2-Acetamido-2-deoxy-d-glucono-1,5-lactone Sulfonylhydrazones: Synthesis and Evaluation as Inhibitors of Human OGA and HexB Enzymes

. 2022 Jan 18 ; 23 (3) : . [epub] 20220118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35162960

Grantová podpora
K 109450, FK-125067, PD 135034 National Research, Development and Innovation Office of Hungary
GINOP-2.3.2-15-2016-00008, GINOP-2.3.3-15-2016-00004 European Union
21-01948L Czech Science Foundation
CA18132 GlycoNanoBio European Cooperation in Science and Technology
BO/00372/20/7 Hungarian Academy of Sciences
ÚNKP-21-5-DE-471 New National Excellence Program of the Ministry for Innovation and Technology in Hungary

Inhibition of the human O-linked β-N-acetylglucosaminidase (hOGA, GH84) enzyme is pharmacologically relevant in several diseases such as neurodegenerative and cardiovascular disorders, type 2 diabetes, and cancer. Human lysosomal hexosaminidases (hHexA and hHexB, GH20) are mechanistically related enzymes; therefore, selective inhibition of these enzymes is crucial in terms of potential applications. In order to extend the structure-activity relationships of OGA inhibitors, a series of 2-acetamido-2-deoxy-d-glucono-1,5-lactone sulfonylhydrazones was prepared from d-glucosamine. The synthetic sequence involved condensation of N-acetyl-3,4,6-tri-O-acetyl-d-glucosamine with arenesulfonylhydrazines, followed by MnO2 oxidation to the corresponding glucono-1,5-lactone sulfonylhydrazones. Removal of the O-acetyl protecting groups by NH3/MeOH furnished the test compounds. Evaluation of these compounds by enzyme kinetic methods against hOGA and hHexB revealed potent nanomolar competitive inhibition of both enzymes, with no significant selectivity towards either. The most efficient inhibitor of hOGA was 2-acetamido-2-deoxy-d-glucono-1,5-lactone 1-naphthalenesulfonylhydrazone (5f, Ki = 27 nM). This compound had a Ki of 6.8 nM towards hHexB. To assess the binding mode of these inhibitors to hOGA, computational studies (Prime protein-ligand refinement and QM/MM optimizations) were performed, which suggested the binding preference of the glucono-1,5-lactone sulfonylhydrazones in an s-cis conformation for all test compounds.

Zobrazit více v PubMed

Ma J., Wu C., Hart G.W. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem. Rev. 2021;121:1513–1581. doi: 10.1021/acs.chemrev.0c00884. PubMed DOI

Bond M.R., Hanover J.A. O-GlcNAc Cycling: A Link between Metabolism and Chronic Disease. Annu. Rev. Nutr. 2013;33:205–229. doi: 10.1146/annurev-nutr-071812-161240. PubMed DOI PMC

Zachara E.N. O-GlcNAc a sensor of cellular state: The role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta BBA Gen. Subj. 2004;1673:13–28. doi: 10.1016/j.bbagen.2004.03.016. PubMed DOI

Hastings N.B., Wang X., Song L., Butts B.D., Grotz D., Hargreaves R., Hess J.F., Hong K.-L.K., Huang C.R.-R., Hyde L., et al. Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol. Neurodegener. 2017;12:1–16. doi: 10.1186/s13024-017-0181-0. PubMed DOI PMC

Zhu Y., Shan X., Yuzwa S.A., Vocadlo D.J. The Emerging Link between O-GlcNAc and Alzheimer Disease. J. Biol. Chem. 2014;289:34472–34481. doi: 10.1074/jbc.R114.601351. PubMed DOI PMC

Yu Y., Zhang L., Li X., Run X., Liang Z., Li Y., Liu Y., Lee M.H., Grundke-Iqbal I., Iqbal K., et al. Differential Effects of an O-GlcNAcase Inhibitor on Tau Phosphorylation. PLoS ONE. 2012;7:e35277. doi: 10.1371/journal.pone.0035277. PubMed DOI PMC

Yuzwa A.S., Shan X., Macauley M.S., Clark T., Skorobogatko Y., Vosseller K., Vocadlo D.J. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol. 2012;8:393–399. doi: 10.1038/nchembio.797. PubMed DOI

Dong D., Hart G. Purification and characterization of an O-GlcNAc selective N-acetyl-β-d-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 1994;269:19321–19330. doi: 10.1016/S0021-9258(17)32170-1. PubMed DOI

Hattie M., Cekic N., Debowski A.W., Vocadlo D.J., Stubbs K.A. Modifying the phenyl group of PUGNAc: Reactivity tuning to deliver selective inhibitors for N-acetyl-d-glucosaminidases. Org. Biomol. Chem. 2016;14:3193–3197. doi: 10.1039/C6OB00297H. PubMed DOI

Macauley M., Whitworth G.E., Debowski A.W., Chin D., Vocadlo D. O-GlcNAcase Uses Substrate-assisted Catalysis: Kinetic analysis and development of highly selective mechanism-inspired inhibitors. J. Biol. Chem. 2005;280:25313–25322. doi: 10.1074/jbc.M413819200. PubMed DOI

Macauley M.S., Vocadlo D.J. Increasing O-GlcNAc levels: An overview of small-molecule inhibitors of O-GlcNAcase. Biochim. Biophys. Acta BBA Gen. Subj. 2010;1800:107–121. doi: 10.1016/j.bbagen.2009.07.028. PubMed DOI

Kiss M., Szabó E., Bocska B., Sinh L.T., Fernandes C.P., Timári I., Hayes J.M., Somsák L., Barna T. Nanomolar inhibition of human OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives. Eur. J. Med. Chem. 2021;223:113649. doi: 10.1016/j.ejmech.2021.113649. PubMed DOI

Mangholz S.E., Vasella A. Glycosylidene Carbenes. Part 5. Synthesis of Glycono-1,5-lactone Tosylhydrazones as Precursors of Glycosylidene Carbenes. Helv. Chim. Acta. 1991;74:2100–2111. doi: 10.1002/hlca.19910740845. DOI

Mangholz S.E., Briner K., Bernet B., Vasella A. Glycosylidene Carbenes. Part 32. Helv. Chim. Acta. 2003;86:2490–2508. doi: 10.1002/hlca.200390202. DOI

Somsák L., Praly J.-P., Descotes G. Sodium Salt of d-Glucono-1,5-lactone Tosylhydrazone: A Ready Access to a New Glucosylidene Carbene Precursor. Synlett. 1992;1992:119–120. doi: 10.1055/s-1992-21284. DOI

Chaplin D., Crout D.H.G., Bornemann S., Hutchinson D.W., Khan R. Conversion of 2-acetamido-2-deoxy-β-d-glucopyranose (N-acetylglucosamine) into 2-acetamido-2-deoxy-β-d-galactopyranose (N-acetylgalactosamine) using a biotransformation to generate a selectively deprotected substrate for SN2 inversion. J. Chem. Soc. Perkin Trans. 1992;1:235–237. doi: 10.1039/P19920000235. DOI

Kartha K.R., Mukhopadhyay B., Field R. Practical de-O-acylation reactions promoted by molecular sieves. Carbohydr. Res. 2004;339:729–732. doi: 10.1016/j.carres.2003.11.021. PubMed DOI

Zhang G., Fan Q., Wang H., Zhao Y., Ding C. NaHSO3-Mediated Direct Synthesis of Sulfinic Esters from Sulfonyl Hydrazides under Transition-Metal-Free Conditions. Adv. Synth. Catal. 2021;363:833–837. doi: 10.1002/adsc.202001202. DOI

Thiele C.M., Petzold K., Schleucher J. Easy Roesy: Reliable Cross-Peak Integration in Adiabatic Symmetrized ROESY. Chem. Eur. J. 2009;15:585–588. doi: 10.1002/chem.200802027. PubMed DOI

Krejzová J., Kulik N., Slámová K., Křen V. Expression of human β-N-acetylhexosaminidase B in yeast eases the search for selective inhibitors. Enzym. Microb. Technol. 2016;89:1–6. doi: 10.1016/j.enzmictec.2016.03.003. PubMed DOI

Schrödinger, LLC. Schrödinger Release 2018-4. Schrödinger, LLC.; New York, NY, USA: 2018.

Manta S., Xipnitou A., Kiritsis C., Kantsadi A.L., Hayes J.M., Skamnaki V.T., Lamprakis C., Kontou M., Zoumpoulakis P., Zographos S.E., et al. 3′-Axial CH2OH Substitution on Glucopyranose does not Increase Glycogen Phosphorylase Inhibitory Potency. QM/MM-PBSA Calculations Suggest Why. Chem. Biol. Drug Des. 2012;79:663–673. doi: 10.1111/j.1747-0285.2012.01349.x. PubMed DOI

Murphy R.B., Philipp D.M., Friesner R.A. A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J. Comput. Chem. 2000;21:1442–1457. doi: 10.1002/1096-987X(200012)21:16<1442::AID-JCC3>3.0.CO;2-O. DOI

Lin F.-Y., MacKerell J.A.D. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding? J. Phys. Chem. B. 2017;121:6813–6821. doi: 10.1021/acs.jpcb.7b04198. PubMed DOI PMC

Zhao Y., Li J., Gu H., Wei N., Xu Y.-C., Fu W., Yu Z. Conformational Preferences of π–π Stacking Between Ligand and Protein, Analysis Derived from Crystal Structure Data Geometric Preference of π–π Interaction. Interdiscip. Sci. Comput. Life Sci. 2015;7:211–220. doi: 10.1007/s12539-015-0263-z. PubMed DOI

Gyöngyösi T., Timári I., Sinnaeve D., Luy B., Kövér K.E. Expedited Nuclear Magnetic Resonance Assignment of Small- to Medium-Sized Molecules with Improved HSQC−CLIP−COSY Experiments. Anal. Chem. 2021;93:3096–3102. doi: 10.1021/acs.analchem.0c04124. PubMed DOI

Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors (Short Communication) Biochem. J. 1974;137:143–144. doi: 10.1042/bj1370143. PubMed DOI PMC

Dixon M. The determination of enzyme inhibitor constants. Biochem. J. 1953;55:170–171. doi: 10.1042/bj0550170. PubMed DOI PMC

Søndergaard C.R., Olsson M.H.M., Rostkowski M., Jensen J.H. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. J. Chem. Theory Comput. 2011;7:2284–2295. doi: 10.1021/ct200133y. PubMed DOI

Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI

Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016;12:281–296. doi: 10.1021/acs.jctc.5b00864. PubMed DOI

Li J., Abel R., Zhu K., Cao Y., Zhao S., Friesner R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins Struct. Funct. Bioinform. 2011;79:2794–2812. doi: 10.1002/prot.23106. PubMed DOI PMC

Zhao Y., Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI

Francl M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon M.S., DeFrees D.J., Pople J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI

Hehre W.J., Ditchfield R., Pople J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972;56:2257–2261. doi: 10.1063/1.1677527. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace