Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35136925
PubMed Central
PMC9007101
DOI
10.1093/aob/mcac014
PII: 6523811
Knihovny.cz E-zdroje
- Klíčová slova
- Leaf area, petiole anatomy, petiole length, supportive cells, temperate shrubs, temperate trees, vessel diameter,
- MeSH
- anatomie srovnávací MeSH
- floém MeSH
- fylogeneze MeSH
- listy rostlin * anatomie a histologie MeSH
- rostliny MeSH
- xylém * anatomie a histologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is available regarding their structural adaptations across evolutionary lineages and environmental conditions. To fill this knowledge gap, we investigated the variation of petiole morphology and anatomy of mainly European woody species to better understand the drivers of internal and external constraints in an evolutionary context. METHODS: We studied how petiole anatomical features differed according to whole-plant size, leaf traits, thermal and hydrological conditions, and taxonomic origin in 95 shrubs and trees using phylogenetic distance-based generalized least squares models. KEY RESULTS: Two major axes of variation were related to leaf area and plant size. Larger and softer leaves are found in taller trees of more productive habitats. Their petioles are longer, with a circular outline and are anatomically characterized by the predominance of sclerenchyma, larger vessels, interfascicular areas with fibres and indistinct phloem rays. In contrast, smaller and tougher leaves are found in shorter trees and shrubs of colder or drier habitats. Their petioles have a terete outline, phloem composed of small cells and radially arranged vessels, fibreless xylem and lamellar collenchyma. Individual anatomical traits were linked to different internal and external drivers. Petiole length and vessel diameter increase with increasing leaf blade area. Collenchyma becomes absent with increasing temperature, and petiole outline becomes polygonal with increasing precipitation. CONCLUSIONS: We conclude that species' temperature and precipitation optima, plant height, and leaf area and thickness exerted a significant control on petiole anatomical and morphological structures not confounded by phylogenetic inertia. Species with different evolutionary histories but similar thermal and hydrological requirements have converged to similar petiole anatomical structures.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Geography University of Cambridge Downing Place Cambridge CB2 3EN UK
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Zobrazit více v PubMed
Aasamaa K, Sõber A. 2010. Sensitivity of stem and petiole hydraulic conductance of deciduous trees to xylem sap ion concentration. Biologia Plantarum 54: 299–307.
Abrantes J, Campelo F, García-González I, Nabais C. 2013. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees 27: 655–662.
Adachi J, Hagesawa M. 1996. MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, No. 28. Tokyo: Institute of Statistical Mathematics.
Adams DC. 2014a. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology 63: 685–697. PubMed
Adams DC. 2014b. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68: 2675–2688. PubMed
Adams DC, Collyer ML, Kaliontzopoulou A. 2019. Geomorph: Software for geometric morphometric analyses. https://cran.r-project.org/package=geomorph.
Alder NN, Sperry JS, Pockman WT. 1996. Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105: 293–301. PubMed
Anu S, Dan M. 2020. Taxonomic significance on comparative petiole anatomy of twelve species of Curcuma L. (Zingiberaceae) from South India. Plant Archives 20: 35–41.
Archer RH, van Wyk AE. 1993. Bark structure and intergeneric relationships of some southern African Cassinoideae (Celastraceae). IAWA Journal 14: 35–53.
Baird AS, Taylor SH, Pasquet-Kok J, et al. . 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature 592: 242–247. PubMed
Blomberg SP, Garland T, Ives AR. 2003. Testing for signal in comparative data: behavioral traits are more labile. Evolution 57: 717–745. PubMed
Brocious CA, Hacke UG. 2016. Stomatal conductance scales with petiole xylem traits in Populus genotypes. Functional Plant Biology 43: 553–562. PubMed
Brodribb TJ. 2009. Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity. Plant Science 177: 245–251.
Bussotti F, Bottacci A, Bartolesi A, Grossoni P, Tani C. 1995. Morphoanatomical alterations in leaves collected from beech trees (Fagus sylvatica L.) in conditions of natural water stress. Journal of Environmental and Experimental Botany 35: 201–213.
Capella-Gutierrez S, Silla-Martınez JM, Gabaldon T. 2009. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. PubMed PMC
Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martinez M, Montserrat-Martf G. 1998. Leaf morphology, leaf chemical composition and stem xylem characteristics in two Pistacia (Anacardiaceae) species along a climatic gradient. Flora 193: 195–202.
Chattaway MM. 1953. The anatomy of bark. I. The genus Eucalyptus. Australian Journal of Botany 1: 402–433.
Cochard H. 2002. Xylem embolism and drought-induced stomatal closure in maize. Planta 215: 466–471. PubMed
Coomes DA, Heathcote1 S, Godfrey ER, Shepherd JJ, Sack L, 2008. Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters 4: 302–306. PubMed PMC
De Micco V, Aronne G. 2012. Morpho-anatomical traits for plant adaptation to drought. In: Aroca R, ed. Plant responses to drought stress. Berlin: Springer, 37–61.
Den Outer RW. 1993. Evolutionary trends in secondary phloem anatomy of trees, shrubs and climbers from Africa (mainly Ivory Coast). Acta Botanica Neerlandica 42: 269–287.
Dolezal J, Klimes A, Dvorsky M, Riha P, Klimesova J, Schweingruber F. 2019. Disentangling evolutionary, environmental and morphological drivers of plant anatomical adaptations to drought and cold in Himalayan graminoids. Oikos 128: 1576–1587.
Dória LC, Podadera DS, Lima RS, Lens F, Marcati CR. 2019. Axial sampling height outperforms site as predictor of wood trait variation. IAWA Journal 40: 191–214.
El-Alfy TSMA, El-Gohary HMA, Sokkar NM, El-Tawab SA, Al-Mahdy DAM. 2011. Botanical and genetic characteristics of Celtis australis L. and Celtis occidentalis L. grown in Egypt. Bulletin of Faculty of Pharmacy, Cairo University 49: 37–57.
Ennajeh M, Vadel AM, Cochard H, Khemira H. 2010. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. The Journal of Horticultural Science and Biotechnology 85: 289–294.
Enquist BJ, Condit R, Peet RK, Schildhauer M, Thiers BM. 2016. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Preprints 4: e2615v2.
Evert R. 2006. Parenchyma and collenchyma. In: Evert R, ed. Esau’s plant anatomy: meristems, cells and tissues of the plant body - their structure, function and development. Hoboken: Wiley, 175–190.
Faisal TR, Abad EMK, Hristozov N, Pasim D. 2010. The impact of tissue morphology, cross-section and turgor pressure on the mechanical properties of the leaf petiole in plants. Journal of Bionic Engineering 7 Suppl.: S11–S23.
Faisal TR, Rey AD, Pasini D. 2012. Hierarchical microstructure and elastic properties of leaf petiole tissue in Philodendron melinonii. MRS Online Proceedings Library 1420: 67–72.
Ganem MA, Luna ML, Ahumada O, Giudice GE. 2019. Estudio morfo-anatómico comparado en pecíolos de las especies de Asplenium (Aspleniaceae) de Argentina. Boletin de la Sociedad Argentina de Botanica 54: 191–201.
Gärtner H, Schweingruber FH. 2013. Microscopic preparation techniques for plant stem analysis, 1st edn. Remagen: Verlag Dr. Kessel.
Gebauer R, Albrechtová P, Plichta R, Volařík D. 2019. The comparative xylem structure and function of petioles and twigs of mistletoe Loranthus europaeus and its host Quercus pubescence. Trees 33: 933–942.
Givnish TJ. 1988. Adaptation to sun and shade: A whole-plant perspective. Australian Journal of Plant Physiology 15: 63–92.
Gravano E, Bussotti F, Grossoni P, Tani C. 1999. Morpho-anatomical and functional modifications in beech leaves on the top ridge of the Apennines (central Italy). Phyton; Annales Rei Botanicae 39: 41–46.
Hacke U, Sauter JJ. 1996. Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiology 111: 413–417. PubMed PMC
Hacke UG, Spicer R, Schreiber SG, Plavcová L. 2017. An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment 40: 831–845. PubMed
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hare CL. 1944. On the taxonomic value of the anatomical structure of vegetative organs of the dicotyledons: 5. The anatomy of the petiole and its taxonomic value. Proceedings of the Linnean Society of London 155: 223–229.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: Investigating evolutionary radiations. Bioinformatics 24: 129–131. PubMed
Hatamian M, Nejad AR, Kafi M, Souri MK, Shahbazi K. 2019. Growth characteristics of ornamental judas tree (Cercis siliquastrum L.) seedlings under different concentrations of lead and cadmium in irrigation water. Acta Scientiarum Polonorum Hortorum Cultus 18: 87–96.
Hochberg U, Degu A, Gendler T, Fait A, Rachmilevitch S. 2014. The variability in the xylem architecture of grapevine petiole and its contribution to hydraulic differences. Functional Plant Biology 42: 357–365. PubMed
Jordan GJ, Brodribb TJ, Blackman CJ, Weston PH. 2013. Climate drives vein anatomy in Proteaceae. American Journal of Botany 100: 1483–1493. PubMed
Jušković MZ, Vasiljević PJ, Savić AV, Jenačković DD, Stevanović MB. 2017. Comparative morphoanatomical analysis of the leaves and stems of Daphne (Thymelaeaceae) species. Biologia 72: 709–721.
Karaismailoğlu MC. 2020. Petiole anatomy of 21 representatives of Tribe Alysseae (Brassicaceae) from Turkey. KSÜ Tarım ve Doğa Derg 23: 1535–1544.
Kardošová M, Husárová H, Kurjak D, et al. . 2020. Variation in leaf anatomy, vascular traits and nanomechanical cell-wall properties among European beech (Fagus sylvatica L.) provenances. Annals of Forest Science 77: 83.
Karger DN, Conrad O, Böhner J, et al. . 2016. CHELSA climatologies at high resolution for the earth’s land surface areas (Version 1.1). World Data Center for Climate (WDCC) at DKRZ. ; 10.1594/WDCC/CHELSA_v1_1. PubMed DOI PMC
Karger DN, Conrad O, Böhner J, et al. . 2017. Climatologies at high resolution for the Earth land surface areas. Scientific Data 4: 170122. PubMed PMC
Karger DN, Conrad O, Böhner J, et al. . 2018. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset. doi:10.5061/dryad.kd1d4. PubMed DOI PMC
Katoh K, Toh H. 2008. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9: 212. PubMed PMC
Kattge J, Bönisch G, Díaz S, et al. . 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26: 119–188. PubMed
Klepsch M, Lange A, Angeles G, Mehltreter K, Jansen S. 2016. The hydraulic architecture of petioles and leaves in tropical fern species under different levels of canopy openness. International Journal of Plant Sciences 177: 209–216.
Kleyer M, Bekker RM, Knevel IC, et al. . 2008. The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology 96: 1266–1274.
Kocsis M, Borhidi A. 2003. Petiole anatomy of some Rubiaceae genera. Acta Botanica Hungarica 45: 345–353.
Koçyiğit M, Büyükkılıç B, Altınbaşak O, Ubul N. 2015. Comparative leaf anatomy of three food plants that are used medically; Mespilus germanica L., Malus sylvestris (L.) Mill. subsp. orientalis and Cydonia oblonga Mill. (Rosaceae). Journal of the Faculty of Pharmacy of İstanbul 46: 39–48.
Kröber W, Heklau H, Bruelheide H. 2015. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology 17: 373–383. PubMed
Lechthaler S, Colangeli P, Gazzabin M, Anfodillo T. 2019. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany 70: 6195–6201. PubMed PMC
Legendre P, Legendre L. 1998. Numerical ecology, 2nd edn. Amsterdam: Elsevier.
Levionnois L, Coste S, Nicolini E, Stahl C, Morel H, Heuret P. 2020. Scaling of petiole anatomies, mechanics, and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae). Tree Physiology 40: 245–258. PubMed
Li H, Xu Q, Lundgren MR, Ye Q. 2017. Different water relations between flower and leaf periods: a case study in flower-before-leaf-emergence Magnolia species. Functional Plant Biology 44: 1098–1110. PubMed
Louf J, Nelson L, Kang H, Song PN, Zehnbauer T, Jung S. 2018. How wind drives the correlation between leaf shape and mechanical properties. Scientific Reports-UK 8: 16314. PubMed PMC
Mahley JN, Pittermann J, Rowe N, et al. . 2018. Geometry, allometry and biomechanics of fern leaf petioles: their significance for the evolution of functional and ecological diversity within the Pteridaceae. Frontiers in Plant Science 9: 197. PubMed PMC
Martínez-Vilalta J, Prat E, Oliveras I, Piñol J. 2002. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133: 19–29. PubMed
Metcalfe CR, Chalk L. 1950. Anatomy of the dicotyledons, vol. II, 1st edn. Oxford: Clarendon Press.
Niklas KJ. 1992. Petiole mechanics, light interception by lamina, and “economy in design”. Oecologia 90: 518–526. PubMed
Niklas KJ. 1996. Differences between Acer saccharum leaves from open and wind-protected sites. Annals of Botany 78: 61–66.
Niklas KJ, Paolillo DJ. 1997. The role of the epidermis asa stiffening agent in Tulipa (Liliaceae) stems. American Journal of Botany 84: 735–744. PubMed
Niinemets U, Afas NA, Cescatti A, Pellis A, Ceulemans R. 2004. Petiole length and biomass investment in support modify light-interception efficiency in dense poplar plantations. Tree Physiology 24: 141–154. PubMed
Niinemets U, Fleck S. 2002. Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia 132: 21–33. PubMed
Niinemets U, Kull K. 1994. Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability. Forest Ecology and Management 70: 1–10.
Noraini T, Ruzi AR, Ismail BS, Hani BU, Salwa S, Azeyanty JA. 2016. Petiole vascular bundles and its taxonomic value in the tribe Dipterocarpeae (Dipterocarpaceae). Sains Malaysiana 45: 247–253.
Oksanen J, Blanchet FG, Friendly M, et al. . 2018. vegan: community ecology package. R package. https://cran.r-project.org.
Olson ME, Rosell JA. 2013. Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist 197: 1204–1213. PubMed
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884. PubMed
Palacios-Rios M, Galán JMG, Prada C, Rico-Gray V. 2019. Structure of the petioles and costae of Mexican and Central American species of Pteris (Polypodiopsida, Pteridaceae). Phytotaxa 401: 101–116.
Poorter L, Rozendaal DMA. 2008. Leaf size and leaf display of thirty-eight tropical tree species. Oecologia 158: 35–46. PubMed
Porsch O. 1926. Zur physiologischen Bedeutung der Verholzung. Berichte der Deutschen Botanischen Gesellschaft 4: 137–142.
R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Ronquist F, Huelsenbeck JP. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Rosell JA, Olson ME, 2019. To furcate or not to furcate: the dance between vessel number and diameter in leaves. Journal of Experimental Botany 70: 5990–5993. PubMed
Rosell JA, Olson ME, Anfodillo T. 2017. Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Current Forestry Reports 3: 46–59.
Roth I. 1981. Structural patterns of tropical barks. Berlin: Gebrüder Borntraeger.
Rotondi A, Rossi F, Asunis C, Cesaraccio C. 2003. Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem. Journal of Mediterranean Ecology 4: 25–35.
Sack L, Cowan PD, Jaikumar N, Holbrook NM. 2003. The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species. Plant, Cell & Environment 26: 1343–1356.
Sack L, Holbrook NM. 2006. Leaf hydraulics. Annual Review of Plant Biology 57: 361–381. PubMed
Sack L, Scoffoni C, McKown AD, et al. . 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3: 837. PubMed
Sack L, Tyree MT, Holbrook NM. 2005. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist 167: 403–413. PubMed
Salisbury EJ. 1913. The determining factors in petiolar structure. New Phytologist 12: 281–289.
Sanginés de Cárcer P, Signarbieux C, Schlaepfer R, Buttler A, Vollenweider P. 2017. Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings. Environmental and Experimental Botany 140: 128–140.
Săvulescu E, Luchian V. 2009. Comparative anatomy of the vegetative organs of the Hedera helix L. (Araliaceae). Scientific Papers, USAMV Bucharest, Series A, Vol. LII.
Schwarz G. 1978. Estimating the dimension of a model. Annals of Statisti 6: 461–464.
Schweingruber FH, Kucerova A, Adamec L, Dolezal J. 2020. Anatomic atlas of aquatic and wetland plant stems, 1st edn. Cham: Springer Nature Switzerland AG.
Scoffoni C, Chatelet DS, Pasquet-kok J, et al. . 2016. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants 2: 16072. PubMed
Scoffoni C, Pou A, Aasamaa K, Sack L. 2008. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell & Environment 31: 1803–1812. PubMed
Sellin A, Kupper P. 2007. Temperature, light and leaf hydraulic conductance of little-leaf linden (Tilia cordata) in a mixed forest canopy. Tree Physiology 27: 679–688. PubMed
Stojnić S, Orlović S, Miljković D, von Wuehlisch G. 2016. Intra- and interprovenance variations in leaf morphometric traits in European beech (Fagus sylvatica L.). Archives of Biological Sciences 68: 781–788.
Tadrist L, Saudreau M, Langre E. 2014. Wind and gravity mechanical effects on leaf inclination angles. Journal of Theoretical Biology 341: 9–16. PubMed
Takenaka A. 1994. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research 9: 109–114.
Talip N, Cutler DF, Ahmad Puad AS, Ismail BS, Ruzi AR, Ahmad Juhari AA. 2017. Diagnostic and systematic significance of petiole anatomy in the identification of Hopea species (Dipterocarpaceae). South African Journal of Botany 111: 111–125.
Tanabe AS. 2011. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources 11: 914–921. PubMed
Terashima I, Hanba YT, Tholen D, Niinemets U. 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiology 155: 108–116. PubMed PMC
Vincent JFV. 1982. The mechanical design of grass. Journal of Materials Science 17: 856–860.
Vogel S. 1989. Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany 40: 941–948.
Wright IJ, Dong N, Maire V, et al. . 2017. Global climatic drivers of leaf size. Science 357: 917–921. PubMed
Zimmermann MH. 1983. Xylem structure and the ascent of sap. Berlin: Springer-Verlag. PubMed
Zimmermann MH, Potter D. 1982. Vessel-length distribution in branches, stem and roots of Acer rubrum L. IAWA Bulletin 3: 103–109.