MeSH
- gestační stáří MeSH
- hyperkinetická porucha chemicky indukované patofyziologie psychologie MeSH
- hypoxie plodu komplikace MeSH
- kognice MeSH
- krysa rodu Rattus MeSH
- lokomoce MeSH
- matka - expozice noxám MeSH
- methamfetamin * MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- methamfetamin * MeSH
Attention-deficit/hyperactivity disorder (ADHD) is a mental disorder with a heterogeneous origin with a global incidence that continues to grow. Its causes and pathophysiological mechanisms are not fully understood. It includes a combination of persistent symptoms such as difficulty in concentration, hyperactivity and impulsive behavior. Maternal methamphetamine (MA) abuse is a serious problem worldwide, it can lead to behavioral changes in their offspring that have similarities with behavioral changes seen in children with ADHD. There are several types of ADHD animal models, e.g. genetic models, pharmacologically, chemically and exogenously induced models. One of the exogenously induced ADHD models is the hypoxia-induced model. Our studies, as well as those of others, have demonstrated that maternal MA exposure can lead to abnormalities in the placenta and umbilical cord that result in prenatal hypoxia as well as fetal malnutrition that can result in irreversible changes to experimental animals. Therefore, the aim the present study was to compare the cognitive impairments in MA exposure model with those in established model of ADHD - prenatal hypoxia model, to test whether MA exposure is a valid model of ADHD. Pregnant Wistar rats were divided into four groups based on their gestational exposure to MA: (1) daily subcutaneous injections of MA (5 mg/kg), (2) saline injections at the same time and volume, (3) daily 1-hr hypoxia (10 % O2), and (4) no gestational exposure (controls). Male rat offspring were tested for short-term memory in the Novel Object Recognition Test and the Object Location Test between postnatal days 35 and 40. Also their locomotor activity in both tests was measured. Based on the present results, it seems that prenatal MA exposure is not the best animal model for ADHD since it shows corresponding symptoms only in certain measures. Given our previous results supporting our hypothesis, more experiments are needed to further test possible use of prenatal MA exposure as an animal model of the ADHD.
Zobrazit více v PubMed
ABAR B, LAGASSE LL, WOULDES T, DERAUF C, NEWMAN E, SHAH R, LESTER BM. Cross-national comparison of prenatal methamphetamine exposure on infant and early child physical growth: A natural experiment. Prev Sci. 2014;15:767–776. doi: 10.1007/s11121-013-0431-5. PubMed DOI PMC
ACUFF-SMITH KD, SCHILLING MA, FISHER JE, VORHEES CV. Stage-specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol Teratol. 1996;18:199–215. doi: 10.1016/0892-0362(95)02015-2. PubMed DOI
ASHERSON P. ADHD across the lifespan. Medicine. 2012;40:623–627. doi: 10.1016/j.mpmed.2012.08.007. DOI
ATALAR EG, UZBAY T, KARAKAŞ S. Modeling symptoms of attention-deficit hyperactivity disorder in a rat model of fetal alcohol syndrome. Alcohol Alcohol. 2016;51:684–690. doi: 10.1093/alcalc/agw019. PubMed DOI
BUBENÍKOVA-VALEŠOVÁ V, KAČER P, SYSLOVÁ K, RAMBOUSEK L, JANOVSKÝ M, SCHUTOVÁ B, HRUBÁ L, ŠLAMBEROVÁ R. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int J Dev Neurosci. 2009;27:525–530. doi: 10.1016/j.ijdevneu.2009.06.012. PubMed DOI
BUSH PG, MAYHEW TM, ABRAMOVICH DR, AGGETT PJ, BURKE MD, PAGE KR. Maternal cigarette smoking and oxygen diffusion across the placenta. Placenta. 2000;21:824–833. doi: 10.1053/plac.2000.0571. PubMed DOI
CAI Z, XIAO F, LEE B, PAUL IA, RHODES PG. Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits. Brain Res Bull. 1999;49:359–365. doi: 10.1016/S0361-9230(99)00076-3. PubMed DOI
CHANG L, SMITH LM, LOPRESTI C, YONEKURA ML, KUO J, WALOT I, ERNST T. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. 2004;132:95–106. doi: 10.1016/j.pscychresns.2004.06.004. PubMed DOI
DELCOUR M, RUSSIER M, AMIN M, BAUD O, PABAN V, BARBE MF, COQ JO. Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav Brain Res. 2012;232:233–244. doi: 10.1016/j.bbr.2012.03.029. PubMed DOI
DIAZ SD, SMITH LM, LAGASSE LL, DERAUF C, NEWMAN E, SHAH R, LESTER BM. Effects of prenatal methamphetamine exposure on behavioral and cognitive findings at 7.5 years of age. J Pediatr. 2014;164:1333–1338. doi: 10.1016/j.jpeds.2014.01.053. PubMed DOI PMC
DUBROVSKAYA NM, ZHURAVIN IA. Ontogenetic characteristics of behavior in rats subjected to hypoxia on day 14 or day 18 of embryogenesis. Neurosci Behav Physiol. 2010;40:231–238. doi: 10.1007/s11055-009-9235-2. PubMed DOI
ENNACEUR A, NEAVE N, AGGLETON JP. Spontaneous object recognition and object location memory in rats: The effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res. 1997;113:509–519. doi: 10.1007/PL00005603. PubMed DOI
FIALOVÁ M, ŠÍROVÁ J, BUBENÍKOVÁ-VALEŠOVÁ V, ŠLAMBEROVÁ R. The effect of prenatal methamphetamine exposure on recognition memory in adult rats. Prague Med Rep. 2015;116:31–39. doi: 10.14712/23362936.2015.43. PubMed DOI
FUJÁKOVÁ-LIPSKI M, KAPING D, ŠÍROVÁ J, HORÁČEK J, PÁLENÍČEK T, ZACH P, ŠLAMBEROVÁ R. Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch Toxicol. 2017;91:3373–3384. doi: 10.1007/s00204-017-1969-y. PubMed DOI
GETAHUN D, RHOADS GG, DEMISSIE K, LU SE, QUINN VP, FASSETT MJ, JACOBSEN SJ. In utero exposure to ischemichypoxic conditions and attention-deficit/hyperactivity disorder. Pediatrics. 2013;131:e53–e61. doi: 10.1542/peds.2012-1298. PubMed DOI
GIBSON MAS, BUTTERS NS, REYNOLDS J, BRIEN JF. Effects of chronic prenatal ethanol exposure on locomotor activity, and hippocampal weight, neurons, and nitric oxide synthase activity of the young postnatal guinea pig. Neurotoxicol Teratol. 2000;22:183–192. doi: 10.1016/S0892-0362(99)00074-4. PubMed DOI
GILBERTSON RJ, BARRON S. Neonatal ethanol and nicotine exposure causes locomotor activity changes in preweanling animals. Pharmacol Biochem Behav. 2005;81:54–64. doi: 10.1016/j.pbb.2005.02.002. PubMed DOI
GOLAN H, HULEIHEL M. The effect of prenatal hypoxia on brain development: short-and long-term consequences demonstrated in rodent models. Dev Sci. 2006;9:338–349. doi: 10.1111/j.1467-7687.2006.00498.x. PubMed DOI
HALPIN LE, COLLINS SA, YAMAMOTO BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci. 2014;97:37–44. doi: 10.1016/j.lfs.2013.07.014. PubMed DOI PMC
HOLUBOVÁ A, ŠTOFKOVÁ A, JURČOVIČOVÁ J, ŠLAMBEROVÁ R. The effect of neonatal maternal stress on plasma levels of adrenocorticotropic hormone, corticosterone, leptin, and ghrelin in adult male rats exposed to acute heterotypic stressor. Physiol Res. 2016;65(Suppl 5):S557–S566. doi: 10.33549/physiolres.933530. PubMed DOI
HERMANS RHM, HUNTER DE, McGIVERN RF, CAIN CD, LONGO LD. Behavioral sequelae in young rats of acute intermittent antenatal hypoxia. Neurotoxicol Teratol. 1992;14:119–129. doi: 10.1016/0892-0362(92)90060-N. PubMed DOI
KNOPIK VS. Commentary: Smoking during pregnancy-genes and environment weigh in. Int J Epidemiol. 2010;39:1203–1205. doi: 10.1093/ije/dyq125. PubMed DOI PMC
KNOPIK VS. Maternal smoking during pregnancy and child outcomes: real or spurious effect? Dev Neuropsychol. 2009;34:1–36. doi: 10.1080/87565640802564366. PubMed DOI PMC
KWIATKOWSKI MA, ROOS A, STEIN DJ, THOMAS KG, DONALD K. Effects of prenatal methamphetamine exposure: A review of cognitive and neuroimaging studies. Metab Brain Dis. 2014;29:245–254. doi: 10.1007/s11011-013-9470-7. PubMed DOI
MARESOVA D, VALKOUNOVÁ I, JANDOVÁ K, BORTELOVA J, TROJAN S. Excitability changes of cortical neurons during the postnatal period in rats exposed to prenatal hypobaric hypoxia. Physiol Res. 2001;50:215–219. PubMed
MEDIN T, MEDIN H, HEFTE MB, STORM-MATHISEN J, BERGERSEN LH. Upregulation of the lactate transporter monocarboxylate transporter 1 at the blood-brain barrier in a rat model of attention-deficit/hyperactivity disorder suggests hyperactivity could be a form of self-treatment. Behav Brain Res. 2019;360:279–285. doi: 10.1016/j.bbr.2018.12.023. PubMed DOI
MORETON E, BARON P, TIPLADY S, McCALL S, CLIFFORD B, LANGLEY-EVANS SC, VOIGT JP. Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behav Brain Res. 2019;363:191–198. doi: 10.1016/j.bbr.2019.02.003. PubMed DOI
OCHOZKOVÁ A, MIHALČÍKOVÁ L, YAMAMOTOVÁ A, ŠLAMBEROVÁ R. ADHD symptoms induced by prenatal methamphetamine exposure. Physiol Res. 2019;68(Suppl 3):S347–S352. doi: 10.33549/physiolres.934358. PubMed DOI
OORSCHOT DE, VOSS L, COVEY MV, BILKEY DK, SAUNDERS SE. ADHD-like hyperactivity, with no attention deficit, in adult rats after repeated hypoxia during the equivalent of extreme prematurity. J Neurosci Methods. 2007;166:315–322. doi: 10.1016/j.jneumeth.2007.01.010. PubMed DOI
PAGIDA MA, KONSTANTINIDOU AE, TSEKOURA E, MANGOURA D, PATSOURIS E, PANAYOTACOPOULOU MT. Vulnerability of the mesencephalic dopaminergic neurons of the human neonate to prolonged perinatal hypoxia: an immunohistochemical study of tyrosine hydroxylase expression in autopsy material. J Neuropathol Exp Neurol. 2013;72:337–350. doi: 10.1097/NEN.0b013e31828b48b3. PubMed DOI
PAGIDA MA, KONSTANTINIDOU AE, KORELIDOU A, KATSIKA D, TSEKOURA E, PATSOURIS E, PANAYOTACOPOULOU MT. The effect of perinatal hypoxic/ischemic injury on tyrosine hydroxylase expression in the locus coeruleus of the human neonate. Dev Neurosci. 2016;38:41–53. doi: 10.1159/000439270. PubMed DOI
PAPA M, SERGEANT JA, SADILE AG. Reduced transduction mechanisms in the anterior accumbal interface of an animal model of attention-deficit hyperactivity disorder. Behav Brain Res. 1998;94:187–195. doi: 10.1016/S0166-4328(97)00179-4. PubMed DOI
PLOMP E, Van ENGELAND H, DURSTON S. Understanding genes, environment and their interaction in attention-deficit hyperactivity disorder: is there a role for neuroimaging? Neuroscience. 2009;164:230–240. doi: 10.1016/j.neuroscience.2009.07.024. PubMed DOI
ROBINSON S, CORBETT CJ, WINER JL, CHAN LA, MAXWELL JR, ANSTINE CV, JANTZIE LL. Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp Neurol. 2018;302:1–13. doi: 10.1016/j.expneurol.2017.12.010. PubMed DOI PMC
RUSSELL VA. Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods. 2007;161:185–198. doi: 10.1016/j.jneumeth.2006.12.005. PubMed DOI
SAB IM, FERRAZ MMD, AMARAL TAS, RESENDE AC, FERRAZ MR, MATSUURA C, MENDES-RIBEIRO AC. Prenatal hypoxia, habituation memory and oxidative stress. Pharmacol Biochem Behav. 2013;107:24–28. doi: 10.1016/j.pbb.2013.04.004. PubMed DOI
SAGVOLDEN T, JOHANSEN EB, AASE H, RUSSELL VA. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005;28:397–418. doi: 10.1017/S0140525X05000075. PubMed DOI
SAGVOLDEN T, JOHANSEN EB Rat models of ADHD. In: Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and its Treatment. STANFORD C, TANNOCK R, editors. Springer; Berlin, Heidelberg: 2011. pp. 301–315. DOI
SCHUTOVÁ B, HRUBÁ L, POMETLOVÁ M, DEYKUN K, ŠLAMBEROVÁ R. Cognitive functions and drug sensitivity in adult male rats prenatally exposed to methamphetamine. Physiol Res. 2009;58:741–750. doi: 10.33549/physiolres.931562. PubMed DOI
SWARTZWELDER NA, RISHER ML, ABDELWAHAB SH, D’ABO A, REZVANI AH, LEVIN ED, ACHESON SK. Effects of ethanol, Δ9-tetrahydrocannabinol, or their combination on object recognition memory and object preference in adolescent and adult male rats. Neurosci Lett. 2012;527:11–15. doi: 10.1016/j.neulet.2012.08.037. PubMed DOI PMC
ŠLAMBEROVÁ R, POMETLOVÁ M, CHAROUSOVÁ P. Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:82–88. doi: 10.1016/j.pnpbp.2005.06.006. PubMed DOI
ŠLAMBEROVÁ R. Drugs in pregnancy: the effects on mother and her progeny. Physiol Res. 2012;61(Suppl 1):S123–S135. doi: 10.33549/physiolres.932357. PubMed DOI
ŠLAMBEROVÁ R, VRAJOVÁ M, SCHUTOVÁ B, MERTLOVÁ M, MACÚCHOVÁ E, NOHEJLOVÁ K, YAMAMOTOVÁ A. Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus. Physiol Res. 2014;63(Suppl 4):S547–S558. doi: 10.33549/physiolres.932926. PubMed DOI
TIESLER CM, HEINRICH J. Prenatal nicotine exposure and child behavioural problems. Eur Child Adolesc Psychiatry. 2014;23:913–929. doi: 10.1007/s00787-014-0615-y. PubMed DOI PMC
VAVRINKOVA B, BINDER T, VITKOVA I, ZIVNÝ J. Placental and umbilical cord changes in drug-addicted women. (Article in Czech) Ceska Gynekol. 2001;66:345–349. PubMed
VETROVOY O, STRATILOV V, NIMIRITSKY P, MAKAREVICH P, TYULKOVA E. Prenatal hypoxia induces premature aging accompanied by impaired function of the glutamatergic system in rat hippocampus. Neurochem Res. 2021;46:1–14. doi: 10.1007/s11064-020-03191-z. PubMed DOI
VIGGIANO D, VALLONE D, SADILE A. Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling. Neural Plast. 2004;11:97–114. doi: 10.1155/NP.2004.97. PubMed DOI PMC
WAGNER GC, RICAURTE GA, SEIDEN LS, SCHUSTER CR, MILLER RJ, WESTLEY J. Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res. 1980;181:151–160. doi: 10.1016/0006-8993(80)91265-2. PubMed DOI
WEI B, LI L, HE A, ZHANG Y, SUN M, XU Z. Hippocampal NMDAR-Wnt-Catenin signaling disrupted with cognitive deficits in adolescent offspring exposed to prenatal hypoxia. Brain Res. 2016;163:157–164. doi: 10.1016/j.brainres.2015.11.041. PubMed DOI
ZHU JP, XU W, ANGULO N, ANGULO JA. Methamphetamine-induced striatal apoptosis in the mouse brain: comparison of a binge to an acute bolus drug administration. Neurotoxicology. 2006;27:131–136. doi: 10.1016/j.neuro.2005.05.014. PubMed DOI PMC
ZHU JL, OLSEN J, LIEW Z, LI J, NICLASEN J, OBEL C. Parental smoking during pregnancy and ADHD in children: the Danish national birth cohort. Pediatrics. 2014;134:382–388. doi: 10.1542/peds.2014-0213. PubMed DOI
ZHURAVIN IA, DUBROVSKAYA NM, VASILEV DS, POSTNIKOVA TY, ZAITSEV AV. Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiol Learn Mem. 2019;164:107066. doi: 10.1016/j.nlm.2019.107066. PubMed DOI
Learning and Memory Impairments With Attention-Deficit/Hyperactivity Disorder