Synthesis and in vitro Study of Artemisinin/Synthetic Peroxide-Based Hybrid Compounds against SARS-CoV-2 and Cancer

. 2022 May 04 ; 17 (9) : e202200005. [epub] 20220329

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35187791

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 μm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 μM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.

Zobrazit více v PubMed

WHO, in situation reports, Vol. 180, World Health Organization, 2020.

Zong Z., Wei Y., Ren J., Zhang L., Zhou F., Mol. Cancer 2021, 20, 76–94. PubMed PMC

Sinha S., Kundu C. N., Med. Oncol. 2021, 38, 101–106. PubMed PMC

Newman D. J., Cragg G. M., J. Nat. Prod. 2016, 79, 629–661. PubMed

Posner G. H., Expert Opin. Ther. Pat. 1998, 8, 1487–1493;

Tu Y., Nat. Med. 2011, 17, 1217–1220. PubMed

Su X.-Z., Miller L. H., Sci. China Life Sci. 2015, 58, 1175–1179. PubMed PMC

Jung M., Lee K., Kim H., Park M., Curr. Med. Chem. 2004, 11, 1265–1284; PubMed

Singh N. P., Lai H. C., Anticancer Res. 2004, 24, 2277–2280; PubMed

Efferth T., Drug Resist. Updates 2005, 8, 85–97; PubMed

Cabello C. M., Lamore S. D., Bair W. B., Qiao S., Azimian S., Lesson J. L., Wondrak G. T., Invest. New Drugs 2012, 30, 1289–1301; PubMed PMC

Efferth T., Planta Med. 2007, 73, 299–309. PubMed

Qian R. S., Li Z. L., Yu J. L., Ma D. J. J., J. Tradit. Chin. Med. 1982, 2, 271–276; PubMed

Romero M. R., Efferth T., Serrano M. A., Castaño B., Macias R. I. R., Briz O., Marin J. J. G., Antiviral Res. 2005, 68, 75–83; PubMed

Efferth T., Romero M. R., Wolf D. G., Stamminger T., Marin J. J. G., Marschall M., Clin. Infect. Dis. 2008, 47, 804–811; PubMed

Wohlfarth C., Efferth T., Acta Pharmacol. Sin. 2009, 30, 25–30. PubMed PMC

Nie C., Trimpert J., Moon S., Haag R., Gilmore K., Kaufer B. B., Seeberger P. H., Virol. J. 2021, 18, 182, 10.1186/s12985-021-01651-8. PubMed DOI PMC

Gendrot M., Duflot I., Boxberger M., Delandre O., Jardot P., Le Bideau M., Andreani J., Fonta I., Mosnier J., Rolland C., Hutter S., La Scola B., Pradines B., Int. J. Infect. Dis. 2020, 99, 437–440; PubMed PMC

M. Izoulet, 2020. Available at SSRN: https://ssrn.com/abstract=3575899 or 10.2139/ssrn.3575899. DOI

Cao R., Hu H., Li Y., Wang X., Xu M., Liu J., Zhang H., Yan Y., Zhao L., Li W., Zhang T., Xiao D., Guo X., Li Y., Yang J., Hu Z., Wang M., Zhong W., ACS Infect. Dis. 2020, 6, 2524–2531; PubMed

Zhou Y., Gilmore K., Ramirez S., Settels E., Gammeltoft K. A., Pham L. V., Fahnøe U., Feng S., Offersgaard A., Trimpert J., Bukh J., Osterrieder K., Gottwein J. M., Seeberger P. H., Sci. Rep. 2021, 11, 14571–14584. PubMed PMC

Mehta G., Singh V., Chem. Soc. Rev. 2002, 31, 324–334; PubMed

Tietze L. F., Bell H. P., Chandrasekhar S., Angew. Chem. Int. Ed. 2003, 42, 3996–4028; PubMed

Angew. Chem. 2003, 115, 4128–4160;

Meunier B., Acc. Chem. Res. 2008, 41, 69–77; PubMed

Tsogoeva S. B., Mini-Rev. Med. Chem. 2010, 10, 773–793; PubMed

d. Oliveira Pedrosa M., Duarte da Cruz R. M., d. Oliveira Viana J., de Moura R. O., Ishiki H. M., Barbosa Filho J. M., Diniz M. F. F. M., Scotti M. T., Scotti L., Bezerra Mendonca F. J., Curr. Top. Med. Chem. 2017, 17, 1044–1079; PubMed

Sampath Kumar H. M., Herrmann L., Tsogoeva S. B., Bioorg. Med. Chem. Lett. 2020, 30, 127514–127528. PubMed

Held F. E., Guryev A. A., Fröhlich T., Hampel F., Kahnt A., Hutterer C., Steingruber M., Bahsi H., von Bojničić-Kninski C., Mattes D. S., Foertsch T. C., Nesterov-Mueller A., Marschall M., Tsogoeva S. B., Nat. Commun. 2017, 8, 15071; PubMed PMC

Fröhlich T., Kiss A., Wölfling J., Mernyák E., Kulmány Á. E., Minorics R., Zupkó I., Leidenberger M., Friedrich O., Kappes B., Hahn F., Marschall M., Schneider G., Tsogoeva S. B., ACS Med. Chem. Lett. 2018, 9, 1128–1133; PubMed PMC

Frohlich T., Reiter C., Saeed M. E. M., Hutterer C., Hahn F., Leidenberger M., Friedrich O., Kappes B., Marschall M., Efferth T., Tsogoeva S. B., ACS Med. Chem. Lett. 2018, 9, 534–539. PubMed PMC

Capci A., Lorion M., Wang H., Simon N., Leidenberger M., Borges Silva M., Moreira D., Zhu Y., Meng Y., Chen J. Y., Lee Y., Friedrich O., Kappes B., Wang J., Ackermann L., Tsogoeva S., Angew. Chem. Int. Ed. 2019, 58, 13066-13079; PubMed PMC

Çapcı A., Lorion M. M., Mai C., Hahn F., Hodek J., Wangen C., Weber J., Marschall M., Ackermann L., Tsogoeva S. B., Chem. Eur. J. 2020, 26, 12019–12026. PubMed PMC

Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A., CA: Cancer J. Clin. 2018, 68, 394–424. PubMed

Wang X., Dong Y., Wittlin S., Charman S. A., Chiu F. C. K., Chollet J., Katneni K., Mannila J., Morizzi J., Ryan E., Scheurer C., Steuten J., Santo Tomas J., Snyder C., Vennerstrom J. L., J. Med. Chem. 2013, 56, 2547–2555. PubMed

Coghi P., Yaremenko I. A., Prommana P., Radulov P. S., Syroeshkin M. A., Wu Y. J., Gao J. Y., Gordillo F. M., Mok S., Wong V. K. W., Uthaipibull C., Terent′ev A. O., ChemMedChem 2018, 13, 902–908. PubMed

Vil’ V. A., Yaremenko I. A., Ilovaisky A. I., Terent'ev A. O., Molecules 2017, 22, 1881–1919. PubMed

Wang X.-D., Wei W., Wang P.-F., Tang Y.-T., Deng R.-C., Li B., Zhou S.-S., Zhang J.-W., Zhang L., Xiao Z.-P., Ouyang H., Zhu H.-L., Bioorg. Med. Chem. 2014, 22, 3620–3628. PubMed

Biamonte M. A., Wanner J., Le Roch K. G., Bioorg. Med. Chem. Lett. 2013, 23, 2829–2843; PubMed PMC

Fontaine S. D., Spangler B., Gut J., Lauterwasser E. M. W., Rosenthal P. J., Renslo A. R., ChemMedChem 2015, 10, 47–51. PubMed PMC

Yang Y., Islam M. S., Wang J., Li Y., Chen X., Int. J. Biol. Sci. 2020, 16, 1708–1717; PubMed PMC

Ghosh A. K., Miller H., Knox K., Kundu M., Henrickson K. J., Arav-Boger R., ACS Infect. Dis. 2021, 7, 1985–1995. PubMed

Rekka E. A., Kourounakis P. N., Curr. Med. Chem. 2010, 17, 3422–3430; PubMed

Kourounakis A. P., Xanthopoulos D., Tzara A., Med. Res. Rev. 2020, 40, 709–752. PubMed

Sharma G. V. M., Ramesh A., Singh A., Srikanth G., Jayaram V., Duscharla D., Jun J. H., Ummanni R., Malhotra S. V., Med. Chem. Commun. 2014, 5, 1751–1760;

Kandi S. K., Manohar S., Velez Gerena C. E., Zayas B., Malhotra S. V., Rawat D. S., New J. Chem. 2015, 39, 224–234;

Sharma G. V. M., Kumar K. S., Reddy S. V., Nagalingam A., Cunningham K. M., Ummanni R., Hugel H., Sharma D., Malhotra S. V., Curr. Bioact. Comp. 2017, 13, 223–235.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...