Synthesis and in vitro Study of Artemisinin/Synthetic Peroxide-Based Hybrid Compounds against SARS-CoV-2 and Cancer
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35187791
PubMed Central
PMC9086992
DOI
10.1002/cmdc.202200005
Knihovny.cz E-zdroje
- Klíčová slova
- anti-SARS-CoV-2 compounds, anti-cancer compounds, anti-leukemia agents, artemisinin based hybrids,
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- artemisininy * farmakologie MeSH
- Cercopithecus aethiops MeSH
- chinoliny * terapeutické užití MeSH
- farmakoterapie COVID-19 * MeSH
- leukemie * farmakoterapie MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- peroxidy MeSH
- SARS-CoV-2 MeSH
- Vero buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- artemisinin MeSH Prohlížeč
- artemisininy * MeSH
- chinoliny * MeSH
- peroxidy MeSH
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 μm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 μM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.
Zobrazit více v PubMed
WHO, in situation reports, Vol. 180, World Health Organization, 2020.
Zong Z., Wei Y., Ren J., Zhang L., Zhou F., Mol. Cancer 2021, 20, 76–94. PubMed PMC
Sinha S., Kundu C. N., Med. Oncol. 2021, 38, 101–106. PubMed PMC
Newman D. J., Cragg G. M., J. Nat. Prod. 2016, 79, 629–661. PubMed
Posner G. H., Expert Opin. Ther. Pat. 1998, 8, 1487–1493;
Tu Y., Nat. Med. 2011, 17, 1217–1220. PubMed
Su X.-Z., Miller L. H., Sci. China Life Sci. 2015, 58, 1175–1179. PubMed PMC
Jung M., Lee K., Kim H., Park M., Curr. Med. Chem. 2004, 11, 1265–1284; PubMed
Singh N. P., Lai H. C., Anticancer Res. 2004, 24, 2277–2280; PubMed
Efferth T., Drug Resist. Updates 2005, 8, 85–97; PubMed
Cabello C. M., Lamore S. D., Bair W. B., Qiao S., Azimian S., Lesson J. L., Wondrak G. T., Invest. New Drugs 2012, 30, 1289–1301; PubMed PMC
Efferth T., Planta Med. 2007, 73, 299–309. PubMed
Qian R. S., Li Z. L., Yu J. L., Ma D. J. J., J. Tradit. Chin. Med. 1982, 2, 271–276; PubMed
Romero M. R., Efferth T., Serrano M. A., Castaño B., Macias R. I. R., Briz O., Marin J. J. G., Antiviral Res. 2005, 68, 75–83; PubMed
Efferth T., Romero M. R., Wolf D. G., Stamminger T., Marin J. J. G., Marschall M., Clin. Infect. Dis. 2008, 47, 804–811; PubMed
Wohlfarth C., Efferth T., Acta Pharmacol. Sin. 2009, 30, 25–30. PubMed PMC
Nie C., Trimpert J., Moon S., Haag R., Gilmore K., Kaufer B. B., Seeberger P. H., Virol. J. 2021, 18, 182, 10.1186/s12985-021-01651-8. PubMed DOI PMC
Gendrot M., Duflot I., Boxberger M., Delandre O., Jardot P., Le Bideau M., Andreani J., Fonta I., Mosnier J., Rolland C., Hutter S., La Scola B., Pradines B., Int. J. Infect. Dis. 2020, 99, 437–440; PubMed PMC
M. Izoulet, 2020. Available at SSRN: https://ssrn.com/abstract=3575899 or 10.2139/ssrn.3575899. DOI
Cao R., Hu H., Li Y., Wang X., Xu M., Liu J., Zhang H., Yan Y., Zhao L., Li W., Zhang T., Xiao D., Guo X., Li Y., Yang J., Hu Z., Wang M., Zhong W., ACS Infect. Dis. 2020, 6, 2524–2531; PubMed
Zhou Y., Gilmore K., Ramirez S., Settels E., Gammeltoft K. A., Pham L. V., Fahnøe U., Feng S., Offersgaard A., Trimpert J., Bukh J., Osterrieder K., Gottwein J. M., Seeberger P. H., Sci. Rep. 2021, 11, 14571–14584. PubMed PMC
Mehta G., Singh V., Chem. Soc. Rev. 2002, 31, 324–334; PubMed
Tietze L. F., Bell H. P., Chandrasekhar S., Angew. Chem. Int. Ed. 2003, 42, 3996–4028; PubMed
Angew. Chem. 2003, 115, 4128–4160;
Meunier B., Acc. Chem. Res. 2008, 41, 69–77; PubMed
Tsogoeva S. B., Mini-Rev. Med. Chem. 2010, 10, 773–793; PubMed
d. Oliveira Pedrosa M., Duarte da Cruz R. M., d. Oliveira Viana J., de Moura R. O., Ishiki H. M., Barbosa Filho J. M., Diniz M. F. F. M., Scotti M. T., Scotti L., Bezerra Mendonca F. J., Curr. Top. Med. Chem. 2017, 17, 1044–1079; PubMed
Sampath Kumar H. M., Herrmann L., Tsogoeva S. B., Bioorg. Med. Chem. Lett. 2020, 30, 127514–127528. PubMed
Held F. E., Guryev A. A., Fröhlich T., Hampel F., Kahnt A., Hutterer C., Steingruber M., Bahsi H., von Bojničić-Kninski C., Mattes D. S., Foertsch T. C., Nesterov-Mueller A., Marschall M., Tsogoeva S. B., Nat. Commun. 2017, 8, 15071; PubMed PMC
Fröhlich T., Kiss A., Wölfling J., Mernyák E., Kulmány Á. E., Minorics R., Zupkó I., Leidenberger M., Friedrich O., Kappes B., Hahn F., Marschall M., Schneider G., Tsogoeva S. B., ACS Med. Chem. Lett. 2018, 9, 1128–1133; PubMed PMC
Frohlich T., Reiter C., Saeed M. E. M., Hutterer C., Hahn F., Leidenberger M., Friedrich O., Kappes B., Marschall M., Efferth T., Tsogoeva S. B., ACS Med. Chem. Lett. 2018, 9, 534–539. PubMed PMC
Capci A., Lorion M., Wang H., Simon N., Leidenberger M., Borges Silva M., Moreira D., Zhu Y., Meng Y., Chen J. Y., Lee Y., Friedrich O., Kappes B., Wang J., Ackermann L., Tsogoeva S., Angew. Chem. Int. Ed. 2019, 58, 13066-13079; PubMed PMC
Çapcı A., Lorion M. M., Mai C., Hahn F., Hodek J., Wangen C., Weber J., Marschall M., Ackermann L., Tsogoeva S. B., Chem. Eur. J. 2020, 26, 12019–12026. PubMed PMC
Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A., CA: Cancer J. Clin. 2018, 68, 394–424. PubMed
Wang X., Dong Y., Wittlin S., Charman S. A., Chiu F. C. K., Chollet J., Katneni K., Mannila J., Morizzi J., Ryan E., Scheurer C., Steuten J., Santo Tomas J., Snyder C., Vennerstrom J. L., J. Med. Chem. 2013, 56, 2547–2555. PubMed
Coghi P., Yaremenko I. A., Prommana P., Radulov P. S., Syroeshkin M. A., Wu Y. J., Gao J. Y., Gordillo F. M., Mok S., Wong V. K. W., Uthaipibull C., Terent′ev A. O., ChemMedChem 2018, 13, 902–908. PubMed
Vil’ V. A., Yaremenko I. A., Ilovaisky A. I., Terent'ev A. O., Molecules 2017, 22, 1881–1919. PubMed
Wang X.-D., Wei W., Wang P.-F., Tang Y.-T., Deng R.-C., Li B., Zhou S.-S., Zhang J.-W., Zhang L., Xiao Z.-P., Ouyang H., Zhu H.-L., Bioorg. Med. Chem. 2014, 22, 3620–3628. PubMed
Biamonte M. A., Wanner J., Le Roch K. G., Bioorg. Med. Chem. Lett. 2013, 23, 2829–2843; PubMed PMC
Fontaine S. D., Spangler B., Gut J., Lauterwasser E. M. W., Rosenthal P. J., Renslo A. R., ChemMedChem 2015, 10, 47–51. PubMed PMC
Yang Y., Islam M. S., Wang J., Li Y., Chen X., Int. J. Biol. Sci. 2020, 16, 1708–1717; PubMed PMC
Ghosh A. K., Miller H., Knox K., Kundu M., Henrickson K. J., Arav-Boger R., ACS Infect. Dis. 2021, 7, 1985–1995. PubMed
Rekka E. A., Kourounakis P. N., Curr. Med. Chem. 2010, 17, 3422–3430; PubMed
Kourounakis A. P., Xanthopoulos D., Tzara A., Med. Res. Rev. 2020, 40, 709–752. PubMed
Sharma G. V. M., Ramesh A., Singh A., Srikanth G., Jayaram V., Duscharla D., Jun J. H., Ummanni R., Malhotra S. V., Med. Chem. Commun. 2014, 5, 1751–1760;
Kandi S. K., Manohar S., Velez Gerena C. E., Zayas B., Malhotra S. V., Rawat D. S., New J. Chem. 2015, 39, 224–234;
Sharma G. V. M., Kumar K. S., Reddy S. V., Nagalingam A., Cunningham K. M., Ummanni R., Hugel H., Sharma D., Malhotra S. V., Curr. Bioact. Comp. 2017, 13, 223–235.