Metagenomic analysis of intestinal microbiota in wild rats living in urban and rural habitats
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
2019-01. BŞEÜ.01-01
Scientific Research Project fund of Bilecik Şeyh Edebali University
PubMed
35102501
DOI
10.1007/s12223-022-00951-y
PII: 10.1007/s12223-022-00951-y
Knihovny.cz E-resources
- MeSH
- Rats MeSH
- Metagenome MeSH
- Metagenomics MeSH
- Microbiota * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Mammals genetics MeSH
- Gastrointestinal Microbiome * genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
Mammals have a symbiotic relationship with various microorganisms called microbiota throughout their lives. These microorganisms are known to affect the host's physiology, health, and even mental balance. The development of the gut microbiota is regulated by a complex interaction between host and environmental factors, including diet and lifestyle. Herein, it is aimed to elucidate the differences in the gut microbiota of rats living in urban and rural habitats. The taxonomic changes in the gut microbiota of wild rats belonging to Rattus rattus species caught from urban and rural areas of Western Anatolian (Bilecik province) were examined comparatively by 16S rRNA next-generation sequencing technique. Laboratory rats were used as reference animals. The alpha diversities were found lower in the rural rats with respect to the urban rats, whereas the highest alpha diversity was calculated for laboratory rats. The lower Firmicutes to Bacteroidetes ratios (F/B ratio) were accounted for both rural and laboratory rats compared with urban rats. The Proteobacteria to Actinobacteria ratio (P/A ratio) was lower for rural rats, but higher for laboratory rats, compared with urban rats. The heatmap analyses of taxonomic units in the microbiota of each group demonstrated distinct patterns at the species and genus levels. The study provided metagenomic data on the gut microbiota of rats residing in urban and rural habitats, offering a different perspective on future environmental biomonitoring studies.
Department of Bioengineering Bilecik Şeyh Edebali University 11230 Bilecik Turkey
Department of Biotechnology Bilecik Şeyh Edebali University 11230 Bilecik Turkey
Department of Molecular Biology and Genetics Bilecik Şeyh Edebali University 11230 Bilecik Turkey
See more in PubMed
Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920. https://doi.org/10.1126/science.1104816 PubMed DOI
Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703. https://doi.org/10.1016/j.chom.2015.04.004 PubMed DOI
Binda C, Lopetuso LR, Rizzatti G et al (2018) Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 50:421–428. https://doi.org/10.1016/j.dld.2018.02.012 PubMed DOI
Breton J, Daniel C, Dewulf J et al (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222:132–138. https://doi.org/10.1016/j.toxlet.2013.07.021 PubMed DOI
Bui TPN, de Vos WM, Plugge CM (2014) Anaerostipes rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. Int J Syst Evol Microbiol 64:787–793. https://doi.org/10.1099/ijs.0.055061-0 PubMed DOI
Carmody RN, Bisanz JE, Bowen BP et al (2019) Cooking shapes the structure and function of the gut microbiome. Nat Microbiol 4:2052–2063. https://doi.org/10.1038/s41564-019-0569-4 PubMed DOI PMC
Ceylani T, Jakubowska-Doğru E, Gurbanov R et al (2018) The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age. Heliyon 4:e00644. https://doi.org/10.1016/j.heliyon.2018.e00644 PubMed DOI PMC
Drengenes C, Eagan TML, Haaland I et al (2021) Exploring protocol bias in airway microbiome studies: one versus two PCR steps and 16S rRNA gene region V3 V4 versus V4. BMC Genomics 22:3. https://doi.org/10.1186/s12864-020-07252-z PubMed DOI PMC
Fang S, Zhuo Z, Yu X et al (2018) Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats. J Trace Elem Med Biol 47:12–20. https://doi.org/10.1016/j.jtemb.2018.01.002 PubMed DOI
Flandroy L, Poutahidis T, Berg G et al (2018) The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 627:1018–1038. https://doi.org/10.1016/j.scitotenv.2018.01.288 PubMed DOI
Flemer B, Gaci N, Borrel G et al (2017) Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes 8:428–439. https://doi.org/10.1080/19490976.2017.1334033 PubMed DOI PMC
Flint HJ, Scott KP, Duncan SH et al (2012a) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306. https://doi.org/10.4161/gmic.19897 PubMed DOI PMC
Flint HJ, Scott KP, Louis P, Duncan SH (2012b) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. https://doi.org/10.1038/nrgastro.2012.156 PubMed DOI
Gardner-Santana LC, Norris DE, Fornadel CM et al (2009) Commensal ecology, urban landscapes, and their influence on the genetic characteristics of city-dwelling Norway rats (Rattus norvegicus). Mol Ecol 18:2766–2778. https://doi.org/10.1111/j.1365-294X.2009.04232.x PubMed DOI PMC
Hague A, Singh B, Paraskeva C (1997) Butyrate acts as a survival factor for colonic epithelial cells: Further fuel for the in vivo versus in vitro debate. Gastroenterology 112:1036–1040. https://doi.org/10.1053/gast.1997.v112.agast971036 PubMed DOI
Helmink BA, Khan MAW, Hermann A et al (2019) The microbiome, cancer, and cancer therapy. Nat Med 25:377–388. https://doi.org/10.1038/s41591-019-0377-7 PubMed DOI
Indiani CMDSP, Rizzardi KF, Castelo PM et al (2018) Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes 14:501–509. https://doi.org/10.1089/chi.2018.0040 PubMed DOI
Jankovská I, Miholová D, Langrová I et al (2009) Influence of parasitism on the use of small terrestrial rodents in environmental pollution monitoring. Environ Pollut 157:2584–2586. https://doi.org/10.1016/j.envpol.2009.04.008 PubMed DOI
Licht TR, Bahl MI (2019) Impact of the gut microbiota on chemical risk assessment. Curr Opin Toxicol 15:109–113. https://doi.org/10.1016/j.cotox.2018.09.004 DOI
Liu J, Deng Y, Peters BM et al (2016) Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans. Sci Rep 6:36753. https://doi.org/10.1038/srep36753 PubMed DOI PMC
Lleal M, Sarrabayrouse G, Willamil J et al (2019) A single faecal microbiota transplantation modulates the microbiome and improves clinical manifestations in a rat model of colitis. EBioMedicine 48:630–641. https://doi.org/10.1016/j.ebiom.2019.10.002 PubMed DOI PMC
Magne F, Gotteland M, Gauthier L et al (2020) The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12(5):1474. https://doi.org/10.3390/nu12051474 DOI PMC
Manichanh C, Reeder J, Gibert P et al (2010) Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 20(10):1411–1419. https://doi.org/10.1101/gr.107987.110 PubMed DOI PMC
Matthews JA (2014) Diversity indices. In Encyclopedia of environmental change (vol 1, pp 290–291). SAGE Publications, Ltd. https://doi.org/10.4135/9781446247501.n1100
Mondot S, Kang S, Furet JP et al (2011) Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 17:185–192. https://doi.org/10.1002/ibd.21436 PubMed DOI
Razavi AC, Potts KS, Kelly TN, Bazzano LA (2019) Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ 10:29. https://doi.org/10.1186/s13293-019-0240-z PubMed DOI PMC
Rizzatti G, Lopetuso LR, Gibiino G et al (2017) Proteobacteria: a common factor in human diseases. Biomed Res Int 2017:9351507. https://doi.org/10.1155/2017/9351507 PubMed DOI PMC
Rothschild D, Weissbrod O, Barkan E et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215. https://doi.org/10.1038/nature25973 PubMed DOI
Shahi SK, Zarei K, Guseva N, v, Mangalam AK, (2019) Microbiota analysis using two-step PCR and next-generation 16S rRNA gene sequencing. J Vis Exp. https://doi.org/10.3791/59980 PubMed DOI
Sune D, Rydberg H, Augustinsson ÅN et al (2020) Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. J Microbiol Methods. https://doi.org/10.1016/j.mimet.2020.105854 PubMed DOI
Traweger D, Slotta-Bachmayr L (2005) Introducing GIS-modelling into the management of a brown rat (Rattus norvegicus Berk.) (Mamm. Rodentia Muridae) population in an urban habitat. J Pest Sci 78:17–24. https://doi.org/10.1007/s10340-004-0062-5 DOI
Wood DE, Salzberg SL (2014) Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46. https://doi.org/10.1186/gb-2014-15-3-r46 PubMed DOI PMC
Wopereis H, Oozeer R, Knipping K et al (2014) The first thousand days — intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 25:428–438. https://doi.org/10.1111/pai.12232 PubMed DOI
Zhang F, Zheng W, Guo R, Yao W (2017) Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J Microbiol 55:694–702. https://doi.org/10.1007/s12275-017-6627-9 PubMed DOI