Redox-Active Metaphosphate-Like Terminals Enable High-Capacity MXene Anodes for Ultrafast Na-Ion Storage

. 2022 Apr ; 34 (15) : e2108682. [epub] 20220303

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35148441

Grantová podpora
881603 European Union's Horizon 2020
100478697 Sächsisches Staatsministerium für Wissenschaft und Kunst
417590517 German Research Foundation
52072241 National Natural Science Foundation of China
51772187 National Natural Science Foundation of China
19-26910X Czech Science Foundation
China Scholarship Council

2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus-oxygen terminals can be an attractive strategy for Nb4 C3 MXenes to remarkably boost their specific capacities for ultrafast Na+ storage. As revealed, redox-active terminals with a stoichiometric formula of PO2 - display a metaphosphate-like configuration with each P atom sustaining three PO bonds and one PO dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb4 C3 (denoted PO2 -Nb4 C3 ) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na+ -diffusion capability, and buffered internal stress during Na+ intercalation/de-intercalation. Consequently, compared with O-terminated Nb4 C3 , PO2 -Nb4 C3 exhibits a doubled Na+ -storage capacity (221.0 mAh g-1 ), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy-power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy-power tradeoff typical for energy-storage devices.

Zobrazit více v PubMed

a) Y. Liu, Y. Zhu, Y. Cui, Nat. Energy 2019, 4, 540;

b) M. Yu, R. Dong, X. Feng, J. Am. Chem. Soc. 2020, 142, 12903.

a) Y. Fang, D. Luan, X. W. D. Lou, Adv. Mater. 2020, 32, 2002976;

b) H. Wang, D. Xu, R. Qiu, S. Tang, S. Li, R. Wang, B. He, Y. Gong, H. J. Fan, Small Struct. 2020, 2, 2000073.

a) M. Yu, H. Shao, G. Wang, F. Yang, C. Liang, P. Rozier, C. Z. Wang, X. Lu, P. Simon, X. Feng, Nat. Commun. 2020, 11, 1348;

b) G. Wang, M. Yu, X. Feng, Chem. Soc. Rev. 2021, 50, 2388.

a) B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098;

b) C. J. Zhang, L. McKeon, M. P. Kremer, S. H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C. Ó. Coileáin, N. McEvoy, H. C. Nerl, Nat. Commun. 2019, 10, 1795;

c) A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, eabf1581.

a) Z. Lin, H. Shao, K. Xu, P. L. Taberna, P. Simon, Trends Chem. 2020, 2, 654;

b) S. Zheng, H. Wang, P. Das, Y. Zhang, Y. Cao, J. Ma, S. F. Liu, Z. S. Wu, Adv. Mater. 2021, 33, 2005449.

A. Lipatov, A. Goad, M. J. Loes, N. S. Vorobeva, J. Abourahma, Y. Gogotsi, A. Sinitskii, Matter 2021, 4, 1413.

a) S. M. Bak, R. Qiao, W. Yang, S. Lee, X. Yu, B. Anasori, H. Lee, Y. Gogotsi, X. Q. Yang, Adv. Energy Mater. 2017, 7, 1700959;

b) S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, ACS Nano 2016, 10, 3334;

c) X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, L. Chen, J. Am. Chem. Soc. 2015, 137, 2715;

d) X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Nat. Commun. 2015, 6, 6544;

e) Y. Xie, Y. Dall'Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. Zhuang, P. R. C. Kent, ACS Nano 2014, 8, 9606.

M. R. Lukatskaya, S. Kota, Z. Lin, M. Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P.-L. Taberna, M. W. Barsoum, P. Simon, Y. Gogotsi, Nat. Energy 2017, 2, 17105.

a) V. Kamysbayev, A. S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R. F. Klie, D. V. Talapin, Science 2020, 369, 979;

b) Y. Guo, T. Wang, Q. Yang, X. Li, H. Li, Y. Wang, T. Jiao, Z. Huang, B. Dong, W. Zhang, J. Fan, C. Zhi, ACS Nano 2020, 14, 9089;

c) M. Li, X. Li, G. Qin, K. Luo, J. Lu, Y. Li, G. Liang, Z. Huang, J. Zhou, L. Hultman, P. Eklund, P. O. A. Persson, S. Du, Z. Chai, C. Zhi, Q. Huang, ACS Nano 2021, 15, 1077.

Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Yu, K. W. Nam, X. Q. Yang, A. I. Kolesnikov, P. R. Kent, J. Am. Chem. Soc. 2014, 136, 6385.

a) S. Xu, Y. Dall'Agnese, J. Li, Y. Gogotsi, W. Han, Chem. - Eur. J. 2018, 24, 18556;

b) J. L. Hart, K. Hantanasirisakul, A. C. Lang, B. Anasori, D. Pinto, Y. Pivak, J. T. van Omme, S. J. May, Y. Gogotsi, M. L. Taheri, Nat. Commun. 2019, 10, 522.

a) Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, P. O. A. Persson, P. Eklund, L. Hultman, M. Li, K. Chen, X. H. Zha, S. Du, P. Rozier, Z. Chai, E. Raymundo-Pinero, P. L. Taberna, P. Simon, Q. Huang, Nat. Mater. 2020, 19, 894;

b) X. Wang, T. S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N. C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, Y. Gogotsi, Nat. Energy 2019, 4, 241.

Y. Okada, N. Keilbart, J. M. Goff, S. I. Higai, K. Shiratsuyu, I. Dabo, MRS Adv. 2019, 4, 1833.

A. Lipatov, M. Alhabeb, H. Lu, S. Zhao, M. J. Loes, N. S. Vorobeva, Y. Dall'Agnese, Y. Gao, A. Gruverman, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2020, 6, 1901382.

S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen, Y. Wei, Y. Gogotsi, Y. Gao, Energy Storage Mater. 2017, 8, 42.

S. Yang, K. Zhang, A. G. Ricciardulli, P. Zhang, Z. Liao, M. R. Lohe, E. Zschech, P. W. M. Blom, W. Pisula, K. Mullen, X. Feng, Angew. Chem., Int. Ed. 2018, 57, 4677.

Y. Xia, T. S. Mathis, M. Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 2018, 557, 409.

J. Hu, B. Xu, C. Ouyang, S. A. Yang, Y. Yao, J. Phys. Chem. C 2014, 118, 24274.

P. Nakhanivej, X. Yu, S. K. Park, S. Kim, J. Y. Hong, H. J. Kim, W. Lee, J. Y. Hwang, J. E. Yang, C. Wolverton, J. Kong, M. Chhowalla, H. S. Park, Nat. Mater. 2019, 18, 156.

V. S. Mandala, D. M. Loh, S. M. Shepard, M. B. Geeson, I. V. Sergeyev, D. G. Nocera, C. C. Cummins, M. Hong, J. Am. Chem. Soc. 2020, 142, 18407.

a) J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan, S. Cong, T. Lei, X. Dai, J. Guo, R. Lu, Y. Li, J. Xiong, Adv. Mater. 2018, 30, 1705045;

b) T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun, Q. Xia, H. Xia, Adv. Mater. 2017, 29, 1604167.

a) C. Zhang, H. Liu, J. He, G. Hu, H. Bao, F. Lu, L. Zhuo, J. Ren, X. Liu, J. Luo, Chem. Commun. 2019, 55, 10511;

b) X. Wang, J. Shi, Z. Li, S. Zhang, H. Wu, Z. Jiang, C. Yang, C. Tian, ACS Appl. Mater. Interfaces 2014, 6, 14522.

S. Zhao, C. Chen, X. Zhao, X. Chu, F. Du, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall'Agnese, Adv. Funct. Mater. 2020, 30, 2000815.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, M. Bonn, Rev. Mod. Phys. 2011, 83, 543.

a) X. Yao, W. Zheng, S. Osella, Z. Qiu, S. Fu, D. Schollmeyer, B. Müller, D. Beljonne, M. Bonn, H. I. Wang, J. Am. Chem. Soc. 2021, 143, 5654;

b) W. Zheng, M. Bonn, H. I. Wang, Nano Lett. 2020, 20, 5807;

c) G. Li, V. Natu, T. Shi, M. W. Barsoum, L. V. Titova, ACS Appl. Energy Mater. 2020, 3, 1530;

d) T. L. Cocker, D. Baillie, M. Buruma, L. V. Titova, R. D. Sydora, F. Marsiglio, F. A. Hegmann, Phys. Rev. B 2017, 96, 205439.

a) H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He, Y. Chen, R. Zhang, L. Ma, T. Liu, M. Li, R. Lin, Y. Chen, Y. Li, X. Xing, Y. Choi, L. Gao, H. S. Cho, K. An, J. Feng, R. Kostecki, K. Amine, T. Wu, J. Lu, H. L. Xin, S. P. Ong, P. Liu, Nature 2020, 585, 63;

b) C.-C. Chen, J. Maier, Nat. Energy 2018, 3, 102.

H. Li, X. Liu, T. Zhai, D. Li, H. Zhou, Adv. Energy Mater. 2013, 3, 428.

R. Mo, F. Li, X. Tan, P. Xu, R. Tao, G. Shen, X. Lu, F. Liu, L. Shen, B. Xu, Q. Xiao, X. Wang, C. Wang, J. Li, G. Wang, Y. Lu, Nat. Commun. 2019, 10, 1474.

H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang, H. Wang, W. Luo, Y. Yu, Adv. Mater. 2020, 32, 1904320.

B. Chen, Y. Meng, F. Xie, F. He, C. He, K. Davey, N. Zhao, S. Z. Qiao, Adv. Mater. 2018, 30, 1804116.

J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan, O. Sheng, Y. Liu, R. Fang, W. Zhang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, W. Li, X. Tao, Adv. Funct. Mater. 2019, 29, 1808107.

L. Wang, X. Bi, S. Yang, Adv. Mater. 2016, 28, 7672.

P.-F. Wang, H.-R. Yao, X.-Y. Liu, Y.-X. Yin, J.-N. Zhang, Y. Wen, X. Yu, L. Gu, Y.-G. Guo, Sci. Adv. 2018, 4, eaar6018.

a) H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, Nat. Commun. 2014, 5, 4526;

b) H. Xu, W. Zhu, F. Sun, H. Qi, J. Zou, R. Laine, W. Ding, Adv. Mater. Technol. 2021, 6, 2000882;

c) P. Zhang, D. Wang, Q. Zhu, N. Sun, F. Fu, B. Xu, Nano-Micro Lett. 2019, 11, 81.

D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, Nat. Nanotechnol. 2010, 5, 651.

S. Dong, L. Shen, H. Li, G. Pang, H. Dou, X. Zhang, Adv. Funct. Mater. 2016, 26, 3703.

M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...