Effect of 3D-Printed PLA Structure on Sound Reflection Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0550
Ministry of Education, Science, Research, and Sport of Slovak Republic
KEGA 005TUKE-4/2021
Ministry of Education, Science, Research, and Sport of Slovak Republic
CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems
PubMed
35160397
PubMed Central
PMC8838413
DOI
10.3390/polym14030413
PII: polym14030413
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing technique, air gap, excitation frequency, polylactic acid, porosity, sound reflection, thickness,
- Publikační typ
- časopisecké články MeSH
3D printing technique is currently one of the promising emerging technologies. It is used in many areas of human activity, including acoustic applications. This paper focuses on studying the sound reflection behavior of four different types of 3D-printed open-porous polylactic acid (PLA) material structures, namely cartesian, octagonal, rhomboid and starlit structures. Sound reflection properties were evaluated by means of the normal incidence sound reflection coefficient based on the transfer function method using an acoustic impedance tube. In this study, various factors affecting the sound reflection performance of the investigated PLA samples were evaluated. It can be concluded that the sound reflection behavior of the tested PLA specimens was strongly affected by different factors. It was influenced, not only by the type of 3D-printed open-porous material structure, but also by the excitation frequency, the total volume porosity, the specimen thickness, and the air gap size behind the tested specimen inside the acoustic impedance tube.
Faculty of Manufacturing Technologies Technical University in Kosice 080 01 Presov Slovakia
Faculty of Technology Tomas Bata University in Zlin Nam T G Masaryka 275 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Brawata K., Kamisinski T. Effect of Stage Curtain Legs Arrangement on Sound Distribution in Opera Houses; Proceedings of the 2018 Joint Conference—Acoustics; Ustka, Poland. 11–14 September 2018; pp. 1–4. DOI
Hamdan N.I., Zainulabidin M.H., Kasron M.Z., Kassim A.S.M. Effect of Perforation Size on Sound Absorption Characteristics of Membrane Absorber. Int. J. Integr. Eng. 2018;10:27–34. doi: 10.30880/ijie.2018.10.04.005. DOI
Othman A.R., Harith C.M., Ibrahim N., Ahmad S.S. The Importance of Acoustic Design in the Mosques towards the Worshipers’ Comfort. Procd. Soc. Behv. 2016;234:45–54. doi: 10.1016/j.sbspro.2016.10.218. DOI
Rathsam J., Wang Lily M. A review of Diffuse Reflections in Architectural Acoustics. Archit. Eng. 2006;14:1–8. doi: 10.1061/40798(190)23. DOI
Amares S., Sujatmika E., Hong T.W., Durairaj D., Hamid H.S.H.B. A Review: Characteristics of Noise Absorption Material. J. Phys. Conf. Ser. 2017;908:012005. doi: 10.1088/1742-6596/908/1/012005. DOI
Vasina M., Bilek O. Effect of Machined Surface Shape on Sound Reflection. Manuf. Tech. 2016;16:830–834. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/4/830. DOI
Allen T., Chally A., Moser B., Widenhorn P. Sound Propagation, Reflection, and Its Relevance to Ultrasound Imaging. Phys. Teach. 2019;57:134–137. doi: 10.1119/1.5092466. DOI
Berg R.E. The Physics of Sound. Department of Physics; Meryland, MD, USA: 2021.
Vercammen M. Sound Reflections from Concave Spherical Surfaces. Part I: Wave Field Approximation. Acta Acust. Unit. Acust. 2010;96:82–91. doi: 10.3813/AAA.918259. DOI
Szelag A., Kamisinski T.M., Lewinska M., Rubacha J., Ilch A. The Characteristic of Sound Reflections from Curved Reflective Panels. Arch. Acoust. 2014;39:549–558. doi: 10.2478/aoa-2014-0059. DOI
Mosavimehr E., Srikantha P.A. Sound transmission loss characteristics of sandwich panels with a truss lattice core. J. Acoust. Soc. Am. 2017;141:2921–2932. doi: 10.1121/1.4979934. PubMed DOI
Domenico R., Ruggiero A. Choice of the optimal acoustic design of a school classroom and experimental verification. Appl. Acoust. 2019;146:280–287.
Tsukernikov I., Antonov A., Ledenev V., Shubin I., Nevenchannaya T. Noise Calculation Method for Industrial Premises with Bulky Equipment at Mirror-diffuse Sound Reflection. Proced. Eng. 2017;176:218–225. doi: 10.1016/j.proeng.2017.02.291. DOI
Zulkifli R., Mohd Nor M.J., Mat Tahir M.F., Ismail A.R., Nuawi M.Z. Acoustic Properties of Multi-Layer Coir Fibres Sound Absorption Panel. J. Appl. Sci. 2008;8:3709–3714. doi: 10.3923/jas.2008.3709.3714. DOI
Lee F.C., Chen W.H. Acoustic transmission analysis of multi-layer absorbers. J. Sound. Vib. 2001;248:621–634. doi: 10.1006/jsvi.2001.3825. DOI
Cucharero J., Hänninen T., Lokki T. Angle-Dependent Absorption of Sound on Porous Materials. Acoustics. 2020;2:753–765. doi: 10.3390/acoustics2040041. DOI
Gimaltdinov I.K., Sitdikova L.F., Dmitriev V.L., Levina T.M., Khabeev N.S., Song W.Q. Reflection of acoustic waves from a porous material at oblique incidence. J. Eng. Phys. Thermophys. 2017;90:1043–1052. doi: 10.1007/s10891-017-1655-1. DOI
Holmes N., Browne A., Montague C. Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 2014;73:195–204. doi: 10.1016/j.conbuildmat.2014.09.107. DOI
Kuczmarski M.A., Johntson J. Acoustic Absorption in Porous Materials. National Aeronautics and Space Administration; Pasadena, CA, USA: 2011. pp. 1–27.
Fellah Z.E.A., Fellah M., Depollier C., Ogam E., Mitri F.G. Computational and Experimental Studies of Acoustic Waves. IntechOpen; Rijeka, Croatia: 2017. Wave Propagation in Porous Materials; pp. 99–120.
Sun X., Jiang F., Wang J. Acoustic Properties of 316L Stainless Steel Lattice Structures Fabricated via Selective Laser Melting. Metals. 2020;10:111. doi: 10.3390/met10010111. DOI
Dragonetti R., Napolitano M., Romano R.A. A study on the energy and the reflection angle of the sound reflected by a porous material. J. Acoust. Soc. Am. 2019;145:489–500. doi: 10.1121/1.5087565. PubMed DOI
Otaru A.J. Review on the Acoustical Properties and Characterization Methods of Sound Absorbing Porous Structures: A Focus on Microcellular Structures Made by a Replication Casting Method. Met. Mater. Int. 2020;26:915–932. doi: 10.1007/s12540-019-00512-y. DOI
Fan C., Tian Y., Wang Z.Q. Structural parameter effect of porous material on sound absorption performance of double-resonance material. IOP Conf. Ser. Mater. Sci. Eng. 2017;213:012028. doi: 10.1088/1757-899X/213/1/012028. DOI
Talebitooti R., Zarastvand M., Darvishgohari H. Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure. J. Sandwich Struct. Mater. 2019;23:1221–1252. doi: 10.1177/1099636219854748. DOI
Cao L., Fu Q., Si Y., Ding B., Yu J. Porous materials for sound absorption. Compos. Commun. 2018;10:25–35. doi: 10.1016/j.coco.2018.05.001. DOI
Chen W., Chen T., Wang X., Wu J., Li S. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials. Shock Vib. 2016;2016:2890857. doi: 10.1155/2016/2890857. DOI
Guo Z.K., Hu G.B., Sorokin V., Yang Y., Tang L.H. Sound transmission through sandwich plate with hourglass lattice truss core. J. Sandwich Struct. Mater. 2020;23:1902–1928. doi: 10.1177/1099636220906819. DOI
Bennett T.D., Coudert F.-X., James S.L., Cooper A.I. The changing state of porous materials. Nat. Mater. 2021;20:1179–1187. doi: 10.1038/s41563-021-00957-w. PubMed DOI
Voronin S.V., Danilushkin V.S., Tregub V.I., Konovalov S.V. Computer Simulation of the Process of Crack Propagation in a Brittle Porous Material. J. Surf. Investig. 2021;15:1212–1216. doi: 10.1134/S1027451021060240. DOI
Chiavi A., Miglietta P., Guglielmone C.L. Considerations on the airflow resistivity measurement of porous and fibrous materials as function of temperature; Proceedings of the 8th European Conference on Noise Control; Euronoise, UK. 26–28 October 2009; pp. 1–11.
Hurrell A.I., Horoshenkov K.V., Pelegrinis M.T. The accuracy of some models for the airflow resistivity of nonwoven materials. Appl. Acoust. 2018;130:230–237. doi: 10.1016/j.apacoust.2017.09.024. DOI
Naghieh S., Karamooz Ravari M.R., Badrossamay M., Foroozmehr E., Kadkhodaei M. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating. J. Mech. Behav. Biomed. Mater. 2016;59:241–250. doi: 10.1016/j.jmbbm.2016.01.031. PubMed DOI
Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI
Seddeq H.S. Factors influencing acoustic performance of sound absorptive materials. Austral. J. Basic Appl. Sci. 2009;3:4610–4617.
Łukaszewski K., Buchwald T., Wichniarek R. The FDM Technique in Processes of Prototyping Spare Parts for Servicing and Repairing Agricultural Machines: A General Outline. Int. J. Appl. Mech. Eng. 2021;26:145–155. doi: 10.2478/ijame-2021-0055. DOI
Chawla K., Singh R., Singh J. On recyclability of thermoplastic ABS polymer as fused filament for FDM technique of additive manufacturing. World J. Eng. 2021 doi: 10.1108/WJE-11-2020-0580. DOI
Corredor-Bedoya A.C., Acuna B., Serpa A.L., Mesiero B. Effect of the excitation signal type on the absorption coefficient measurement using the impedance tube. Appl. Acoust. 2021;171:107659. doi: 10.1016/j.apacoust.2020.107659. DOI
Fediuk R., Amran M., Vatin N., Vasilev Y., Lesovik V., Ozbakkaloglu T. Acoustic Properties of Innovative Concretes: A Review. Materials. 2021;14:398. doi: 10.3390/ma14020398. PubMed DOI PMC
Zainulabidin M., Rani M., Nezere N., Tobi A. Optimum sound absorption by materials fraction combination. Int. J. Mech. Mechatron. Eng. 2014;14:118–121.
Paul P., Mishra R., Behera B.K. Acoustic behaviour of textile structures. Text. Prog. 2021;53:1–64. doi: 10.1080/00405167.2021.1986325. DOI
Koizumi T., Tsujiuchi N., Adachi A. The development of sound absorbing materials using natural bamboo fibers. High Perform. Struct. Mater. 2002;4:157–166.
Bujoreanu C., Nedeff F., Benchea M., Agop M. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Appl. Acoust. 2017;119:88–93. doi: 10.1016/j.apacoust.2016.12.010. DOI
Wu J.J., Li C.G., Wang D.B., Gui M.C. Damping and sound absorption properties of particle reinforced Al matrix composite foams. Compos. Sci. Technol. 2003;63:569–574. doi: 10.1016/S0266-3538(02)00215-4. DOI
Mendes C.O.B., Nunes M.A.D. Numerical Methodology to Obtain the Sound Absorption of Materials by Inserting the Acoustic Impedance. Arch. Acoust. 2021;46:649–656. doi: 10.24425/aoa.2021.139641. DOI
Acoustics-Determination of Sound Absorption in a Reverberation Room. IOS; Geneva, Switzerland: 2003.
Scrosati C., Martellotta F., Pompoli F., Schiavi A., Prato A., D’Orazio D., Garai M., Granzotto N., Di Bella A., Scamoni F. Towards more reliable measurements of sound absorption coefficient in reverberation rooms: An Inter-Laboratory Test. Appl. Acoust. 2020;165:107398. doi: 10.1016/j.apacoust.2020.107298. DOI
Shtrepi L., Prato A. Towards a sustainable approach for sound absorption assessment of building materials: Validation of small-scale reverberation room measurements. Appl. Acoust. 2020;165:107304. doi: 10.1016/j.apacoust.2020.107304. DOI
Sun Y., Hua B. System error calculation and analysis of underwater sound absorption coefficient measurement experiment. Appl. Acoust. 2022;186:108489. doi: 10.1016/j.apacoust.2021.108489. DOI
Amran M., Fediuk R., Murali G., Vatin N., Al-Fakih A. Sound-Absorbing Acoustic Concretes: A Review. Sustainability. 2021;13:10712. doi: 10.3390/su131910712. DOI
Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 1: Method Using Standing Wave Ratio. IOS; Geneva, Switzerland: 1998.
Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method; ISO/TC 43/SC2 Building Acoustics. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542.
Doutres O., Salissou Y., Atalla N., Panneton R. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Appl. Acoust. 2010;71:506–509. doi: 10.1016/j.apacoust.2010.01.007. DOI
Song W.J., Cha D.J. Determination of an acoustic reflection coefficient at the inlet of a model gas turbine combustor for power generation. IOP Conf. Ser. Mater. Sci. Eng. 2017;164:012010. doi: 10.1088/1757-899X/164/1/012010. DOI
Taban E., Khavanin A., Jafari A.J., Faridan M., Tabrizi A.K. Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon. 2019;5:e01977. doi: 10.1016/j.heliyon.2019.e01977. PubMed DOI PMC
Jiang B., Wang Z.J., Zhao N.Q. Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 2007;56:169–172. doi: 10.1016/j.scriptamat.2006.08.070. DOI
Zhu W.B., Chen S.M., Wang Y.B., Zhu T.T., Jiang Y. Sound Absorption Behavior of Polyurethane Foam Composites with Different Ethylene Propylene Diene Monomer Particles. Arch. Acoust. 2018;43:403–411. doi: 10.24425/123912. DOI
Tiuc A.E., Vasile O., Usca A.D., Gabor T., Vermesan H. The Analysis of Factors That Influence the Sound Absorption Coefficient of Porous Materials. Rom. J. Acoust. Vib. 2014;11:105–108.
Everest F.A. Master Handbook of Acoustics. 4th ed. McGraw-Hill; New York, NY, USA: 2001. Absorption of sound; pp. 179–233.
Zhu J.L., Sun J., Tang J.P., Wang J.Z., Ao Q.B., Bao T.F., Song W.D. Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder. Technol. 2016;301:1235–1241. doi: 10.1016/j.powtec.2016.08.006. DOI
Liguori C., Ruggiero A., Russo D., Sommella P. Estimation of the minimum measurement time interval in acoustic noise. Appl. Acoust. 2017;127:126–132. doi: 10.1016/j.apacoust.2017.05.032. DOI
Liu X.W., Yu C.L., Xin F.X. Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption. Compos. Struct. 2021;263:113647. doi: 10.1016/j.compstruct.2021.113647. DOI
Madurelo-Sanz R., Acedo-Fuentes P., Garcia-Cobos F.J., Sánchez-Delgado F.J., Mota-López M.I., Meneses-Rodríguez J.M. The recycling of surgical face masks as sound porous absorbers: Preliminary evaluation. Sci. Total Environ. 2021;786:147461. doi: 10.1016/j.scitotenv.2021.147461. PubMed DOI PMC
Guan Y.-J., Ge Y., Sun H.-X., Yuan S.-Q., Liu X.-J. Low-Frequency, Open, Sound-Insulation Barrier by Two Oppositely Oriented Helmholtz Resonators. Micromachines. 2021;12:1544. doi: 10.3390/mi12121544. PubMed DOI PMC