Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris

. 2022 Apr ; 67 (2) : 339-350. [epub] 20220208

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35133569
Odkazy

PubMed 35133569
DOI 10.1007/s12223-022-00947-8
PII: 10.1007/s12223-022-00947-8
Knihovny.cz E-zdroje

Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.

Zobrazit více v PubMed

Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. https://doi.org/10.1007/s00253-014-5732-5 PubMed DOI PMC

Ang RP, Teoh LS, Chan MK et al (2016) Comparing the expression of human DNA topoisomerase I in KM71H and X33 strains of Pichia pastoris. Electron J Biotechnol 21:9–17. https://doi.org/10.1016/j.ejbt.2016.01.007 DOI

Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470 DOI

Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187. https://doi.org/10.1016/0076-6879(91)94015-5 PubMed DOI

Blanchard V, Gadkari RA, George AVE et al (2008) High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains — selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj J 25:245–257. https://doi.org/10.1007/s10719-007-9082-8 PubMed DOI PMC

Boël G, Letso R, Neely H et al (2016) Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529:358–363. https://doi.org/10.1038/nature16509.Codon PubMed DOI PMC

Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7a secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69:486–494. https://doi.org/10.1002/1097-0290(20000905)69:5%3c486::AID-BIT3%3e3.0.CO;2-N PubMed DOI

Buckholz RG, Gleeson MA (1991) Yeast systems for the commercial production of heterologous proteins. Nat Biotechnol 9:1067–1072. https://doi.org/10.1038/nbt1191-1067 DOI

Çelik E, Çalık P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118. https://doi.org/10.1016/j.biotechadv.2011.09.011 PubMed DOI

Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineenring and production. J Mol Recognit 18:119–138. https://doi.org/10.1002/jmr.687 PubMed DOI

Del Sal G, Manfioletti G, Schneider C (1988) A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878. https://doi.org/10.1093/nar/16.20.9878 PubMed DOI PMC

Delroisse JM, Dannau M, Gilsoul JJ et al (2005) Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris. Protein Expr Purif 42:286–294. https://doi.org/10.1016/j.pep.2005.04.011 PubMed DOI

Döring F, Klapper M, Theis S, Daniel H (1998) Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris. Biochem Biophys Res Commun 250:531–535

Duman-Özdamar ZE, Binay B (2021) Production of industrial enzymes via Pichia pastoris as a cell factory in bioreactor: current status and future aspects. Protein J 40:367–376. https://doi.org/10.1007/s10930-021-09968-7 PubMed DOI

Duman ZE, Duraksoy BB, Aktaş F et al (2020) High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol 137:109552. https://doi.org/10.1016/j.enzmictec.2020.109552 PubMed DOI

Flores-Maltos A, Mussatto SI, Contreras-Esquivel JC et al (2019) Production of a transfructosylating enzymatic activity associated to fructooligosaccharides. In: Parameswaran B, Varjani S, Raveendran S (eds) Green Bio-processes. Enzymes in Industrial Food Processing. Springer, Singapore 345–355

Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358. https://doi.org/10.1002/bit.10740 PubMed DOI

Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353. https://doi.org/10.1016/j.tibtech.2004.04.006 PubMed DOI

Hernández L, Menéndez C, Pérez ER et al (2018) Fructooligosaccharides production by Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris. J Biotechnol 266:59–71. https://doi.org/10.1016/j.jbiotec.2017.12.008 PubMed DOI

Hidaka H, Hirayama M, Sumi N (1988) A fructooligosaccharide-producing enzyme from Aspergillus niger ATCC 20611. Agric Biol Chem 52:1181–1187

Hirayama M, Sumi N, Hidaka H (1989) Purification and properties of a fructooligosaccharide-producing β-fructofuranosidase from Aspergillus niger ATCC 20611. Agric Biol Chem 53:667–673. https://doi.org/10.1271/bbb1961.53.667 DOI

Hurley JM, Dunlap JC (2013) Cell biology: a fable of too much too fast. Nature 495:57–58. https://doi.org/10.1038/nature11952 PubMed DOI PMC

Invitrogen Corporation (2002) Pichia fermentation process guidelines

Jedrzejczak-Krzepkowska M, Tkaczuk KL, Bielecki S (2011) Biosynthesis, purification and characterization of β-fructofuranosidase from Bifidobacterium longum KN29.1. Process Biochem 46:1963–1972. https://doi.org/10.1016/j.procbio.2011.07.005 DOI

Lee HS, Qi Y, Im W (2015) Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 5:8926. https://doi.org/10.1038/srep08926 PubMed DOI PMC

Lu L, Wu J, Song D et al (2013) Purification of fructooligosaccharides by immobilized yeast cells and identification of ethyl β-D-fructofuranoside as a novel glycoside formed during the process. Bioresour Technol 132:365–369. https://doi.org/10.1016/j.biortech.2012.10.147 PubMed DOI

Maiorano AE, Piccoli RM, Da Silva ES, De Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30:1867–1877. https://doi.org/10.1007/s10529-008-9793-3 PubMed DOI

Menéndez C, Martínez D, Pérez ER et al (2019) Engineered thermostable β-fructosidase from Thermotoga maritima with enhanced fructooligosaccharides synthesis. Enzyme Microb Technol 125:53–62. https://doi.org/10.1016/j.enzmictec.2019.02.002 PubMed DOI

Nyblom M, Öberg F, Lindkvist-Petersson K et al (2007) Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 56:110–120. https://doi.org/10.1016/j.pep.2007.07.007 PubMed DOI

de Oliveira RL, da Silva MF, Converti A, Porto TS (2020) Production of β-fructofuranosidase with transfructosylating activity by Aspergillus tamarii URM4634 solid-state fermentation on agroindustrial by-products. Int J Biol Macromol 144:343–350. https://doi.org/10.1016/j.ijbiomac.2019.12.084 PubMed DOI

Puigbò P, Bravo IG, Garcia-Vallvé S (2008) E-CAI: A novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics 9:1–7. https://doi.org/10.1186/1471-2105-9-65 DOI

Rehm J, Willmitzer L, Heyer AG (1998) Production of 1-kestose in transgenic yeast expressing a fructosyltransferase from Aspergillus foetidus. J Bacteriol 180:1305–1310 DOI

Roberfroid M, Gibson GR, Hoyles L et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1-63. https://doi.org/10.1017/S0007114510003363 PubMed DOI

Saarelainen R, Paloheimo M, Fagerström R et al (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. MGG Mol Gen Genet 241:497–503. https://doi.org/10.1007/BF00279891 PubMed DOI

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

Sharp PM, Li WH (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295. https://doi.org/10.1093/nar/15.3.1281 PubMed DOI PMC

Sinclair G, Choy FYM (2002) Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif 26:96–105. https://doi.org/10.1016/S1046-5928(02)00526-0 PubMed DOI

Singh S, Gras A, Fiez-Vandal C et al (2008) Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures. Microb Cell Fact 7:1–10. https://doi.org/10.1186/1475-2859-7-28 DOI

Singh SP, Jadaun JS, Narnoliya LK, Pandey A (2017) Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl Biochem Biotechnol 183:613–635. https://doi.org/10.1007/s12010-017-2605-2 PubMed DOI

Spohner SC, Czermak P (2016) Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis. N Biotechnol 33:473–479. https://doi.org/10.1016/j.nbt.2016.04.001 PubMed DOI

Trujillo LE, Arrieta JG, Dafhnis F et al (2001) Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzyme Microb Technol 28:139–144. https://doi.org/10.1016/S0141-0229(00)00290-8 PubMed DOI

Tülek A, Karataş E, Çakar MM et al (2021) Optimisation of the production and bleaching process for a new laccase from Madurella mycetomatis, expressed in Pichia pastoris: from secretion to yielding prominent. Mol Biotechnol 63:24–39. https://doi.org/10.1007/s12033-020-00281-9 PubMed DOI

Van Hijum SAFT, Van Geel-Schutten GH, Rahaoui H et al (2002) Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68:4390–4398. https://doi.org/10.1128/AEM.68.9.4390-4398.2002 PubMed DOI PMC

van Wyk N, Trollope KM, Steenkamp ET et al (2013) Identification of the gene for β-fructofuranosidase from Ceratocystis moniliformis CMW 10134 and characterization of the enzyme expressed in Saccharomyces cerevisiae. BMC Biotechnol 13:100. https://doi.org/10.1186/1472-6750-13-100 PubMed DOI PMC

Vassileva A, Chugh DA, Swaminathan S, Khanna N (2001) Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. J Biotechnol 88:21–35. https://doi.org/10.1016/S0168-1656(01)00254-1 PubMed DOI

Vega-Paulino RJ, Zúniga-Hansen ME (2012) Potential application of commercial enzyme preparations for industrial production of short-chain fructooligosaccharides. J Mol Catal B Enzym 76:44–51. https://doi.org/10.1016/j.molcatb.2011.12.007 DOI

Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 30:385–404. https://doi.org/10.1016/j.nbt.2012.11.010 PubMed DOI

Werten MWT, Van Den Bosch TJ, Wind RD et al (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15:1087–1096. https://doi.org/10.1002/(SICI)1097-0061(199908)15:11%3c1087::AID-YEA436%3e3.0.CO;2-F PubMed DOI

Xu Q, Zheng X, Huang M et al (2015) Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose. Process Biochem 50:1237–1246. https://doi.org/10.1016/j.procbio.2015.04.020 DOI

Yanai K, Nakane A, Kawate A, Hirayama M (2001) Molecular cloning and characterization of the fructooligosaccharide-producing β-fructofuranosidase gene from Aspergillus niger ATCC 20611. Biosci Biotechnol Biochem 65:766–773 DOI

Yang J, Liu L (2010) Codon optimization through a two-step gene synthesis leads to a high-level expression of Aspergillus niger lip2 gene in Pichia pastoris. J Mol Catal B Enzym 63:164–169. https://doi.org/10.1016/j.molcatb.2010.01.011 DOI

Yang M, Yu XW, Zheng H et al (2015) Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microb Cell Fact 14:40. https://doi.org/10.1186/s12934-015-0225-5 PubMed DOI PMC

Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2007) Purification and some properties of beta-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. J Biosci Bioeng 103:491–493. https://doi.org/10.1263/jbb.103.491 PubMed DOI

Zhang J, Liu C, Xie Y et al (2017) Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol 249:25–33. https://doi.org/10.1016/j.jbiotec.2017.03.021 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...