VOCs and Odor Episodes near the German-Czech Border: Social Participation, Chemical Analyses and Health Risk Assessment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35162316
PubMed Central
PMC8835392
DOI
10.3390/ijerph19031296
PII: ijerph19031296
Knihovny.cz E-zdroje
- Klíčová slova
- GC-MS analysis, canister sampling, health impact, odorous compounds, passive sampling,
- MeSH
- hodnocení rizik MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- odoranty analýza MeSH
- těkavé organické sloučeniny * analýza MeSH
- zapojení do společnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- těkavé organické sloučeniny * MeSH
People living on both sides of the German-Czech border are subject to episodes of odor air pollution. A joint German-Czech air sampling and risk assessment project was established to identify the substances responsible and their sources. Twenty-four volunteer study participants, 14 from the NW Czech Republic and 10 from Germany (Saxony) reported odors and collected canister samples during sampling periods in winter 2017 and 2018 and autumn 2018. Canister samples and passive samplers were analyzed for volatile organic compounds (VOCs) and passive samplers were analyzed for VOCs and carbonyls. OAVs (Odor Activity Values) and back trajectories were calculated with the aim of identifying the odor sources. Calculated OAVs were in excellent agreement with perceived smells close to an oil processing plant. Odorants identified in fifty canister samples during odor episodes and carbonyl measurements close to the edible oil processing plant were used for health evaluation. Odors reported by participants in Saxony frequently differed from those reported by participants in the Czech Republic. This suggests that certain sources of odor lying on either side of the border only affect that side and not the other with similar considerations regarding health effects. VOCs, including carbonyls, were also sampled at two relatively remote locations during winters of 2017 and 2018; two main sources of odorous compounds were identified at these sites. Analysis of samples taken at sampling sites shows that VOC air pollution and, to a lesser extent carbonyl pollution, originate from both industrial and local sources. Even though levels of sampled substances were not associated with acute effects at any site, long-term exposures to selected compounds could be cause for concern for carcinogenicity at some sites. Odors in Seiffen were associated with carcinogenic compounds in can samples. Although not necessarily representative of long-term exposures to the compounds studied, results such as these suggest that further study is needed to better quantify long-term exposure to potentially harmful compounds, and to either confirm or deny the existence of substantive health risk.
Zobrazit více v PubMed
Nicell J.A. Expressions to relate population responses to odor concentration. Atmos. Environ. 2003;37:4955–4964. doi: 10.1016/j.atmosenv.2003.08.028. DOI
Douša J. Comparison access to odor problems in selected European countries. Inżynieria Miner. 2019;21:83–87. doi: 10.29227/IM-2019-01-15. DOI
Zheng J., Yu Y., Mo Z., Zhang Z., Wang X., Yin S., Peng K., Yang Y., Feng X., Cai H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013;456:127–136. doi: 10.1016/j.scitotenv.2013.03.055. PubMed DOI
Partridge P.A., Shala F.J., Cernansky N.P., Suffet H.I. Characterization and analysis of diesel exhaust odor. Environ. Sci. Technol. 1987;21:403–408. doi: 10.1021/es00158a011. PubMed DOI
Corrêa S.M., Arbilla G. Carbonyl emissions in diesel and biodiesel exhaust. Atmos. Environ. 2008;42:769–775. doi: 10.1016/j.atmosenv.2007.09.073. DOI
Dincer F., Muezzinoglu A.A. Chemical characterization of odors due to some industrial and urban facilities in Izmir, Turkey. Atmos. Environ. 2006;40:4210–4219. doi: 10.1016/j.atmosenv.2005.12.067. DOI
Seo Y., Suvarapu L.N., Baek S. Characterization of odorous compounds (VOC and carbonyl compounds) in the ambient air of Yeosu and Gwangyang, large industrial areas of South Korea. Sci. World J. 2014;2014:824301. doi: 10.1155/2014/824301. PubMed DOI PMC
Heaney C.D., Wing S., Campbell R.L., Caldwell D., Hopkins B., Richardson D., Yeatts K. Relation between malodor, ambient hydrogen sulphide, and health in a community bordering a landfill. Environ. Res. 2011;111:847–852. doi: 10.1016/j.envres.2011.05.021. PubMed DOI PMC
Héroux M., Pagé T., Gélinas C., Guy C. Evaluating odour impacts from a landfilling and composting site: Involving citizens in the monitoring. Water Sci Technol. 2004;50:131–137. doi: 10.2166/wst.2004.0242. PubMed DOI
Dincer F., Odabasi M., Muezzinoglu A. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J. Chromatogr. A. 2006;1122:222–229. doi: 10.1016/j.chroma.2006.04.075. PubMed DOI
Dincer F., Muezzinoglu A. Qdor determination at wastewater collection systems: Olfactometry versus H2S analyses. Clean. 2007;35:565–570.
Leach J., Blanch A., Bianchi A.C. Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection center and sewage treatment plant. Atmos. Environ. 1999;33:4309–4325. doi: 10.1016/S1352-2310(99)00115-6. DOI
Wing S., Horton R.A., Marshall S.W., Thu K., Tajik M., Schinasi L., Schiffman S.S. Air pollution and odor in communities near industrial swine operations. Environ. Health Perspect. 2008;116:1362–1368. doi: 10.1289/ehp.11250. PubMed DOI PMC
Schinasi L., Horton R.A., Guidry V.T., Wing S., Marshall S.W., Morland K.B. Air pollution, lung function, and physical symptoms in communities near concentrated swine feeding operations. Epidemiology. 2011;22:208–215. doi: 10.1097/EDE.0b013e3182093c8b. PubMed DOI PMC
Trabue S., Scoggin K., Mc Connell L., Maghirang R., Razote E., Hatfield J. Identifying and cracking key odorants from cattle feedlots. Atmos. Environ. 2011;4:4243–4251. doi: 10.1016/j.atmosenv.2011.04.081. DOI
Government Order No. 9/2013 Coll. Government Order Amending Order No. 361/2007 Coll. Which Lays Down the Conditions for Health Protection at Work as Amended. [(accessed on 5 December 2021)]; Available online: https://www.zakonyprolidi.cz/cs/2007-361.
Schladitz A., Leníček J., Beneš I., Kováč M., Skorkovský J., Soukup A., Jandlová J., Poulain L., Plachá H., Löschau G., et al. Air quality in the German-Czech border region: A focus on harmful fractions of PM and ultrafine particles. Atmos. Environ. 2015;122:236–249. doi: 10.1016/j.atmosenv.2015.09.044. DOI
Web Portal of CHMI (Czech Hydrometeorological Institute) [(accessed on 16 January 2020)]. Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/locality/pollution_locality/loc_ULOM_GB.html.
Web Portal of CHMI (Czech Hydrometeorological Institute) [(accessed on 25 January 2020)]. Available online: http://portal.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2018_enh/index_GB.html.
Web Portal of CHMI (Czech Hydrometeorological Institute) [(accessed on 27 January 2020)]. Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/locality/pollution_locality/loc_DSCH_GB.html.
Web Portal Umwelt Sachsen. [(accessed on 5 December 2021)]. Available online: https://www.umwelt.sachsen.de/umwelt/infosysteme/luftonline/Recherche_XML.aspx. (In German)
Web Portal of CHMI (Czech Hydrometeorological Institute) [(accessed on 27 January 2020)]. Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/locality/pollution_locality/loc_UULM_GB.html.
Web Portal of CHMI (Czech Hydrometeorological Institute) [(accessed on 27 January 2020)]. Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/tab_reports/automated/index_GB.html.
Merck: Radiello® Diffusive Air Sampling Application—Volatile Organic Compounds (VOCs) Thermally Desorbed. [(accessed on 14 March 2020)]. Available online: https://www.sigmaaldrich.com/technical-documents/articles/analytical/radiello-air-sampler/vocs-thermally-desorbed-applications.html.
EPA On-Line Tools for Site Assessment Calculation. [(accessed on 2 February 2021)]; Available online: https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/estdiffusion-ext.html.
Merck: Radiello® Diffusive Air Sampling Applications—Aldehydes. [(accessed on 14 March 2020)]. Available online: https://www.sigmaaldrich.com/technical-documents/articles/analytical/radiello-air-sampler/aldehydes-applications.html.
Ciccioli P., Brancaleoni E., Frattoni M., Marta S., Brachetti A., Vitullo M., Tirone G., Valentini R. Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry. J. Chromatogr. A. 2003;9:283–296. doi: 10.1016/S0021-9673(02)01731-4. PubMed DOI
Gallego E., Roca F.J., Peral J.F., Guardino X. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello® diffusive sampler for the analysis of VOCs. Talanta. 2011;85:662–672. doi: 10.1016/j.talanta.2011.04.043. PubMed DOI
Haerens K., Segers P., van Elst T. Sampling and stability of mercaptans: Comparison between bags, canisters and sorbent tubes. Chem. Eng. Transact. 2016;54:31–36.
Maceira A., Vallecillos L., Borrull F., Marc R.M. New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC-MS. Sci. Total Environ. 2017;599:1718–1727. doi: 10.1016/j.scitotenv.2017.05.141. PubMed DOI
Woolfenden E. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2: Sorbent selection and other aspects of optimizing air monitoring methods. J. Chromatogr. A. 2010;1217:2685–2694. doi: 10.1016/j.chroma.2010.01.015. PubMed DOI
Capelli L., Sironi S., del Rosso R., Guillot J. Measuring odors in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013;79:731–743. doi: 10.1016/j.atmosenv.2013.07.029. DOI
Capelli L., Sironi S., del Rosso R., Céntola P., il Grande M. A comparative and critical evaluation of odor assessment methods on a landfill site. Atmos. Environ. 2008;42:7050–7058. doi: 10.1016/j.atmosenv.2008.06.009. DOI
Schmidt R., Cain W. Making scents: Dynamic olfactometry for threshold measurements. Chem. Senses. 2010;35:109–120. doi: 10.1093/chemse/bjp088. PubMed DOI PMC
Nagata Y. Measurement of Odor Threshold by Triangular Odor Bag Method-Odor Measurements Review. Japan Ministry of the Environment. 2003. [(accessed on 14 March 2020)]. Available online: https://www.env.go.jp/en/air/odor/measure/02_3_2.pdf.
Lê S., Josse J., Husson F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 2008;25:1–18. doi: 10.18637/jss.v025.i01. DOI
Husson F., Lê S., Pagès J. Exploratory Multivariate Analysis by Example Using R. 1st ed. Chapman and Hall/CRC; New York, NY, USA: 2011. pp. 59–126.
STHDA Statistical Tools for High-Throughput Data Analysis. Articles—Principal Component Methods in R: Practical Guide: CA—Correspondence Analysis in R: Essentials. [(accessed on 6 November 2019)]. Available online: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-r-essentials/
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 3 June 2019)]. Available online: http://www.R-project.org/
Wenjing J., Zhenhan D., Dong L., Jimenes L.M.C., Yanjun L., Hanwen G., Hontago W. Characterization of odor emission on the working face of landfill and establishing of odorous compounds index. Waste Manag. 2015;42:74–81. doi: 10.1016/j.wasman.2015.04.030. PubMed DOI
Watson J.G., Chow J.C., Fujita E.M. Review of organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001;35:1567–1584. doi: 10.1016/S1352-2310(00)00461-1. DOI
Seila R.L., Main H.H., Arriaga J.L., Martinez G.V., Ramadan A.B. Atmospheric volatile organic compound measurements during the 1996 Paso del Norte Ozone Study. Sci. Total Environ. 2001;276:153–169. doi: 10.1016/S0048-9697(01)00777-X. PubMed DOI
Akagi S.K., Yokelson R.J., Wiedinmyer C., Alvarado M.J., Reid J.S., Karl T., Crounse J.D., Wennberg P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011;11:4039–4072. doi: 10.5194/acp-11-4039-2011. DOI
Huang Y., Steven S., Han H., Kin F.H., Shun C.L., Jian Z.Y., Louie K.K.P. Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J. Hazard. Mater. 2011;186:344–351. doi: 10.1016/j.jhazmat.2010.11.003. PubMed DOI
Feilberg A., Bildsoe P., Nyord T. Applications of PTR-MS for measuring odorant emissions from soil application of manure slurry. Sensors. 2015;15:1148. doi: 10.3390/s150101148. PubMed DOI PMC
O’Neil D.H., Phillips V.R. A review of the control of odorous nuisance from livestock buildings: Part 3, properties of the odorous substances which have been identified in livestock wastes or in the air around them. J. Agric. Eng. Res. 1992;53:23–50. doi: 10.1016/0021-8634(92)80072-Z. DOI
Allen M.R., Braithwaite A., Hills C.C. Trace organic compounds in landfill gas at seven U. K. waste disposal sites. Environ. Sci. Technol. 1997;31:1054–1061. doi: 10.1021/es9605634. DOI
Jenkins F.E., Tynan D.G. Continuous Process for Preparing Particulate Microporous, Open-Celled Polymer Structures in a Screw-Type Extruder. 4,041,115. U.S. Patent. 1975 August 9;
Pinto J.P., Stevens R.K., Willis R.D., Mamane Y., Ramadan Z., Hopke P.K. Source-Receptor Relations in Teplice and Prachatice. In: Sram R.J., editor. Teplice Program: Impact of Air Pollution on Humn Health. Academia Prague; Prague, Czech Republic: 2001. pp. 71–80.
Barletta B., Meinardi S., Simpson I.J., Zou S., Rowland S.F., Blake D.R. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmos. Environ. 2008;42:4393–4408. doi: 10.1016/j.atmosenv.2008.01.028. DOI
Garcia J.P., Beyne-Mascel S., Mouvier G., Mascele P. Emission of volatile organic compounds by coal-fired power stations. Atmos. Environ. 1992;26:1589–1597. doi: 10.1016/0960-1686(92)90059-T. DOI
Sekyra M., Leníček J., Skybová M., Vrubel J., Heppner P. Emise volatilních uhlovodíků-prekurzorů ozonu ze stacionárních a mobilních zdrojů. Projekt MŽP-ČR 1999, VaV-740-2-01. Available Only in Person at the Ministry of the Environment of the Czech Republic. The Report Is Also Included in the Dissertation of M.Skybová: Study of Transport and Transformation of Tropospheric Pollutants Brno, Masaryk University, Czechia, 2007. [(accessed on 5 December 2021)]. Available online: https://is.muni.cz/th/avk3s/Dizertacni_prace_Skybova.pdf. (In Czech)
Schauer J., Kleeman M.J., Cass G.R., Simoneit B.R.T. Measurement of emissions from air pollution sources. 3. C1-C30 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 2001;35:1716–1728. doi: 10.1021/es001331e. PubMed DOI
Schauer J.J., Kleeman M.J., Cass G.R., Simoneit B.R.T. Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 2002;36:1169–1180. doi: 10.1021/es0108077. PubMed DOI
Hellén H., Hakola H., Reissell A., Ruuskanen T.M. Carbonyl compounds in boreal coniferous forest air in Hyytiälä, Southern Finland. Atmos. Chem. Phys. 2004;4:1771–1780. doi: 10.5194/acp-4-1771-2004. DOI
Jurvelin J., Vartiainen M., Jantunen M., Pasanen P. Personal exposure levels and microenvironmental concentrations of formaldehyde and acetaldehyde in the Helsinki metropolitan area, Finland. J. Air Waste Manag. Assoc. 1995;51:17–24. doi: 10.1080/10473289.2001.10464251. PubMed DOI
Skybová M., Leníček J., Rychtecká A., Sýkorová P., Balasová V., Bílek J., Kohoutek J., Holoubek I. Determination of volatile organic compounds in the atmosphere and their influence on ozone formation. Fresenius Environ. Bull. 2006;15:1616–1623.
Feng Y., Wen S., Chen Y., Wang X., Lu H., Bi X., Sheng G., Fu J. Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmos. Environ. 2005;39:1789–1800. doi: 10.1016/j.atmosenv.2004.10.009. DOI
Ciccioli P., Brancaleoni E., Frattoni M., Cecinato A., Brachetti A. Ubiquitous occurrence of semi-volatile carbonyl compounds in tropospheric samples and their possible sources. Atmos. Environ. 1993;27:1891–1901. doi: 10.1016/0960-1686(93)90294-9. DOI
Forss D.A. Odor and flavor compounds from lipids. Progr. Chem. Fats Other Lipids. 1972;13:181–258. doi: 10.1016/0079-6832(73)90007-4. PubMed DOI
Ranau R., Kleeberg K.K., Schlegelmilch M., Streese J., Steinhart H. Analytical determination of the suitability of different processes for the treatment of odorous waste gas. Waste Manag. 2005;25:908–916. doi: 10.1016/j.wasman.2005.07.004. PubMed DOI
US EPA/600/R-06/013F; 2007 Concepts, Methods, and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document (Final Report, 2008). US EPA: Washington, DC, USA. [(accessed on 2 February 2021)];2008 Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&dirEntryId=190187.
Risk Assessment Guidance for Superfund (RAGS) Vol. I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Evaluation Risk Assessment). US EPA: Washington, DC, USA. [(accessed on 19 April 2020)];2009 Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f.
EPA/690/R-09/012F; Provisional Peer-Reviewed Toxicity Values for Complex Mixtures of Aliphatic and Aromatic Hydrocarbons. US EPA: Washington, DC, USA. [(accessed on 25 October 2021)];2009 Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=339011.
US EPA Iris Assessments. List A to Z. [(accessed on 19 January 2021)]; Available online: https://iris.epa.gov/AtoZ/?list_type=alpha.
Lüllmann H., Mohr K., Wehling M. Pharmacology and Toxicology. Grada; Prague, Czech Republic: 2004.
PEL TWA Published OSHA and NIOSH (NIOSH OSHA Pocket Guide to Chemical Hazards, Department of Health and Human Services, CDC, NIOSH, DHHS Publication No 2005—149, September 2007. [(accessed on 5 December 2021)]; Available online: https://www.cdc.gov/niosh/
Agency for Toxic Substances and Disease Registry, Toxic Substances Portal, Minimal Risk Levels (MRLs) for Hazardous Substances, MRL List October 2020. [(accessed on 5 December 2021)]; Available online: https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx.
Rfc Issued by the SZÚ, Based Mainly on WHO Publications—According to § 27, Paragraph 6b, of Czech Act No. 201/2012 Coll., Revised 2018. [(accessed on 5 December 2021)]. Available online: https://www.zakonyprolidi.cz/cs/2012-201.
IARC Monographs on the Identification of Carcinogenic Hazards to Humans, WHO. [(accessed on 12 March 2021)]. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/
OEHHA California Office for Environmental Hazard Assessment. [(accessed on 21 April 2021)]; Available online: https:oehha.ca.gov/chemicals/ethylbenzene.
OEHHA California Office for Environmental Hazard Assessment. [(accessed on 21 April 2021)]; Available online: https://oehha.ca.gov/chemicals/naphthalene.