Increased Transferrin Sialylation Predicts Phenoconversion in Isolated REM Sleep Behavior Disorder
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35128728
PubMed Central
PMC9305135
DOI
10.1002/mds.28942
Knihovny.cz E-zdroje
- Klíčová slova
- Parkinson's disease, phenoconversion, rapid eye movement sleep behavior disorder, sialylation, transferrin,
- MeSH
- jednofotonová emisní výpočetní tomografie metody MeSH
- lidé MeSH
- Parkinsonova nemoc * komplikace diagnostické zobrazování MeSH
- porucha chování v REM spánku * komplikace diagnostické zobrazování MeSH
- synukleinopatie * MeSH
- transferin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transferin MeSH
BACKGROUND: Sialic acid-protein interactions are involved in regulating central nervous system immunity; therefore, derangements in sialylation could be involved in neurodegeneration. OBJECTIVES: We evaluate the differences in serum transferrin sialylation in prodromal and early-stage Parkinson's disease (PD), its relation to substantia nigra degeneration, and the risk of phenoconversion to manifest disease. METHODS: Sixty treatment-naive PD patients; 72 polysomnography-confirmed isolated rapid eye movement sleep behavior disorder (iRBD) patients, that is, patients with prodromal synucleinopathy; and 46 healthy volunteers aged ≥45 years and drinking ≤60 standard drinks per month were included. The proportion of serum low-sialylated, carbohydrate-deficient transferrin (CDT) isoforms was assessed using high-performance liquid chromatography, and the values were adjusted for alcohol intake (CDTadj ). Dopamine transporter single-photon emission computed tomography (DaT-SPECT) imaging was performed. In iRBD, phenoconversion risk of DaT-SPECT and CDTadj was evaluated using Cox regression adjusted for age and sex. RESULTS: Median CDTadj was lower in PD (1.1 [interquartile range: 1.0-1.3]%) compared to controls (1.2 [1.1-1.6]%) (P = 0.001). In iRBD, median CDTadj was lower in subjects with abnormal (1.1 [0.9-1.3]%) than normal (1.3 [1.2-1.6]%) DaT-SPECT (P = 0.005). After a median 44-month follow-up, 20% of iRBD patients progressed to a manifest disease. Although iRBD converters and nonconverters did not significantly differ in CDTadj levels (P = 0.189), low CDTadj increased the risk of phenoconversion with hazard ratio 3.2 (P = 0.045) but did not refine the phenoconversion risk associated with abnormal DaT-SPECT yielding hazard ratio 15.8 (P < 0.001). CONCLUSIONS: Decreased serum CDTadj is associated with substantia nigra degeneration in synucleinopathies. iRBD patients with low CDTadj are more likely to phenoconvert to manifest disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Zobrazit více v PubMed
Siderowf A, Lang AE. Premotor Parkinson's disease: concepts and definitions. Mov Disord 2012;27(5):608–616. PubMed PMC
Claassen DO, Josephs KA, Ahlskog JE, Silber MH, Tippmann‐Peikert M, Boeve BF. REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology 2010;75(6):494–499. PubMed PMC
Ponsen MM, Stoffers D, Booij J, van Eck‐Smit BL, ECh W, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson's disease. Ann Neurol 2004;56(2):173–181. PubMed
Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB, MDS Task Force on the Definition of Parkinson's Disease . Update of the MDS research criteria for prodromal Parkinson's disease. Mov Disord 2019;34(10):1464–1470. PubMed
Boeve BF, Silber MH, Saper CB, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 2007;130(Pt 11):2770–2788. PubMed
Miglis MG, Adler CH, Antelmi E, et al. Biomarkers of conversion to alpha‐synucleinopathy in isolated rapid‐eye‐movement sleep behaviour disorder. Lancet Neurol 2021;20(8):671–684. PubMed PMC
Galbiati A, Verga L, Giora E, Zucconi M, Ferini‐Strambi L. The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta‐analysis of longitudinal studies. Sleep Med Rev 2019;43:37–46. PubMed
Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 2019;142(3):744–759. PubMed PMC
Arnaldi D, Chincarini A, Hu MT, et al. Dopaminergic imaging and clinical predictors for phenoconversion of REM sleep behaviour disorder. Brain 2021;144(1):278–287. PubMed PMC
Moreau C, Duce JA, Rascol O, et al. Iron as a therapeutic target for Parkinson's disease. Mov Disord 2018;33(4):568–574. PubMed
Mahoney‐Sanchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian J‐C. Ferroptosis and its potential role in the physiopathology of Parkinson's disease. Prog Neurobiol 2021;196:101890 PubMed
Hopes L et al. Magnetic resonance imaging features of the nigrostriatal system: biomarkers of Parkinson's disease stages? PLoS One 2016;11(4):e0147947 PubMed PMC
Jimenez‐Jimenez FJ, Alonso‐Navarro H, García‐Martín E, Agúndez JAG. Biological fluid levels of iron and iron‐related proteins in Parkinson's disease: review and meta‐analysis. Eur J Neurol 2021;28(3):1041–1055. PubMed
Ayton S, Lei P, Mclean C, Bush AI, Finkelstein DI. Transferrin protects against parkinsonian neurotoxicity and is deficient in Parkinson's substantia nigra. Signal Transduct Target Ther 2016;1:16015 PubMed PMC
Ezquerra M, Campdelacreu J, Muñoz E, Tolosa E. Association study of the G258S transferrin gene polymorphism and Parkinson's disease in the Spanish population. J Neurol 2005;252(10):1269–1270. PubMed
Mastroberardino PG, Hoffman EK, Horowitz MP, et al. A novel transferrin/TfR2‐mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiol Dis 2009;34(3):417–431. PubMed PMC
Rhodes SL, Buchanan DD, Ahmed I, et al. Pooled analysis of iron‐related genes in Parkinson's disease: association with transferrin. Neurobiol Dis 2014;62:172–178. PubMed PMC
van Eijk HG, van Noort WL, Dubelaar ML, van der Heul C. The microheterogeneity of human transferrins in biological fluids. Clin Chim Acta 1983;132(2):167–171. PubMed
Stibler H, Kjellin KG. Isoelectric focusing and electrophoresis of the CSF proteins in tremor of different origins. J Neurol Sci 1976;30(2–3):269–285. PubMed
Stibler H, Borg S. Glycoprotein glycosyltransferase activities in serum in alcohol‐abusing patients and healthy controls. Scand J Clin Lab Invest 1991;51(1):43–51. PubMed
Stibler H, Borg S. Evidence of a reduced sialic acid content in serum transferrin in male alcoholics. Alcohol Clin Exp Res 1981;5(4):545–549. PubMed
Stibler H, Borg S, Allgulander C. Clinical significance of abnormal heterogeneity of transferrin in relation to alcohol consumption. Acta Med Scand 1979;206(4):275–281. PubMed
Sharpe PC. Biochemical detection and monitoring of alcohol abuse and abstinence. Ann Clin Biochem 2001;38(Pt 6):652–664. PubMed
Russell AC, Šimurina M, Garcia MT, et al. The N‐glycosylation of immunoglobulin G as a novel biomarker of Parkinson's disease. Glycobiology 2017;27(5):501–510. PubMed
van Kamp GJ, Mulder K, Kuiper M, Wolters EC. Changed transferrin sialylation in Parkinson's disease. Clin Chim Acta 1995;235(2):159–167. PubMed
Dusek P, Bezdicek O, Brozová H. Clinical characteristics of newly diagnosed Parkinson's disease patients included in the longitudinal BIO‐PD study. Cesk Slov Neurol Neurochir 2020;83(116):633–639.
Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 2015;30(12):1591–1601. PubMed
American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014. PubMed
Arndt T. Carbohydrate‐deficient transferrin as a marker of chronic alcohol abuse: a critical review of preanalysis, analysis, and interpretation. Clin Chem 2001;47(1):13–27. PubMed
Goetz CG, Fahn S, Martinez‐Martin P, et al. Movement Disorder Society‐sponsored revision of the unified Parkinson's disease rating scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008;23(15):2129–2170. PubMed
Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53(4):695–699. PubMed
Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav 1984;32(3):489–502. PubMed
Kaiserova M, Opavsky J, Maertin JJ, et al. Czech version of the autonomic scale for outcomes in Parkinson's disease (SCOPA‐AUT) – questionnaire to assess the presence and severity of autonomic dysfunction in patients with Parkinson's disease. Cesk Slov Neurol Neurochir 2014;77(1):96–99.
Visser M, Marinus J, Stiggelbout AM, Van Hilten J. Assessment of autonomic dysfunction in Parkinson's disease: the SCOPA‐AUT. Mov Disord 2004;19(11):1306–1312. PubMed
McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology 2017;89(1):88–100. PubMed PMC
Darcourt J, Booij J, Tatsch K, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I‐labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging 2010;37(2):443–450. PubMed
Dusek P, Veronika LLI, Bezdicek O, et al. Relations of non‐motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci Rep 2019;9(1):15463 PubMed PMC
Calvini P, Rodriguez G, Inguglia F, Mignone A, Guerra UP, Nobili F. The basal ganglia matching tools package for striatal uptake semi‐quantification: description and validation. Eur J Nucl Med Mol Imaging 2007;34(8):1240–1253. PubMed
Laguna A, Xicoy H, Tolosa E, et al. Serum metabolic biomarkers for synucleinopathy conversion in isolated REM sleep behavior disorder. NPJ Parkinsons Dis 2021;7(1):40 PubMed PMC
Davids M, Kane MS, He M, et al. Disruption of Golgi morphology and altered protein glycosylation in PLA2G6‐associated neurodegeneration. J Med Genet 2016;53(3):180–189. PubMed PMC
Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia 2020;69(7):1619–1636. PubMed
Schwarz F, Pearce OMT, Wang X, et al. Siglec receptors impact mammalian lifespan by modulating oxidative stress. Elife 2015;4:e06184. 10.7554/eLife.06184.001 PubMed DOI PMC
Linnartz‐Gerlach B, Bodea L‐G, Klaus C, et al. TREM2 triggers microglial density and age‐related neuronal loss. Glia 2019;67(3):539–550. PubMed PMC
Mount MP, Lira A, Grimes D, et al. Involvement of interferon‐gamma in microglial‐mediated loss of dopaminergic neurons. J Neurosci 2007;27(12):3328–3337. PubMed PMC
Vawter MP, Dillon‐Carter O, Tourtellotte WW, Carvey P, Freed WJ. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson's disease in ventricular cerebrospinal fluid. Exp Neurol 1996;142(2):313–322. PubMed
Lecours C, Bordeleau M, Cantin L, Parent M, Paolo TD, Tremblay M‐È. Microglial implication in Parkinson's disease: loss of beneficial physiological roles or gain of inflammatory functions? Front Cell Neurosci 2018;12:282 PubMed PMC
Bohm S, Schwab I, Lux A, Nimmerjahn F. The role of sialic acid as a modulator of the anti‐inflammatory activity of IgG. Semin Immunopathol 2012;34(3):443–453. PubMed
Annunziata I, Patterson A, Helton D, et al. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid‐beta secretion via deregulated lysosomal exocytosis. Nat Commun 2013;4:2734 PubMed PMC
Nakagawa K, Kitazume S, Oka R, et al. Sialylation enhances the secretion of neurotoxic amyloid‐beta peptides. J Neurochem 2006;96(4):924–933. PubMed
van Rensburg SJ, Potocnik FC, De Villiers JN, Kotze MJ, Taljaard JJ. Earlier age of onset of Alzheimer's disease in patients with both the transferrin C2 and apolipoprotein E‐epsilon 4 alleles. Ann N Y Acad Sci 2000;903:200–203. PubMed
van Rensburg SJ, Berman PA, Potocnik FC, Taljaard JJ. Glycosylation of transferrin in Alzheimer's disease and alcohol‐induced dementia. Metab Brain Dis 2000;15(4):243–247. PubMed
van Rensburg SJ, Berman P, Potocnik F, MacGregor P, Hon D, de Villiers N. 5‐ and 6‐glycosylation of transferrin in patients with Alzheimer's disease. Metab Brain Dis 2004;19(1–2):89–96. PubMed
Pietrobono S, Stecca B. Aberrant sialylation in cancer: biomarker and potential target for therapeutic intervention? Cancers (Basel) 2021;13(9). 10.3390/cancers13092014 PubMed DOI PMC
Dong X, Mondello S, Kobeissy F, Talih F, Ferri R, Mechref Y. LC‐MS/MS glycomics of idiopathic rapid eye movement sleep behavior disorder. Electrophoresis 2018;39(24):3096–3103. PubMed PMC
Mondello S, Kobeissy F, Mechref Y, et al. Novel biomarker signatures for idiopathic REM sleep behavior disorder: a proteomic and system biology approach. Neurology 2018;91(18):e1710–e1715. PubMed
de Jong G, van Noort WL, Feelders RA, de Jeu‐Jaspars CM, van Eijk HG. Adaptation of transferrin protein and glycan synthesis. Clin Chim Acta 1992;212(1–2):27–45. PubMed
Fleming M, Mundt M. Carbohydrate‐deficient transferrin: validity of a new alcohol biomarker in a sample of patients with diabetes and hypertension. J Am Board Fam Pract 2004;17(4):247–255. PubMed
Peters S, Gallo V, Vineis P, et al. Alcohol consumption and risk of Parkinson's disease: data from a large prospective European cohort. Mov Disord 2020;35(7):1258–1263. PubMed PMC
Iranzo A, Santamaría J, Valldeoriola F, Serradell M, Salamero M, Gaig C, et al. Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol 2017;82(3):419–428. PubMed
Arnaldi D, Mattioli P, Famà F, et al. Stratification tools for disease‐modifying trials in prodromal Synucleinopathy. Mov Disord 2021;37(1):52–61. PubMed PMC
Leitner DF, Connor JR. Functional roles of transferrin in the brain. Biochim Biophys Acta 2012;1820(3):393–402. PubMed