Effect of 3D-Printed PLA Structure on Sound Reflection Properties

. 2022 Jan 20 ; 14 (3) : . [epub] 20220120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160397

Grantová podpora
APVV-19-0550 Ministry of Education, Science, Research, and Sport of Slovak Republic
KEGA 005TUKE-4/2021 Ministry of Education, Science, Research, and Sport of Slovak Republic
CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems

3D printing technique is currently one of the promising emerging technologies. It is used in many areas of human activity, including acoustic applications. This paper focuses on studying the sound reflection behavior of four different types of 3D-printed open-porous polylactic acid (PLA) material structures, namely cartesian, octagonal, rhomboid and starlit structures. Sound reflection properties were evaluated by means of the normal incidence sound reflection coefficient based on the transfer function method using an acoustic impedance tube. In this study, various factors affecting the sound reflection performance of the investigated PLA samples were evaluated. It can be concluded that the sound reflection behavior of the tested PLA specimens was strongly affected by different factors. It was influenced, not only by the type of 3D-printed open-porous material structure, but also by the excitation frequency, the total volume porosity, the specimen thickness, and the air gap size behind the tested specimen inside the acoustic impedance tube.

Zobrazit více v PubMed

Brawata K., Kamisinski T. Effect of Stage Curtain Legs Arrangement on Sound Distribution in Opera Houses; Proceedings of the 2018 Joint Conference—Acoustics; Ustka, Poland. 11–14 September 2018; pp. 1–4. DOI

Hamdan N.I., Zainulabidin M.H., Kasron M.Z., Kassim A.S.M. Effect of Perforation Size on Sound Absorption Characteristics of Membrane Absorber. Int. J. Integr. Eng. 2018;10:27–34. doi: 10.30880/ijie.2018.10.04.005. DOI

Othman A.R., Harith C.M., Ibrahim N., Ahmad S.S. The Importance of Acoustic Design in the Mosques towards the Worshipers’ Comfort. Procd. Soc. Behv. 2016;234:45–54. doi: 10.1016/j.sbspro.2016.10.218. DOI

Rathsam J., Wang Lily M. A review of Diffuse Reflections in Architectural Acoustics. Archit. Eng. 2006;14:1–8. doi: 10.1061/40798(190)23. DOI

Amares S., Sujatmika E., Hong T.W., Durairaj D., Hamid H.S.H.B. A Review: Characteristics of Noise Absorption Material. J. Phys. Conf. Ser. 2017;908:012005. doi: 10.1088/1742-6596/908/1/012005. DOI

Vasina M., Bilek O. Effect of Machined Surface Shape on Sound Reflection. Manuf. Tech. 2016;16:830–834. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/4/830. DOI

Allen T., Chally A., Moser B., Widenhorn P. Sound Propagation, Reflection, and Its Relevance to Ultrasound Imaging. Phys. Teach. 2019;57:134–137. doi: 10.1119/1.5092466. DOI

Berg R.E. The Physics of Sound. Department of Physics; Meryland, MD, USA: 2021.

Vercammen M. Sound Reflections from Concave Spherical Surfaces. Part I: Wave Field Approximation. Acta Acust. Unit. Acust. 2010;96:82–91. doi: 10.3813/AAA.918259. DOI

Szelag A., Kamisinski T.M., Lewinska M., Rubacha J., Ilch A. The Characteristic of Sound Reflections from Curved Reflective Panels. Arch. Acoust. 2014;39:549–558. doi: 10.2478/aoa-2014-0059. DOI

Mosavimehr E., Srikantha P.A. Sound transmission loss characteristics of sandwich panels with a truss lattice core. J. Acoust. Soc. Am. 2017;141:2921–2932. doi: 10.1121/1.4979934. PubMed DOI

Domenico R., Ruggiero A. Choice of the optimal acoustic design of a school classroom and experimental verification. Appl. Acoust. 2019;146:280–287.

Tsukernikov I., Antonov A., Ledenev V., Shubin I., Nevenchannaya T. Noise Calculation Method for Industrial Premises with Bulky Equipment at Mirror-diffuse Sound Reflection. Proced. Eng. 2017;176:218–225. doi: 10.1016/j.proeng.2017.02.291. DOI

Zulkifli R., Mohd Nor M.J., Mat Tahir M.F., Ismail A.R., Nuawi M.Z. Acoustic Properties of Multi-Layer Coir Fibres Sound Absorption Panel. J. Appl. Sci. 2008;8:3709–3714. doi: 10.3923/jas.2008.3709.3714. DOI

Lee F.C., Chen W.H. Acoustic transmission analysis of multi-layer absorbers. J. Sound. Vib. 2001;248:621–634. doi: 10.1006/jsvi.2001.3825. DOI

Cucharero J., Hänninen T., Lokki T. Angle-Dependent Absorption of Sound on Porous Materials. Acoustics. 2020;2:753–765. doi: 10.3390/acoustics2040041. DOI

Gimaltdinov I.K., Sitdikova L.F., Dmitriev V.L., Levina T.M., Khabeev N.S., Song W.Q. Reflection of acoustic waves from a porous material at oblique incidence. J. Eng. Phys. Thermophys. 2017;90:1043–1052. doi: 10.1007/s10891-017-1655-1. DOI

Holmes N., Browne A., Montague C. Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 2014;73:195–204. doi: 10.1016/j.conbuildmat.2014.09.107. DOI

Kuczmarski M.A., Johntson J. Acoustic Absorption in Porous Materials. National Aeronautics and Space Administration; Pasadena, CA, USA: 2011. pp. 1–27.

Fellah Z.E.A., Fellah M., Depollier C., Ogam E., Mitri F.G. Computational and Experimental Studies of Acoustic Waves. IntechOpen; Rijeka, Croatia: 2017. Wave Propagation in Porous Materials; pp. 99–120.

Sun X., Jiang F., Wang J. Acoustic Properties of 316L Stainless Steel Lattice Structures Fabricated via Selective Laser Melting. Metals. 2020;10:111. doi: 10.3390/met10010111. DOI

Dragonetti R., Napolitano M., Romano R.A. A study on the energy and the reflection angle of the sound reflected by a porous material. J. Acoust. Soc. Am. 2019;145:489–500. doi: 10.1121/1.5087565. PubMed DOI

Otaru A.J. Review on the Acoustical Properties and Characterization Methods of Sound Absorbing Porous Structures: A Focus on Microcellular Structures Made by a Replication Casting Method. Met. Mater. Int. 2020;26:915–932. doi: 10.1007/s12540-019-00512-y. DOI

Fan C., Tian Y., Wang Z.Q. Structural parameter effect of porous material on sound absorption performance of double-resonance material. IOP Conf. Ser. Mater. Sci. Eng. 2017;213:012028. doi: 10.1088/1757-899X/213/1/012028. DOI

Talebitooti R., Zarastvand M., Darvishgohari H. Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure. J. Sandwich Struct. Mater. 2019;23:1221–1252. doi: 10.1177/1099636219854748. DOI

Cao L., Fu Q., Si Y., Ding B., Yu J. Porous materials for sound absorption. Compos. Commun. 2018;10:25–35. doi: 10.1016/j.coco.2018.05.001. DOI

Chen W., Chen T., Wang X., Wu J., Li S. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials. Shock Vib. 2016;2016:2890857. doi: 10.1155/2016/2890857. DOI

Guo Z.K., Hu G.B., Sorokin V., Yang Y., Tang L.H. Sound transmission through sandwich plate with hourglass lattice truss core. J. Sandwich Struct. Mater. 2020;23:1902–1928. doi: 10.1177/1099636220906819. DOI

Bennett T.D., Coudert F.-X., James S.L., Cooper A.I. The changing state of porous materials. Nat. Mater. 2021;20:1179–1187. doi: 10.1038/s41563-021-00957-w. PubMed DOI

Voronin S.V., Danilushkin V.S., Tregub V.I., Konovalov S.V. Computer Simulation of the Process of Crack Propagation in a Brittle Porous Material. J. Surf. Investig. 2021;15:1212–1216. doi: 10.1134/S1027451021060240. DOI

Chiavi A., Miglietta P., Guglielmone C.L. Considerations on the airflow resistivity measurement of porous and fibrous materials as function of temperature; Proceedings of the 8th European Conference on Noise Control; Euronoise, UK. 26–28 October 2009; pp. 1–11.

Hurrell A.I., Horoshenkov K.V., Pelegrinis M.T. The accuracy of some models for the airflow resistivity of nonwoven materials. Appl. Acoust. 2018;130:230–237. doi: 10.1016/j.apacoust.2017.09.024. DOI

Naghieh S., Karamooz Ravari M.R., Badrossamay M., Foroozmehr E., Kadkhodaei M. Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating. J. Mech. Behav. Biomed. Mater. 2016;59:241–250. doi: 10.1016/j.jmbbm.2016.01.031. PubMed DOI

Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI

Seddeq H.S. Factors influencing acoustic performance of sound absorptive materials. Austral. J. Basic Appl. Sci. 2009;3:4610–4617.

Łukaszewski K., Buchwald T., Wichniarek R. The FDM Technique in Processes of Prototyping Spare Parts for Servicing and Repairing Agricultural Machines: A General Outline. Int. J. Appl. Mech. Eng. 2021;26:145–155. doi: 10.2478/ijame-2021-0055. DOI

Chawla K., Singh R., Singh J. On recyclability of thermoplastic ABS polymer as fused filament for FDM technique of additive manufacturing. World J. Eng. 2021 doi: 10.1108/WJE-11-2020-0580. DOI

Corredor-Bedoya A.C., Acuna B., Serpa A.L., Mesiero B. Effect of the excitation signal type on the absorption coefficient measurement using the impedance tube. Appl. Acoust. 2021;171:107659. doi: 10.1016/j.apacoust.2020.107659. DOI

Fediuk R., Amran M., Vatin N., Vasilev Y., Lesovik V., Ozbakkaloglu T. Acoustic Properties of Innovative Concretes: A Review. Materials. 2021;14:398. doi: 10.3390/ma14020398. PubMed DOI PMC

Zainulabidin M., Rani M., Nezere N., Tobi A. Optimum sound absorption by materials fraction combination. Int. J. Mech. Mechatron. Eng. 2014;14:118–121.

Paul P., Mishra R., Behera B.K. Acoustic behaviour of textile structures. Text. Prog. 2021;53:1–64. doi: 10.1080/00405167.2021.1986325. DOI

Koizumi T., Tsujiuchi N., Adachi A. The development of sound absorbing materials using natural bamboo fibers. High Perform. Struct. Mater. 2002;4:157–166.

Bujoreanu C., Nedeff F., Benchea M., Agop M. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Appl. Acoust. 2017;119:88–93. doi: 10.1016/j.apacoust.2016.12.010. DOI

Wu J.J., Li C.G., Wang D.B., Gui M.C. Damping and sound absorption properties of particle reinforced Al matrix composite foams. Compos. Sci. Technol. 2003;63:569–574. doi: 10.1016/S0266-3538(02)00215-4. DOI

Mendes C.O.B., Nunes M.A.D. Numerical Methodology to Obtain the Sound Absorption of Materials by Inserting the Acoustic Impedance. Arch. Acoust. 2021;46:649–656. doi: 10.24425/aoa.2021.139641. DOI

Acoustics-Determination of Sound Absorption in a Reverberation Room. IOS; Geneva, Switzerland: 2003.

Scrosati C., Martellotta F., Pompoli F., Schiavi A., Prato A., D’Orazio D., Garai M., Granzotto N., Di Bella A., Scamoni F. Towards more reliable measurements of sound absorption coefficient in reverberation rooms: An Inter-Laboratory Test. Appl. Acoust. 2020;165:107398. doi: 10.1016/j.apacoust.2020.107298. DOI

Shtrepi L., Prato A. Towards a sustainable approach for sound absorption assessment of building materials: Validation of small-scale reverberation room measurements. Appl. Acoust. 2020;165:107304. doi: 10.1016/j.apacoust.2020.107304. DOI

Sun Y., Hua B. System error calculation and analysis of underwater sound absorption coefficient measurement experiment. Appl. Acoust. 2022;186:108489. doi: 10.1016/j.apacoust.2021.108489. DOI

Amran M., Fediuk R., Murali G., Vatin N., Al-Fakih A. Sound-Absorbing Acoustic Concretes: A Review. Sustainability. 2021;13:10712. doi: 10.3390/su131910712. DOI

Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 1: Method Using Standing Wave Ratio. IOS; Geneva, Switzerland: 1998.

Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method; ISO/TC 43/SC2 Building Acoustics. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542.

Doutres O., Salissou Y., Atalla N., Panneton R. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Appl. Acoust. 2010;71:506–509. doi: 10.1016/j.apacoust.2010.01.007. DOI

Song W.J., Cha D.J. Determination of an acoustic reflection coefficient at the inlet of a model gas turbine combustor for power generation. IOP Conf. Ser. Mater. Sci. Eng. 2017;164:012010. doi: 10.1088/1757-899X/164/1/012010. DOI

Taban E., Khavanin A., Jafari A.J., Faridan M., Tabrizi A.K. Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon. 2019;5:e01977. doi: 10.1016/j.heliyon.2019.e01977. PubMed DOI PMC

Jiang B., Wang Z.J., Zhao N.Q. Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 2007;56:169–172. doi: 10.1016/j.scriptamat.2006.08.070. DOI

Zhu W.B., Chen S.M., Wang Y.B., Zhu T.T., Jiang Y. Sound Absorption Behavior of Polyurethane Foam Composites with Different Ethylene Propylene Diene Monomer Particles. Arch. Acoust. 2018;43:403–411. doi: 10.24425/123912. DOI

Tiuc A.E., Vasile O., Usca A.D., Gabor T., Vermesan H. The Analysis of Factors That Influence the Sound Absorption Coefficient of Porous Materials. Rom. J. Acoust. Vib. 2014;11:105–108.

Everest F.A. Master Handbook of Acoustics. 4th ed. McGraw-Hill; New York, NY, USA: 2001. Absorption of sound; pp. 179–233.

Zhu J.L., Sun J., Tang J.P., Wang J.Z., Ao Q.B., Bao T.F., Song W.D. Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder. Technol. 2016;301:1235–1241. doi: 10.1016/j.powtec.2016.08.006. DOI

Liguori C., Ruggiero A., Russo D., Sommella P. Estimation of the minimum measurement time interval in acoustic noise. Appl. Acoust. 2017;127:126–132. doi: 10.1016/j.apacoust.2017.05.032. DOI

Liu X.W., Yu C.L., Xin F.X. Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption. Compos. Struct. 2021;263:113647. doi: 10.1016/j.compstruct.2021.113647. DOI

Madurelo-Sanz R., Acedo-Fuentes P., Garcia-Cobos F.J., Sánchez-Delgado F.J., Mota-López M.I., Meneses-Rodríguez J.M. The recycling of surgical face masks as sound porous absorbers: Preliminary evaluation. Sci. Total Environ. 2021;786:147461. doi: 10.1016/j.scitotenv.2021.147461. PubMed DOI PMC

Guan Y.-J., Ge Y., Sun H.-X., Yuan S.-Q., Liu X.-J. Low-Frequency, Open, Sound-Insulation Barrier by Two Oppositely Oriented Helmholtz Resonators. Micromachines. 2021;12:1544. doi: 10.3390/mi12121544. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...