2-Acetamido-2-deoxy-d-glucono-1,5-lactone Sulfonylhydrazones: Synthesis and Evaluation as Inhibitors of Human OGA and HexB Enzymes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
K 109450, FK-125067, PD 135034
National Research, Development and Innovation Office of Hungary
GINOP-2.3.2-15-2016-00008, GINOP-2.3.3-15-2016-00004
European Union
21-01948L
Czech Science Foundation
CA18132 GlycoNanoBio
European Cooperation in Science and Technology
BO/00372/20/7
Hungarian Academy of Sciences
ÚNKP-21-5-DE-471
New National Excellence Program of the Ministry for Innovation and Technology in Hungary
PubMed
35162960
PubMed Central
PMC8834866
DOI
10.3390/ijms23031037
PII: ijms23031037
Knihovny.cz E-zdroje
- Klíčová slova
- Prime refinement, QM/MM optimization, glyconolactone sulfonylhydrazone, hHexB, hOGA, inhibitor,
- MeSH
- antigeny nádorové chemie metabolismus MeSH
- beta-hexosaminidasa, beta řetězec chemie metabolismus MeSH
- histonacetyltransferasy chemie metabolismus MeSH
- hyaluronoglukosaminidasa chemie metabolismus MeSH
- hydrazony chemická syntéza chemie farmakologie MeSH
- inhibitory enzymů chemická syntéza chemie farmakologie MeSH
- laktony chemie MeSH
- lidé MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- oxidy chemie MeSH
- sloučeniny manganu chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny nádorové MeSH
- beta-hexosaminidasa, beta řetězec MeSH
- HEXB protein, human MeSH Prohlížeč
- histonacetyltransferasy MeSH
- hyaluronoglukosaminidasa MeSH
- hydrazony MeSH
- inhibitory enzymů MeSH
- laktony MeSH
- manganese dioxide MeSH Prohlížeč
- OGA protein, human MeSH Prohlížeč
- oxidy MeSH
- sloučeniny manganu MeSH
Inhibition of the human O-linked β-N-acetylglucosaminidase (hOGA, GH84) enzyme is pharmacologically relevant in several diseases such as neurodegenerative and cardiovascular disorders, type 2 diabetes, and cancer. Human lysosomal hexosaminidases (hHexA and hHexB, GH20) are mechanistically related enzymes; therefore, selective inhibition of these enzymes is crucial in terms of potential applications. In order to extend the structure-activity relationships of OGA inhibitors, a series of 2-acetamido-2-deoxy-d-glucono-1,5-lactone sulfonylhydrazones was prepared from d-glucosamine. The synthetic sequence involved condensation of N-acetyl-3,4,6-tri-O-acetyl-d-glucosamine with arenesulfonylhydrazines, followed by MnO2 oxidation to the corresponding glucono-1,5-lactone sulfonylhydrazones. Removal of the O-acetyl protecting groups by NH3/MeOH furnished the test compounds. Evaluation of these compounds by enzyme kinetic methods against hOGA and hHexB revealed potent nanomolar competitive inhibition of both enzymes, with no significant selectivity towards either. The most efficient inhibitor of hOGA was 2-acetamido-2-deoxy-d-glucono-1,5-lactone 1-naphthalenesulfonylhydrazone (5f, Ki = 27 nM). This compound had a Ki of 6.8 nM towards hHexB. To assess the binding mode of these inhibitors to hOGA, computational studies (Prime protein-ligand refinement and QM/MM optimizations) were performed, which suggested the binding preference of the glucono-1,5-lactone sulfonylhydrazones in an s-cis conformation for all test compounds.
Department of Organic Chemistry University of Debrecen POB 400 H 4002 Debrecen Hungary
School of Pharmacy and Biomedical Sciences University of Central Lancashire Preston PR1 2HE UK
Zobrazit více v PubMed
Ma J., Wu C., Hart G.W. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem. Rev. 2021;121:1513–1581. doi: 10.1021/acs.chemrev.0c00884. PubMed DOI
Bond M.R., Hanover J.A. O-GlcNAc Cycling: A Link between Metabolism and Chronic Disease. Annu. Rev. Nutr. 2013;33:205–229. doi: 10.1146/annurev-nutr-071812-161240. PubMed DOI PMC
Zachara E.N. O-GlcNAc a sensor of cellular state: The role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta BBA Gen. Subj. 2004;1673:13–28. doi: 10.1016/j.bbagen.2004.03.016. PubMed DOI
Hastings N.B., Wang X., Song L., Butts B.D., Grotz D., Hargreaves R., Hess J.F., Hong K.-L.K., Huang C.R.-R., Hyde L., et al. Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol. Neurodegener. 2017;12:1–16. doi: 10.1186/s13024-017-0181-0. PubMed DOI PMC
Zhu Y., Shan X., Yuzwa S.A., Vocadlo D.J. The Emerging Link between O-GlcNAc and Alzheimer Disease. J. Biol. Chem. 2014;289:34472–34481. doi: 10.1074/jbc.R114.601351. PubMed DOI PMC
Yu Y., Zhang L., Li X., Run X., Liang Z., Li Y., Liu Y., Lee M.H., Grundke-Iqbal I., Iqbal K., et al. Differential Effects of an O-GlcNAcase Inhibitor on Tau Phosphorylation. PLoS ONE. 2012;7:e35277. doi: 10.1371/journal.pone.0035277. PubMed DOI PMC
Yuzwa A.S., Shan X., Macauley M.S., Clark T., Skorobogatko Y., Vosseller K., Vocadlo D.J. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol. 2012;8:393–399. doi: 10.1038/nchembio.797. PubMed DOI
Dong D., Hart G. Purification and characterization of an O-GlcNAc selective N-acetyl-β-d-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 1994;269:19321–19330. doi: 10.1016/S0021-9258(17)32170-1. PubMed DOI
Hattie M., Cekic N., Debowski A.W., Vocadlo D.J., Stubbs K.A. Modifying the phenyl group of PUGNAc: Reactivity tuning to deliver selective inhibitors for N-acetyl-d-glucosaminidases. Org. Biomol. Chem. 2016;14:3193–3197. doi: 10.1039/C6OB00297H. PubMed DOI
Macauley M., Whitworth G.E., Debowski A.W., Chin D., Vocadlo D. O-GlcNAcase Uses Substrate-assisted Catalysis: Kinetic analysis and development of highly selective mechanism-inspired inhibitors. J. Biol. Chem. 2005;280:25313–25322. doi: 10.1074/jbc.M413819200. PubMed DOI
Macauley M.S., Vocadlo D.J. Increasing O-GlcNAc levels: An overview of small-molecule inhibitors of O-GlcNAcase. Biochim. Biophys. Acta BBA Gen. Subj. 2010;1800:107–121. doi: 10.1016/j.bbagen.2009.07.028. PubMed DOI
Kiss M., Szabó E., Bocska B., Sinh L.T., Fernandes C.P., Timári I., Hayes J.M., Somsák L., Barna T. Nanomolar inhibition of human OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives. Eur. J. Med. Chem. 2021;223:113649. doi: 10.1016/j.ejmech.2021.113649. PubMed DOI
Mangholz S.E., Vasella A. Glycosylidene Carbenes. Part 5. Synthesis of Glycono-1,5-lactone Tosylhydrazones as Precursors of Glycosylidene Carbenes. Helv. Chim. Acta. 1991;74:2100–2111. doi: 10.1002/hlca.19910740845. DOI
Mangholz S.E., Briner K., Bernet B., Vasella A. Glycosylidene Carbenes. Part 32. Helv. Chim. Acta. 2003;86:2490–2508. doi: 10.1002/hlca.200390202. DOI
Somsák L., Praly J.-P., Descotes G. Sodium Salt of d-Glucono-1,5-lactone Tosylhydrazone: A Ready Access to a New Glucosylidene Carbene Precursor. Synlett. 1992;1992:119–120. doi: 10.1055/s-1992-21284. DOI
Chaplin D., Crout D.H.G., Bornemann S., Hutchinson D.W., Khan R. Conversion of 2-acetamido-2-deoxy-β-d-glucopyranose (N-acetylglucosamine) into 2-acetamido-2-deoxy-β-d-galactopyranose (N-acetylgalactosamine) using a biotransformation to generate a selectively deprotected substrate for SN2 inversion. J. Chem. Soc. Perkin Trans. 1992;1:235–237. doi: 10.1039/P19920000235. DOI
Kartha K.R., Mukhopadhyay B., Field R. Practical de-O-acylation reactions promoted by molecular sieves. Carbohydr. Res. 2004;339:729–732. doi: 10.1016/j.carres.2003.11.021. PubMed DOI
Zhang G., Fan Q., Wang H., Zhao Y., Ding C. NaHSO3-Mediated Direct Synthesis of Sulfinic Esters from Sulfonyl Hydrazides under Transition-Metal-Free Conditions. Adv. Synth. Catal. 2021;363:833–837. doi: 10.1002/adsc.202001202. DOI
Thiele C.M., Petzold K., Schleucher J. Easy Roesy: Reliable Cross-Peak Integration in Adiabatic Symmetrized ROESY. Chem. Eur. J. 2009;15:585–588. doi: 10.1002/chem.200802027. PubMed DOI
Krejzová J., Kulik N., Slámová K., Křen V. Expression of human β-N-acetylhexosaminidase B in yeast eases the search for selective inhibitors. Enzym. Microb. Technol. 2016;89:1–6. doi: 10.1016/j.enzmictec.2016.03.003. PubMed DOI
Schrödinger, LLC. Schrödinger Release 2018-4. Schrödinger, LLC.; New York, NY, USA: 2018.
Manta S., Xipnitou A., Kiritsis C., Kantsadi A.L., Hayes J.M., Skamnaki V.T., Lamprakis C., Kontou M., Zoumpoulakis P., Zographos S.E., et al. 3′-Axial CH2OH Substitution on Glucopyranose does not Increase Glycogen Phosphorylase Inhibitory Potency. QM/MM-PBSA Calculations Suggest Why. Chem. Biol. Drug Des. 2012;79:663–673. doi: 10.1111/j.1747-0285.2012.01349.x. PubMed DOI
Murphy R.B., Philipp D.M., Friesner R.A. A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J. Comput. Chem. 2000;21:1442–1457. doi: 10.1002/1096-987X(200012)21:16<1442::AID-JCC3>3.0.CO;2-O. DOI
Lin F.-Y., MacKerell J.A.D. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding? J. Phys. Chem. B. 2017;121:6813–6821. doi: 10.1021/acs.jpcb.7b04198. PubMed DOI PMC
Zhao Y., Li J., Gu H., Wei N., Xu Y.-C., Fu W., Yu Z. Conformational Preferences of π–π Stacking Between Ligand and Protein, Analysis Derived from Crystal Structure Data Geometric Preference of π–π Interaction. Interdiscip. Sci. Comput. Life Sci. 2015;7:211–220. doi: 10.1007/s12539-015-0263-z. PubMed DOI
Gyöngyösi T., Timári I., Sinnaeve D., Luy B., Kövér K.E. Expedited Nuclear Magnetic Resonance Assignment of Small- to Medium-Sized Molecules with Improved HSQC−CLIP−COSY Experiments. Anal. Chem. 2021;93:3096–3102. doi: 10.1021/acs.analchem.0c04124. PubMed DOI
Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors (Short Communication) Biochem. J. 1974;137:143–144. doi: 10.1042/bj1370143. PubMed DOI PMC
Dixon M. The determination of enzyme inhibitor constants. Biochem. J. 1953;55:170–171. doi: 10.1042/bj0550170. PubMed DOI PMC
Søndergaard C.R., Olsson M.H.M., Rostkowski M., Jensen J.H. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. J. Chem. Theory Comput. 2011;7:2284–2295. doi: 10.1021/ct200133y. PubMed DOI
Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI
Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016;12:281–296. doi: 10.1021/acs.jctc.5b00864. PubMed DOI
Li J., Abel R., Zhu K., Cao Y., Zhao S., Friesner R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins Struct. Funct. Bioinform. 2011;79:2794–2812. doi: 10.1002/prot.23106. PubMed DOI PMC
Zhao Y., Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI
Francl M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI
Hehre W.J., Ditchfield R., Pople J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972;56:2257–2261. doi: 10.1063/1.1677527. DOI