• This record comes from PubMed

Three-Dimensional Printing Process for Musical Instruments: Sound Reflection Properties of Polymeric Materials for Enhanced Acoustical Performance

. 2023 Apr 24 ; 15 (9) : . [epub] 20230424

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA/FT/2023/006 Tomas Bata University in Zlín
DKRVO (RP/CPS/2022/003) Ministry of Education, Youth and Sports of the Czech Republic

Acoustical properties of various materials were analyzed in order to determine their potential for the utilization in the three-dimensional printing process of stringed musical instruments. Polylactic acid (PLA), polyethylene terephthalate with glycol modification (PET-G), and acrylonitrile styrene acrylate (ASA) filaments were studied in terms of sound reflection using the transfer function method. In addition, the surface geometry parameters (Sa, Sq, Sz, and Sdr) were measured, and their relation to the acoustic performance of three-dimensional-printed samples was investigated. It was found that a higher layer height, and thus a faster printing process, does not necessarily mean poor acoustical properties. The proposed methodology also proved to be a relatively easy and rapid way to test the acoustic performance of various materials and the effect of three-dimensional printing parameters to test such a combination at the very beginning of the production process.

See more in PubMed

Ashby M.F., Ferreira P.J., Schodek D.L. Nanomaterials, Nanotechnologies and Design—An Introduction for Engineers and Architects. Elsevier; Amsterdam, The Netherlands: 2009. Musical Instruments; pp. 377–378.

Randall R.H. Introduction to Acoustics. Dover Publications; Mineola, NY, USA: 2005. Wind Instruments of the Reed Type; pp. 176–182.

Buschow K.H.J., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., Mahajan S. Encyclopedia of Materials—Science and Technology, Volumes 1–11. Elsevier; Amsterdam, The Netherlands: 2001. Musical Instruments: Materials; pp. 5893–5894.

Xu B., Li H.Y. Advanced Composite Materials and Manufacturing Engineering. Trans Tech Publications; Bäch, Switzerland: 2012. Musical Instrument Sound Transmission Mechanisms; pp. 256–258.

Hlremath P., Suhas C.S.S., Manjunath M., Shettar M. COVID 19: Impact of lock-down on mental health and tips to overcome. Asian J. Psychiatry. 2020;51:102088. doi: 10.1016/j.ajp.2020.102088. PubMed DOI PMC

Li X.Y., Fu P., Fan C.Y., Zhu M., Li M. COVID-19 Stress and Mental Health of Students in Locked-Down Colleges. Int. J. Environ. Res. Public Health. 2021;18:771. doi: 10.3390/ijerph18020771. PubMed DOI PMC

Sumira M., Shalini M., Prachi P. Analysis of pre and post influence of COVID-19 pandemic among general population. Res. J. Biotechnol. 2020;15:199–211.

Varalakshmi R., Swetha R. COVID-19 lock down: People psychology due to law enforcement. Asian J. Psychiatry. 2020;51:102102. doi: 10.1016/j.ajp.2020.102102. PubMed DOI PMC

Mroz B., Odya P., Kostek B. Creating a Remote Choir Performance Recording Based on an Ambisonic Approach. Appl. Sci. 2022;12:3316. doi: 10.3390/app12073316. DOI

Kumar M.B., Sathiya P. Methods and materials for additive manufacturing: A critical review on advancements and challenges. Thin-Walled Struct. 2021;159:107228. doi: 10.1016/j.tws.2020.107228. DOI

Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B-Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI

Arif Z.U., Khalid M.Y., Zolfagharian A., Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives. React. Funct. Polym. 2022;179:105374. doi: 10.1016/j.reactfunctpolym.2022.105374. DOI

Yousefi A., Jolaiy S., Dezaki M.L., Zolfagharian A., Serjouei A., Bodaghi M. 3D-Printed Soft and Hard Meta-Structures with Supreme Energy Absorption and Dissipation Capacities in Cyclic Loading Conditions. Adv. Eng. Mater. 2022;25:2201189. doi: 10.1002/adem.202201189. DOI

Zolfagharian A., Lakhi M., Ranjbar S., Tadesse Y., Bodaghi M. 3D printing non-assembly compliant joints for soft robotics. Results Eng. 2022;15:100558. doi: 10.1016/j.rineng.2022.100558. DOI

Dudek P. Fdm 3D printing technology in manufacturing composite elements. Arch. Metall. Mater. 2013;58:1415–1418. doi: 10.2478/amm-2013-0186. DOI

Maqsood N., Rimasauskas M. Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Compos. Part C Open Access. 2021;4:100112. doi: 10.1016/j.jcomc.2021.100112. DOI

Monkova K., Vasina M., Monka P.P., Vanca J., Kozak D. Effect of 3D-Printed PLA Structure on Sound Reflection Properties. Polymers. 2022;14:413. doi: 10.3390/polym14030413. PubMed DOI PMC

Ning F.D., Cong W.L., Qiu J.J., Wei J.H., Wang S.R. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B-Eng. 2015;80:369–378. doi: 10.1016/j.compositesb.2015.06.013. DOI

Zulkifli R., Mohd Nor M.J., Mat Tahir M.F., Ismail A.R., Nuawi M.Z. Acoustic properties of multi-layer coir fibres sound absorption panel. J. Appl. Sci. 2008;8:3709–3714. doi: 10.3923/jas.2008.3709.3714. DOI

Zulkifli R., Nor M.J.M. Noise control using coconut coir fiber sound absorber with porous layer backing and perforated panel. Am. J. Appl. Sci. 2010;7:260–264. doi: 10.3844/ajassp.2010.260.264. DOI

Lee F.C., Chen W.H. Acoustic transmission analysis of multi-layer absorbers. J. Sound Vib. 2001;248:621–634. doi: 10.1006/jsvi.2001.3825. DOI

Cucharero J., Hänninen T., Lokki T. Angle-Dependent Absorption of Sound on Porous Materials. Acoustics. 2020;2:753–765. doi: 10.3390/acoustics2040041. DOI

Koizumi T., Tsujiuchi N., Adachi A. Proceedings of the High Performance Structures and Materials. WIT Press; Ashurst Lodge, Southampton: 2002. The development of sound absorbing materials using natural bamboo fibers; pp. 157–166.

Thilagavathi G., Pradeep E., Kannaian T., Sasikala L. Development of natural fiber nonwovens for application as car interiors for noise control. J. Ind. Text. 2010;39:267–278. doi: 10.1177/1528083709347124. DOI

Kantaros A., Diegel O. 3D printing technology in musical instrument research: Reviewing the potential. Rapid Prototyp. J. 2018;24:1511–1523. doi: 10.1108/RPJ-05-2017-0095. DOI

Riefer J., Tai B., Wang J. An Investigation in Tone Characteristics of 3D Printed Ukulele Sound Chambers. Manuf. Lett. 2022;33:508–515. doi: 10.1016/j.mfglet.2022.07.064. DOI

Sensio.cz Ltd MyCello by Sensio. [(accessed on 28 February 2023)]. Available online: https://www.sensio.cz/mycello/?page=mycello.

Acoustics-Determination of Sound absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. ISO/TC 43/SC2 Building Acoustics; CEN; European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542.

Fusheng H., Gary S., Yuyuan Z., Barry G. Acoustic absorption behaviour of an open-celled aluminium foam. J. Phys. D Appl. Phys. 2003;36:294. doi: 10.1088/0022-3727/36/3/312. DOI

Cherrier O., Pommier-Budinger V., Simon F. Panel of resonators with variable resonance frequency for noise control. Appl. Acoust. 2012;73:781–790. doi: 10.1016/j.apacoust.2012.02.011. DOI

Geometrical Product Specifications (GPS), Filtration. Part 61: Linear Areal Filters: Gaussian Filters. International Organization for Standardization; Geneva, Switzerland: 2015.

Surface Roughness: Parameters, Their Values and General Rules for Specifying Requirements. International Organization for Standardization:; Geneva, Switzerland: 1982.

Geometric Product Specification (GPS). Surface Texture: Areal. Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 2012.

Surface Roughness. Parameters and Characteristics. Izd. Standartov; Moscow, Russia: 1975.

Geometric Product Specification (GPS). Surface Texture Profile Method: Terms, Definition and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 1997.

Aver’yanova I.O., Bogomolov D.Y., Poroshin V.V. ISO 25178 standard for three-dimensional parametric assessment of surface texture. Russ. Eng. Res. 2017;37:513–516. doi: 10.3103/S1068798X17060053. DOI

Taghiyari H.R., Zolfaghari H., Sadeghi M.E., Esmailpour A., Jaffari A. Correlation between specific gas permeability and sound absorption coeficient in solid wood. J. Trop. For. Sci. 2014;26:92–100.

Kang C.W., Jang E.S., Jang S.S., Hasegawa M., Matsumura J. Studies of the Relationship Between Sound Absorption Coefficient and Air Permeability of Wood. J. Fac. Agric. Kyushu Univ. 2020;65:351–355. doi: 10.5109/4103900. DOI

Kang C.W., Kolya H., Jang E.S., Zhu S.H., Choi B.S. Steam exploded wood cell walls reveals improved gas permeability and sound absorption capability. Appl. Acoust. 2021;179:108049. doi: 10.1016/j.apacoust.2021.108049. DOI

Xu W., Fang X.Y., Han J.T., Wu Z.H., Zhang J.L. Effect of coating thickness on sound absorption property of four wood species commonly used for piano soundboards. Wood Fiber Sci. 2020;52:28–43. doi: 10.22382/wfs-2020-004. DOI

Song B.Q., Peng L.M., Fu F., Liu M.H., Zhang H.J. Experimental and Theoretical Analysis of Sound Absorption Properties of Finely Perforated Wooden Panels. Materials. 2016;9:942. doi: 10.3390/ma9110942. PubMed DOI PMC

Afshar A., Wood R. Development of Weather-Resistant 3D Printed Structures by Multi-Material Additive Manufacturing. J. Compos. Sci. 2020;4:94. doi: 10.3390/jcs4030094. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...