Train the Trainer: Hematopoietic Stem Cell Control of Trained Immunity
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
35154147
PubMed Central
PMC8828730
DOI
10.3389/fimmu.2022.827250
Knihovny.cz E-resources
- Keywords
- HSPCs, hematopoietic stem cells, innate immunity, myeloid cells, progenitor cells, trained immunity,
- MeSH
- Cytokines immunology MeSH
- Hematopoietic Stem Cells immunology MeSH
- Immunologic Memory immunology MeSH
- Humans MeSH
- Ligands MeSH
- Immunity, Innate immunology MeSH
- Toll-Like Receptors immunology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Cytokines MeSH
- Ligands MeSH
- Toll-Like Receptors MeSH
Recent evidence shows that innate immune cells, in addition to B and T cells, can retain immunological memory of their encounters and afford long-term resistance against infections in a process known as 'trained immunity'. However, the duration of the unspecific protection observed in vivo is poorly compatible with the average lifespan of innate immune cells, suggesting the involvement of long-lived cells. Accordingly, recent studies demonstrate that hematopoietic stem and progenitor cells (HSPCs) lay at the foundation of trained immunity, retaining immunological memory of infections and giving rise to a "trained" myeloid progeny for a long time. In this review, we discuss the research demonstrating the involvement of HSPCs in the onset of long-lasting trained immunity. We highlight the roles of specific cytokines and Toll-like receptor ligands in influencing HSPC memory phenotypes and the molecular mechanisms underlying trained immunity HSPCs. Finally, we discuss the potential benefits and drawbacks of the long-lasting trained immune responses, and describe the challenges that the field is facing.
Institute of Hematology and Blood Transfusion Prague Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
See more in PubMed
Cooper MD, Alder MN. The Evolution of Adaptive Immune Systems. Cell (2006) 124(4):815–22. doi: 10.1016/j.cell.2006.02.001 PubMed DOI
Gourbal B, Pinaud S, Beckers GJM, van der Meer JWM, Conrath U, Netea MG. Innate Immune Memory: An Evolutionary Perspective. Immunol Rev (2018) 283(1):21–40. doi: 10.1111/imr.12647 PubMed DOI
Melillo D, Marino R, Italiani P, Boraschi D. Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Front Immunol (2018) 9:1915. doi: 10.3389/fimmu.2018.01915 PubMed DOI PMC
Reimer-Michalski EM, Conrath U. Innate Immune Memory in Plants. Semin Immunol (2016) 28(4):319–27. doi: 10.1016/j.smim.2016.05.006 PubMed DOI
Netea MG, Dominguez-Andres J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. . Defining Trained Immunity and Its Role in Health and Disease. Nat Rev Immunol (2020) 20(6):375–88. doi: 10.1038/s41577-020-0285-6 PubMed DOI PMC
Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. . Candida Albicans Infection Affords Protection Against Reinfection via Functional Reprogramming of Monocytes. Cell Host Microbe (2012) 12(2):223–32. doi: 10.1016/j.chom.2012.06.006 PubMed DOI PMC
Hole CR, Wager CML, Castro-Lopez N, Campuzano A, Cai H, Wozniak KL, et al. . Induction of Memory-Like Dendritic Cell Responses In Vivo. Nat Commun (2019) 10(1):2955. doi: 10.1038/s41467-019-10486-5 PubMed DOI PMC
Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J, Fanucchi S, Theunissen K, Novakovic B, et al. . BCG Vaccination Induces Long-Term Functional Reprogramming of Human Neutrophils. Cell Rep (2020) 33(7):108387. doi: 10.1016/j.celrep.2020.108387 PubMed DOI PMC
Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. . Cytokine-Induced Memory-Like Natural Killer Cells Exhibit Enhanced Responses Against Myeloid Leukemia. Sci Transl Med (2016) 8(357):357ra123. doi: 10.1126/scitranslmed.aaf2341 PubMed DOI PMC
Weizman OE, Song E, Adams NM, Hildreth AD, Riggan L, Krishna C, et al. . Mouse Cytomegalovirus-Experienced ILC1s Acquire a Memory Response Dependent on the Viral Glycoprotein M12. Nat Immunol (2019) 20(8):1004–11. doi: 10.1038/s41590-019-0430-1 PubMed DOI PMC
Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. . Mtor- and HIF-1alpha-Mediated Aerobic Glycolysis as Metabolic Basis for Trained Immunity. Science (2014) 345(6204):1250684. doi: 10.1126/science.1250684 PubMed DOI PMC
Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, et al. . Epigenetic Programming of Monocyte-to-Macrophage Differentiation and Trained Innate Immunity. Science (2014) 345(6204):1251086. doi: 10.1126/science.1251086 PubMed DOI PMC
Bekkering S, Arts RJW, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, et al. . Metabolic Induction of Trained Immunity Through the Mevalonate Pathway. Cell (2018) 172(1-2):135–46.e9. doi: 10.1016/j.cell.2017.11.025 PubMed DOI
Foster SL, Hargreaves DC, Medzhitov R. Gene-Specific Control of Inflammation by TLR-Induced Chromatin Modifications. Nature (2007) 447(7147):972–8. doi: 10.1038/nature05836 PubMed DOI
Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R, Megchelenbrink W, et al. . Beta-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell (2016) 167(5):1354–68.e14. doi: 10.1016/j.cell.2016.09.034 PubMed DOI PMC
Arts RJW, Moorlag S, Novakovic B, Li Y, Wang SY, Oosting M, et al. . BCG Vaccination Protects Against Experimental Viral Infection in Humans Through the Induction of Cytokines Associated With Trained Immunity. Cell Host Microbe (2018) 23(1):89–100.e5. doi: 10.1016/j.chom.2017.12.010 PubMed DOI
Cirovic B, de Bree LCJ, Groh L, Blok BA, Chan J, van der Velden W, et al. . BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host Microbe (2020) 28(2):322–34.e5. doi: 10.1016/j.chom.2020.05.014 PubMed DOI PMC
Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, et al. . Bacille Calmette-Guerin Induces NOD2-Dependent Nonspecific Protection From Reinfection via Epigenetic Reprogramming of Monocytes. Proc Natl Acad Sci USA (2012) 109(43):17537–42. doi: 10.1073/pnas.1202870109 PubMed DOI PMC
Aaby P, Martins CL, Garly ML, Bale C, Andersen A, Rodrigues A, et al. . Non-Specific Effects of Standard Measles Vaccine at 4.5 and 9 Months of Age on Childhood Mortality: Randomised Controlled Trial. BMJ (2010) 341:c6495. doi: 10.1136/bmj.c6495 PubMed DOI PMC
Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, et al. . Randomized Trial of BCG Vaccination at Birth to Low-Birth-Weight Children: Beneficial Nonspecific Effects in the Neonatal Period? J Infect Dis (2011) 204(2):245–52. doi: 10.1093/infdis/jir240 PubMed DOI
Biering-Sorensen S, Aaby P, Napirna BM, Roth A, Ravn H, Rodrigues A, et al. . Small Randomized Trial Among Low-Birth-Weight Children Receiving Bacillus Calmette-Guerin Vaccination at First Health Center Contact. Pediatr Infect Dis J (2012) 31(3):306–8. doi: 10.1097/INF.0b013e3182458289 PubMed DOI
Sorup S, Villumsen M, Ravn H, Benn CS, Sorensen TI, Aaby P, et al. . Smallpox Vaccination and All-Cause Infectious Disease Hospitalization: A Danish Register-Based Cohort Study. Int J Epidemiol (2011) 40(4):955–63. doi: 10.1093/ije/dyr063 PubMed DOI
Gu H, Zeng X, Peng L, Xiang C, Zhou Y, Zhang X, et al. . Vaccination Induces Rapid Protection Against Bacterial Pneumonia via Training Alveolar Macrophage in Mice. Elife (2021) 10:e69951. doi: 10.7554/eLife.69951 PubMed DOI PMC
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. . Tissue-Resident Macrophages Self-Maintain Locally Throughout Adult Life With Minimal Contribution From Circulating Monocytes. Immunity (2013) 38(4):792–804. doi: 10.1016/j.immuni.2013.04.004 PubMed DOI PMC
Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. . The Fate and Lifespan of Human Monocyte Subsets in Steady State and Systemic Inflammation. J Exp Med (2017) 214(7):1913–23. doi: 10.1084/jem.20170355 PubMed DOI PMC
Sieburg HB, Rezner BD, Muller-Sieburg CE. Predicting Clonal Self-Renewal and Extinction of Hematopoietic Stem Cells. Proc Natl Acad Sci USA (2011) 108(11):4370–5. doi: 10.1073/pnas.1011414108 PubMed DOI PMC
Khan N, Downey J, Sanz J, Kaufmann E, Blankenhaus B, Pacis A, et al. . M. Tuberculosis Reprograms Hematopoietic Stem Cells to Limit Myelopoiesis and Impair Trained Immunity. Cell (2020) 183(3):752–70.e22. doi: 10.1016/j.cell.2020.09.062 PubMed DOI PMC
Boettcher S, Manz MG. Regulation of Inflammation- and Infection-Driven Hematopoiesis. Trends Immunol (2017) 38(5):345–57. doi: 10.1016/j.it.2017.01.004 PubMed DOI
Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, et al. . Toll-Like Receptors on Hematopoietic Progenitor Cells Stimulate Innate Immune System Replenishment. Immunity (2006) 24(6):801–12. doi: 10.1016/j.immuni.2006.04.008 PubMed DOI PMC
Takizawa H, Fritsch K, Kovtonyuk LV, Saito Y, Yakkala C, Jacobs K, et al. . Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation But Reduces Competitive Fitness. Cell Stem Cell (2017) 21(2):225–40.e5. doi: 10.1016/j.stem.2017.06.013 PubMed DOI
Megias J, Yanez A, Moriano S, O’Connor JE, Gozalbo D, Gil ML. Direct Toll-Like Receptor-Mediated Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Macrophages. Stem Cells (2012) 30(7):1486–95. doi: 10.1002/stem.1110 PubMed DOI
Sioud M, Floisand Y, Forfang L, Lund-Johansen F. Signaling Through Toll-Like Receptor 7/8 Induces the Differentiation of Human Bone Marrow CD34+ Progenitor Cells Along the Myeloid Lineage. J Mol Biol (2006) 364(5):945–54. doi: 10.1016/j.jmb.2006.09.054 PubMed DOI
Crane GM, Jeffery E, Morrison SJ. Adult Haematopoietic Stem Cell Niches. Nat Rev Immunol (2017) 17(9):573–90. doi: 10.1038/nri.2017.53 PubMed DOI
Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological Migration of Hematopoietic Stem and Progenitor Cells. Science (2001) 294(5548):1933–6. doi: 10.1126/science.1064081 PubMed DOI
Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, Moseman EA, et al. . Immunosurveillance by Hematopoietic Progenitor Cells Trafficking Through Blood, Lymph, and Peripheral Tissues. Cell (2007) 131(5):994–1008. doi: 10.1016/j.cell.2007.09.047 PubMed DOI PMC
Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M, Grinenko T, et al. . Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell (2018) 172(1-2):147–61.e12. doi: 10.1016/j.cell.2017.11.034 PubMed DOI PMC
Moorlag S, Khan N, Novakovic B, Kaufmann E, Jansen T, van Crevel R, et al. . Beta-Glucan Induces Protective Trained Immunity Against Mycobacterium Tuberculosis Infection: A Key Role for IL-1. Cell Rep (2020) 31(7):107634. doi: 10.1016/j.celrep.2020.107634 PubMed DOI PMC
Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonca LE, Pacis A, et al. . BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity Against Tuberculosis. Cell (2018) 172(1-2):176–90.e19. doi: 10.1016/j.cell.2017.12.031 PubMed DOI
Frodermann V, Rohde D, Courties G, Severe N, Schloss MJ, Amatullah H, et al. . Exercise Reduces Inflammatory Cell Production and Cardiovascular Inflammation via Instruction of Hematopoietic Progenitor Cells. Nat Med (2019) 25(11):1761–71. doi: 10.1038/s41591-019-0633-x PubMed DOI PMC
Bono C, Martinez A, Megias J, Gozalbo D, Yanez A, Gil ML. Dectin-1 Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Trained Macrophages via an Indirect Cell-Autonomous Mechanism. mBio (2020) 11(3):e00781–20. doi: 10.1128/mBio.00781-20 PubMed DOI PMC
de Laval B, Maurizio J, Kandalla PK, Brisou G, Simonnet L, Huber C, et al. . C/Ebpbeta-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells. Cell Stem Cell (2020) 26(5):657–74.e8. doi: 10.1016/j.stem.2020.01.017 PubMed DOI
Jentho E, Ruiz-Moreno C, Novakovic B, Kourtzelis I, Megchelenbrink WL, Martins R, et al. . Trained Innate Immunity, Long-Lasting Epigenetic Modulation, and Skewed Myelopoiesis by Heme. Proc Natl Acad Sci USA (2021) 118(42):e2102698118. doi: 10.1073/pnas.2102698118 PubMed DOI PMC
Christ A, Gunther P, Lauterbach MAR, Duewell P, Biswas D, Pelka K, et al. . Western Diet Triggers Nlrp3-Dependent Innate Immune Reprogramming. Cell (2018) 172(1-2):162–75.e14. doi: 10.1016/j.cell.2017.12.013 PubMed DOI PMC
Kaushansky K. Lineage-Specific Hematopoietic Growth Factors. N Engl J Med (2006) 354(19):2034–45. doi: 10.1056/NEJMra052706 PubMed DOI
Yang L, Dybedal I, Bryder D, Nilsson L, Sitnicka E, Sasaki Y, et al. . IFN-Gamma Negatively Modulates Self-Renewal of Repopulating Human Hemopoietic Stem Cells. J Immunol (2005) 174(2):752–7. doi: 10.4049/jimmunol.174.2.752 PubMed DOI
de Bruin AM, Demirel O, Hooibrink B, Brandts CH, Nolte MA. Interferon-Gamma Impairs Proliferation of Hematopoietic Stem Cells in Mice. Blood (2013) 121(18):3578–85. doi: 10.1182/blood-2012-05-432906 PubMed DOI
Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF From Leptin Receptor+ Niche Cells in the Bone Marrow. Cell Stem Cell (2019) 24(3):477–86.e6. doi: 10.1016/j.stem.2018.11.022 PubMed DOI PMC
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and Perivascular Cells Maintain Haematopoietic Stem Cells. Nature (2012) 481(7382):457–62. doi: 10.1038/nature10783 PubMed DOI PMC
De Luca K, Frances-Duvert V, Asensio MJ, Ihsani R, Debien E, Taillardet M, et al. . The TLR1/2 Agonist PAM(3)CSK(4) Instructs Commitment of Human Hematopoietic Stem Cells to a Myeloid Cell Fate. Leukemia (2009) 23(11):2063–74. doi: 10.1038/leu.2009.155 PubMed DOI
Sioud M, Floisand Y. NOD2/CARD15 on Bone Marrow CD34+ Hematopoietic Cells Mediates Induction of Cytokines and Cell Differentiation. J Leukoc Biol (2009) 85(6):939–46. doi: 10.1189/jlb.1008650 PubMed DOI
Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, et al. . Conversion of Danger Signals Into Cytokine Signals by Hematopoietic Stem and Progenitor Cells for Regulation of Stress-Induced Hematopoiesis. Cell Stem Cell (2014) 14(4):445–59. doi: 10.1016/j.stem.2014.01.007 PubMed DOI PMC
Martinez A, Bono C, Megias J, Yanez A, Gozalbo D, Gil ML. Systemic Candidiasis and TLR2 Agonist Exposure Impact the Antifungal Response of Hematopoietic Stem and Progenitor Cells. Front Cell Infect Microbiol (2018) 8:309. doi: 10.3389/fcimb.2018.00309 PubMed DOI PMC
Megias J, Martinez A, Yanez A, Goodridge HS, Gozalbo D, Gil ML. TLR2, TLR4 and Dectin-1 Signalling in Hematopoietic Stem and Progenitor Cells Determines the Antifungal Phenotype of the Macrophages They Produce. Microbes Infect (2016) 18(5):354–63. doi: 10.1016/j.micinf.2016.01.005 PubMed DOI
Martinez A, Bono C, Megias J, Yanez A, Gozalbo D, Gil ML. PRR Signaling During In Vitro Macrophage Differentiation From Progenitors Modulates Their Subsequent Response to Inflammatory Stimuli. Eur Cytokine Netw (2017) 28(3):102–10. doi: 10.1684/ecn.2017.0398 PubMed DOI
Yanez A, Hassanzadeh-Kiabi N, Ng MY, Megias J, Subramanian A, Liu GY, et al. . Detection of a TLR2 Agonist by Hematopoietic Stem and Progenitor Cells Impacts the Function of the Macrophages They Produce. Eur J Immunol (2013) 43(8):2114–25. doi: 10.1002/eji.201343403 PubMed DOI PMC
Yanez A, Megias J, O’Connor JE, Gozalbo D, Gil ML. Candida Albicans Induces Selective Development of Macrophages and Monocyte Derived Dendritic Cells by a TLR2 Dependent Signalling. PloS One (2011) 6(9):e24761. doi: 10.1371/journal.pone.0024761 PubMed DOI PMC
Sasaki Y, Guo YM, Goto T, Ubukawa K, Asanuma K, Kobayashi I, et al. . IL-6 Generated From Human Hematopoietic Stem and Progenitor Cells Through TLR4 Signaling Promotes Emergency Granulopoiesis by Regulating Transcription Factor Expression. J Immunol (2021) 207(4):1078–86. doi: 10.4049/jimmunol.2100168 PubMed DOI
Zhang H, Rodriguez S, Wang L, Wang S, Serezani H, Kapur R, et al. . Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression Through Distinct Contributions of TRIF and MYD88. Stem Cell Rep (2016) 6(6):940–56. doi: 10.1016/j.stemcr.2016.05.002 PubMed DOI PMC
Liu A, Wang Y, Ding Y, Baez I, Payne KJ, Borghesi L. Cutting Edge: Hematopoietic Stem Cell Expansion and Common Lymphoid Progenitor Depletion Require Hematopoietic-Derived, Cell-Autonomous TLR4 in a Model of Chronic Endotoxin. J Immunol (2015) 195(6):2524–8. doi: 10.4049/jimmunol.1501231 PubMed DOI PMC
Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, et al. . Characterization of Heme as Activator of Toll-Like Receptor 4. J Biol Chem (2007) 282(28):20221–9. doi: 10.1074/jbc.M610737200 PubMed DOI
Janciauskiene S, Vijayan V, Immenschuh S. TLR4 Signaling by Heme and the Role of Heme-Binding Blood Proteins. Front Immunol (2020) 11:1964. doi: 10.3389/fimmu.2020.01964 PubMed DOI PMC
Mann M, Mehta A, de Boer CG, Kowalczyk MS, Lee K, Haldeman P, et al. . Heterogeneous Responses of Hematopoietic Stem Cells to Inflammatory Stimuli Are Altered With Age. Cell Rep (2018) 25(11):2992–3005.e5. doi: 10.1016/j.celrep.2018.11.056 PubMed DOI PMC
Nankabirwa V, Tumwine JK, Mugaba PM, Tylleskar T, Sommerfelt H, Group P-ES. Child Survival and BCG Vaccination: A Community Based Prospective Cohort Study in Uganda. BMC Public Health (2015) 15:175. doi: 10.1186/s12889-015-1497-8 PubMed DOI PMC
Moorlag S, van Deuren RC, van Werkhoven CH, Jaeger M, Debisarun P, Taks E, et al. . Safety and COVID-19 Symptoms in Individuals Recently Vaccinated With BCG: A Retrospective Cohort Study. Cell Rep Med (2020) 1(5):100073. doi: 10.1016/j.xcrm.2020.100073 PubMed DOI PMC
Rivas MN, Ebinger JE, Wu M, Sun N, Braun J, Sobhani K, et al. . BCG Vaccination History Associates With Decreased SARS-Cov-2 Seroprevalence Across a Diverse Cohort of Health Care Workers. J Clin Invest (2021) 131(2):e145157. doi: 10.1172/JCI145157 PubMed DOI PMC
Yu VWC, Yusuf RZ, Oki T, Wu J, Saez B, Wang X, et al. . Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell (2016) 167(5):1310–22.e17. doi: 10.1016/j.cell.2016.10.045 PubMed DOI
Katzmarski N, Dominguez-Andres J, Cirovic B, Renieris G, Ciarlo E, Le Roy D, et al. . Transmission of Trained Immunity and Heterologous Resistance to Infections Across Generations. Nat Immunol (2021) 22(11):1382–90. doi: 10.1038/s41590-021-01052-7 PubMed DOI
Berendsen MLT, Oland CB, Bles P, Jensen AKG, Kofoed PE, Whittle H, et al. . Maternal Priming: Bacillus Calmette-Guerin (BCG) Vaccine Scarring in Mothers Enhances the Survival of Their Child With a BCG Vaccine Scar. J Pediatr Infect Dis Soc (2020) 9(2):166–72. doi: 10.1093/jpids/piy142 PubMed DOI
DiNardo AR, Netea MG, Musher DM. Postinfectious Epigenetic Immune Modifications - a Double-Edged Sword. N Engl J Med (2021) 384(3):261–70. doi: 10.1056/NEJMra2028358 PubMed DOI PMC
Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, et al. . Chronic Interleukin-1 Exposure Drives Haematopoietic Stem Cells Towards Precocious Myeloid Differentiation at the Expense of Self-Renewal. Nat Cell Biol (2016) 18(6):607–18. doi: 10.1038/ncb3346 PubMed DOI PMC
Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. . Innate Immune Memory in the Brain Shapes Neurological Disease Hallmarks. Nature (2018) 556(7701):332–8. doi: 10.1038/s41586-018-0023-4 PubMed DOI PMC
Bekkering S, van den Munckhof I, Nielen T, Lamfers E, Dinarello C, Rutten J, et al. . Innate Immune Cell Activation and Epigenetic Remodeling in Symptomatic and Asymptomatic Atherosclerosis in Humans In Vivo. Atherosclerosis (2016) 254:228–36. doi: 10.1016/j.atherosclerosis.2016.10.019 PubMed DOI
Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. . The Glycolytic Enzyme PKM2 Bridges Metabolic and Inflammatory Dysfunction in Coronary Artery Disease. J Exp Med (2016) 213(3):337–54. doi: 10.1084/jem.20150900 PubMed DOI PMC
Bulut O, Kilic G, Dominguez-Andres J, Netea MG. Overcoming Immune Dysfunction in the Elderly: Trained Immunity as a Novel Approach. Int Immunol (2020) 32(12):741–53. doi: 10.1093/intimm/dxaa052 PubMed DOI PMC
Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, Antonakos N, Kotsaki A, Dominguez-Andres J, et al. . Activate: Randomized Clinical Trial of BCG Vaccination Against Infection in the Elderly. Cell (2020) 183(2):315–23.e9. doi: 10.1016/j.cell.2020.08.051 PubMed DOI PMC
Pavan Kumar N, Padmapriyadarsini C, Rajamanickam A, Marinaik SB, Nancy A, Padmanaban S, et al. . Effect of BCG Vaccination on Proinflammatory Responses in Elderly Individuals. Sci Adv (2021) 7(32):eabg7181. doi: 10.1126/sciadv.abg7181 PubMed DOI PMC
Ferrucci L, Fabbri E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat Rev Cardiol (2018) 15(9):505–22. doi: 10.1038/s41569-018-0064-2 PubMed DOI PMC
Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, et al. . From Inflamm-Aging to Immune-Paralysis: A Slippery Slope During Aging for Immune-Adaptation. Biogerontology (2016) 17(1):147–57. doi: 10.1007/s10522-015-9615-7 PubMed DOI
Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic Targeting of Trained Immunity. Nat Rev Drug Discovery (2019) 18(7):553–66. doi: 10.1038/s41573-019-0025-4 PubMed DOI PMC
Tough DF, Tak PP, Tarakhovsky A, Prinjha RK. Epigenetic Drug Discovery: Breaking Through the Immune Barrier. Nat Rev Drug Discov (2016) 15(12):835–53. doi: 10.1038/nrd.2016.185 PubMed DOI