Stereochemical Behavior of Pairs of P-stereogenic Phosphanyl Groups at the Dimethylxanthene Backbone

. 2022 Apr 06 ; 28 (20) : e202200248. [epub] 20220222

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35104022

Grantová podpora
Fonds der Chemischen Industrie
Deutsche Forschungsgemeinschaft

The P-stereogenic bis(phosphanes) 7 and 9, featuring pairs of P(Mes)-ethynyl or vinyl substituents at the dimethyl xanthene backbone show rather low barriers of stereochemical inversion at phosphorus. π-Conjugative effects are probably causing these low inversion barriers. Compound 7 reacted with B(C6 F5 )3 to form the nine-membered heterocyclic product 10, featuring a [P]-C≡C-B(C6 F5 )3 substituent. Compound 7 was converted to the bis[P(Mes)vinyl] xanthene derivative 9, which gave the zwitterionic P(H)(Mes)-CH=CH-B(C6 F5 )3 containing product 16 upon treatment with B(C6 F5 )3 . Thermally induced epimerization barriers at phosphorus of ca. 20 to 27 kcal mol-1 were calculated by DFT for the alkenyl- and alkynyl-P derived systems 6 to 9, 15 and 16 and experimentally determined for the examples 7 and 16.

Zobrazit více v PubMed

L. Horner, H. Winkler, A. Rapp, A. Mentrup, H. Hoffmann, P. Beck, Tetrahedron Lett. 1961, 2, 161-166.

R. D. Baechler, K. Mislow, J. Am. Chem. Soc. 1970, 92, 3090-3093;

K. Mislow, R. D. Baechler, J. Am. Chem. Soc. 1971, 93, 773-774;

W. Egan, R. Tang, G. Zon, K. Mislow, J. Am. Chem. Soc. 1970, 92, 1442-1444;

W. Egan, R. Tang, G. Zon, K. Mislow, J. Am. Chem. Soc. 1971, 93, 6205-6216;

D. A. Dixon, A. J. Arduengo III, T. Fukunaga, J. Am. Chem. Soc. 1968, 108, 2461-2462.

J. Holz, H. Jiao, M. Gandelman, A. Börner, Eur. J. Org. Chem. 2018, 2984-2994;

A. E. Ferao, A. G. Alcaraz, New J. Chem. 2020, 44, 8763-8770; for examples of low P-inversion barriers in metal substituted phosphanes see:;

J. R. Rogers, T. P. S. Wagner, D. S. Marynick, Inorg. Chem. 1994, 33, 3104-3110;

M. A. Zhuravel, D. Glueck, L. N. Zakharov, A. L. Rheingold, Organometallics 2002, 21, 3208-3214.

For other rare pathways of loss ot the stereochemical information at phosphorous see, for example,

S. Humbel, C. Bertrand, C. Darcel, C. Bauduin, S. Jugé, Inorg. Chem. 2003, 42, 420-427;

K. D. Reichl, D. H. Ess, A. T. Radosevich, J. Am. Chem. Soc. 2013, 135, 9354-9357;

K. Fujimoto, A. Osuka, Chem. Sci. 2017, 8, 8231-8239;

J. Popp, S. Hanf, E. Hey-Hawkins, Chem. Eur. J. 2020, 26, 5765-5769;

T. Machida, T. Iwasa, T. Taketsugu, K. Sada, K. Kokado, Chem. Eur. J. 2020, 26, 8028-8034.

K. Škoch, C. G. Daniliuc, G. Kehr, S. Ehlert, M. Müller, S. Grimme, G. Erker, Chem. Eur. J. 2021, 27, 12104-12114.

For related methodology see, for example, L. Wang, D. Deng, K. Škoch, C. G. Daniliuc, G. Kehr, G. Erker, Organometallics 2019, 38, 1897-1902.

D. W. Hart, J. Schwartz, J. Am. Chem. Soc. 1974, 96, 8115-8116.

For remotely related xanthene derived chemistry see, for example,

Z. Mo, E. L. Kolychev, A. Rit, J. Campos, H. Niu, S. Aldridge, J. Am. Chem. Soc. 2015, 137, 12227-12230;

Z. Mo, A. Rit, J. Campos, E. L. Kolychev, S. Aldridge, J. Am. Chem. Soc. 2016, 138, 3306-3309;

J. Holz, K. Rumpel, A. Spannenberg, R. Paciello, H. Jiao, A. Börner, ACS Catal. 2017, 7, 6162-6169;

J. Holz, G. Wenzel, A. Spannenberg, M. Gandelman, A. Börner, Tetrahedron 2020, 76, 131142-131151.

TURBOMOLE V7.5.1, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2020, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com, 2019;

F. Neese, ORCA - An Ab Initio, DFT and Semiempirical electronic structure package, Ver. 4.2.1, Max-Planck-Institut für Kohlenforschung, Mülheim, Germany, 2021;

F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1327;

P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169-7192;

C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652-1671;

S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput. 2021, 17, 4250-4261;

S. Grimme, A. Hansen, S. Ehlert, J. M. Mewes, J. Chem. Phys. 2021, 154, 64103;

A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799-805;

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305;

S. Grimme, Chem. Eur. J. 2012, 18, 9955-9964;

F. Eckert, A. Klamt, AIChE J. 2002, 48, 369-385;

F. Eckert, A. Klamt, pp. COSMOtherm, Version C3.0, Release 16.01; COSMOlogic GmbH & Co. KG, Leverkusen, Germany, 2015;

G. Santra, N. Sylvetsky, J. M. L. Martin, J. Phys. Chem. A 2019, 123, 5129-5143;

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104;

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465;

NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, TCI, University of Wisconsin, Madison, 2013;

Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656-5667.

See also: A. Rauk, L. C. Allen, K. Mislow, Angew. Chem. Int. Ed. 1970, 9, 400-414;

Angew. Chem. 1970; 82; 453-468; related theoretical studies:

C. D. Montgomery, J. Chem. Educ. 2013, 90, 661-664;

A. Espinosa Ferao, A. García Alcaraz, New J. Chem. 2020, 44, 8763-8770.

For ketiminium examples see: G. Evano, M. Lecomte, P. Thilmany, C. Theunissen, Synthesis 2017, 49, 3183-3214.

For related phospha-ketimines/3H-phosphaallenes see, for example,

H. Klöcker, S. Roters, A. Hepp, W. Uhl, Dalton Trans. 2015, 44, 12670-12679;

H. Klöcker, J. C. Tendyck, L. Keweloh, A. Hepp, W. Uhl, Chem. Eur. J. 2019, 25, 4793-4807;

J. C. Tendyck, A. Hepp, E−U. Würthwein, W. Uhl, Chem. Eur. J. 2020, 26, 15977-15988;

J. C. Tendyck, H. Klöcker, L. Schürmann, E−U. Würthwein, A. Hepp, M. Layh, W. Uhl, J. Org. Chem. 2020, 85, 14315-14332.

See for comparison: X. Zhao, A. J. Lough, D. W. Stephan, Chem. Eur. J. 2011, 17, 6731-6743.

D. J. Parks, R. E. von Spence, W. E. Piers, Angew. Chem. Int. Ed. 1995, 34, 809-811;

Angew. Chem. 1995, 107, 895-897;

D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics 1998, 17, 5492-5503;

M. Hoshi, K. Shirakawa, M. Okimoto, Tetrahedron Lett. 2007, 48, 8475-8478;

E. A. Patrick, W. E. Piers, Chem. Commun. 2020, 56, 841-583.

For the respective parent FLP system see: P. Spies, G. Erker, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan, Chem. Commun. 2007, 5072-5074.

Iminium Salts in Organic Chemistry, Part 1 ed. H. Böhme, H. G. Viehe, Wiley, New York, 1976;

M. Arend, B. Westermann, N. Risch, Angew. Chem. Int. Ed. 1998, 37, 1044-1070;

Angew. Chem. 1998, 110, 1096-1122;

A. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416-5470;

Y−Q. Zou, F. M. Hörmann, T. Bach, Chem. Soc. Rev. 2018, 47, 278-290.

A. Igau, A. Baceiredo, H. Grützmacher, H. Pritzkow, G. Bertrand, J. Am. Chem. Soc. 1989, 111, 6853-6854;

M. Ehrig, H. Horn, C. Koelmel, R. Ahlrichs, J. Am. Chem. Soc. 1991, 113, 3701-3704;

H. Grützmacher, H. Pritzkow, Angew. Chem. Int. Ed. 1992, 31, 99-101;

Angew. Chem. 1992, 104, 92-94;

U. Heim, H. Pritzkow, H. Schönberg, H. Grützmacher, J. Chem. Soc. Chem. Commun. 1993, 673-674;

H. Grützmacher, C. M. Marchand, Coord. Chem. Rev. 1997, 163, 287-344;

R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877-3923.

Y. Hasegawa, G. Kehr, S. Ehrlich, S. Grimme, C. G. Daniliuc, G. Erker, Chem. Sci. 2014, 5, 797-803.

D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441;

Angew. Chem. 2015, 127, 6498-6541;

D. W. Stephan, Science 2016, 354, aaf7229;

D. W. Stephan, Trends Chem. 2019, 1, 35-48.

Y. Hasegawa, C. G. Daniliuc, G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2014, 53, 12168-12171;

Angew. Chem. 2014, 126, 12364-12367.

For early examples of FLP addition to alkenes see:

T. Voss, C. Chen, G. Kehr, E. Nauha, G. Erker, D. W. Stephan, Chem. Eur. J. 2010, 16, 3005-3008;

X. Zhao, D. Stephan, Chem. Sci. 2012, 3, 2123-2132; for addition to alkynes see:

A. Fukazawa, H. Yamada, S. Yamaguchi Angew. Chem. Int. Ed. 2008, 47, 5582-5585;

Angew. Chem. 2008, 120, 5664-5667;

M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 8396-8397;

C. M. Mömming, G. Kehr, B. Wibbeling, R. Fröhlich, B. Schirmer, S. Grimme, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 2414-2417;

Angew. Chem. 2010, 122, 2464-2467.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...