Sex-specific disease modifiers in juvenile myoclonic epilepsy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/K013998/1
Medical Research Council - United Kingdom
MR/N026063/1
Medical Research Council - United Kingdom
PubMed
35190554
PubMed Central
PMC8861057
DOI
10.1038/s41598-022-06324-2
PII: 10.1038/s41598-022-06324-2
Knihovny.cz E-zdroje
- MeSH
- absentní epilepsie MeSH
- dítě MeSH
- dospělí MeSH
- epilepsie myoklonické MeSH
- léková rezistence MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- myoklonická epilepsie juvenilní * farmakoterapie epidemiologie etiologie patofyziologie MeSH
- pohlavní dimorfismus * MeSH
- poruchy fotosenzitivity MeSH
- prognóza MeSH
- průřezové studie MeSH
- záchvaty MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Juvenile myoclonic epilepsy (JME) is a common idiopathic generalised epilepsy with variable seizure prognosis and sex differences in disease presentation. Here, we investigate the combined epidemiology of sex, seizure types and precipitants, and their influence on prognosis in JME, through cross-sectional data collected by The Biology of Juvenile Myoclonic Epilepsy (BIOJUME) consortium. 765 individuals met strict inclusion criteria for JME (female:male, 1.8:1). 59% of females and 50% of males reported triggered seizures, and in females only, this was associated with experiencing absence seizures (OR = 2.0, p < 0.001). Absence seizures significantly predicted drug resistance in both males (OR = 3.0, p = 0.001) and females (OR = 3.0, p < 0.001) in univariate analysis. In multivariable analysis in females, catamenial seizures (OR = 14.7, p = 0.001), absence seizures (OR = 6.0, p < 0.001) and stress-precipitated seizures (OR = 5.3, p = 0.02) were associated with drug resistance, while a photoparoxysmal response predicted seizure freedom (OR = 0.47, p = 0.03). Females with both absence seizures and stress-related precipitants constitute the prognostic subgroup in JME with the highest prevalence of drug resistance (49%) compared to females with neither (15%) and males (29%), highlighting the unmet need for effective, targeted interventions for this subgroup. We propose a new prognostic stratification for JME and suggest a role for circuit-based risk of seizure control as an avenue for further investigation.
Adult Epilepsy Genetics Program Krembil Research Institute University of Toronto Toronto Canada
Cardiff and Vale University Health Board Cardiff UK
Danish Epilepsy Centre Dianalund Denmark
Department of Clinical and Experimental Medicine Pisa University Hospital Pisa Italy
Department of Neurology Drammen Hospital Vestre Viken Health Trust Oslo Norway
Department of Neurology Oslo University Hospital Oslo Norway
Department of Regional Health Services University of Southern Denmark Odense Denmark
Evelina London Children's Hospital London UK
Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur Malaysia
IRCCS Istituto 'G Gaslini' Genoa Italy
King's College Hospital London UK
MRC Centre for Neurodevelopmental Disorders King's College London London UK
National Centre for Epilepsy Oslo University Hospital Oslo Norway
Nationwide Children's Hospital Columbus OH USA
Neurology Research Group Swansea University Medical School Swansea UK
Newcastle Upon Tyne NHS Foundation Trust Newcastle UK
Odense University Hospital Odense Denmark
Zobrazit více v PubMed
Asadi-Pooya AA, Emami M, Sperling MR. A clinical study of syndromes of idiopathic (genetic) generalized epilepsy. J. Neurol. Sci. 2013;324:113–117. doi: 10.1016/j.jns.2012.10.014. PubMed DOI
Camfield CS, Striano P, Camfield PR. Epidemiology of juvenile myoclonic epilepsy. Epilepsy Behav. 2013;28(Suppl 1):S15–17. doi: 10.1016/j.yebeh.2012.06.024. PubMed DOI
Camfield CS, Camfield PR. Juvenile myoclonic epilepsy 25 years after seizure onset: A population-based study. Neurology. 2009;73:1041–1045. doi: 10.1212/WNL.0b013e3181b9c86f. PubMed DOI
Stevelink R, Koeleman BPC, Sander JW, Jansen FE, Braun KPJ. Refractory juvenile myoclonic epilepsy: A meta-analysis of prevalence and risk factors. Eur. J. Neurol. 2019;26:856–864. doi: 10.1111/ene.13811. PubMed DOI PMC
da Silva Sousa P, Lin K, Garzon E, Sakamoto AC, Yacubian EM. Self-perception of factors that precipitate or inhibit seizures in juvenile myoclonic epilepsy. Seizure. 2005;14:340–346. doi: 10.1016/j.seizure.2005.04.007. PubMed DOI
Nakken KO, et al. Which seizure-precipitating factors do patients with epilepsy most frequently report? Epilepsy Behav. 2005;6:85–89. doi: 10.1016/j.yebeh.2004.11.003. PubMed DOI
Ferlisi M, Shorvon S. Seizure precipitants (triggering factors) in patients with epilepsy. Epilepsy Behav. 2014;33:101–105. doi: 10.1016/j.yebeh.2014.02.019. PubMed DOI
Kasteleijn-Nolst Trenite DG, de Weerd A, Beniczky S. Chronodependency and provocative factors in juvenile myoclonic epilepsy. Epilepsy Behav. 2013;28(Suppl 1):S25–29. doi: 10.1016/j.yebeh.2012.11.045. PubMed DOI
Uchida CGP, et al. Prognosis of Juvenile myoclonic epilepsy with eye-closure sensitivity. Seizure. 2018;62:17–25. doi: 10.1016/j.seizure.2018.09.006. PubMed DOI
Uchida CGP, et al. Phenotyping juvenile myoclonic epilepsy. Praxis induction as a biomarker of unfavorable prognosis. Seizure. 2015;32:62–68. doi: 10.1016/j.seizure.2015.09.011. PubMed DOI
Choi H, et al. Development and validation of a predictive model of drug-resistant genetic generalized epilepsy. Neurology. 2020 doi: 10.1212/WNL.0000000000010597. PubMed DOI PMC
Wolf P, Goosses R. Relation of photosensitivity to epileptic syndromes. J. Neurol. Neurosurg. Psychiatry. 1986;49:1386–1391. doi: 10.1136/jnnp.49.12.1386. PubMed DOI PMC
Shiraishi H, Fujiwara T, Inoue Y, Yagi K. Photosensitivity in relation to epileptic syndromes: A survey from an epilepsy center in Japan. Epilepsia. 2001;42:393–397. doi: 10.1046/j.1528-1157.2001.05300.x. PubMed DOI
Christensen J, Kjeldsen MJ, Andersen H, Friis ML, Sidenius P. Gender differences in epilepsy. Epilepsia. 2005;46:956–960. doi: 10.1111/j.1528-1167.2005.51204.x. PubMed DOI
Kishk N, et al. Sex differences among epileptic patients: A comparison of epilepsy and its impacts on demographic features, clinical characteristics, and management patterns in a tertiary care hospital in Egypt. Egypt. J. Neurol. Psychiatry Neurosurg. 2019;55:39. doi: 10.1186/s41983-019-0078-7. DOI
Martinez-Juarez IE, et al. Juvenile myoclonic epilepsy subsyndromes: Family studies and long-term follow-up. Brain. 2006;129:1269–1280. doi: 10.1093/brain/awl048. PubMed DOI
Poleon S, Szaflarski JP. Photosensitivity in generalized epilepsies. Epilepsy Behav. 2017;68:225–233. doi: 10.1016/j.yebeh.2016.10.040. PubMed DOI
Galimberti CA, et al. Seizure frequency and cortisol and dehydroepiandrosterone sulfate (DHEAS) levels in women with epilepsy receiving antiepileptic drug treatment. Epilepsia. 2005;46:517–523. doi: 10.1111/j.0013-9580.2005.59704.x. PubMed DOI
van Campen JS, et al. Cortisol fluctuations relate to interictal epileptiform discharges in stress sensitive epilepsy. Brain. 2016;139:1673–1679. doi: 10.1093/brain/aww071. PubMed DOI
Puri V, Sajan PM, Chowdhury V, Chaudhry N. Cortical excitability in drug naive juvenile myoclonic epilepsy. Seizure. 2013;22:662–669. doi: 10.1016/j.seizure.2013.05.001. PubMed DOI
Giuliano L, et al. Long-term prognosis of juvenile myoclonic epilepsy: A systematic review searching for sex differences. Seizure. 2021;86:41–48. doi: 10.1016/j.seizure.2021.01.005. PubMed DOI
Tomson T, et al. Valproate in the treatment of epilepsy in girls and women of childbearing potential. Epilepsia. 2015;56:1006–1019. doi: 10.1111/epi.13021. PubMed DOI
Vetvik KG, Macgregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76–87. doi: 10.1016/S1474-4422(16)30293-9. PubMed DOI
Jain S, Tripathi M, Srivastava AK, Narula A. Phenotypic analysis of juvenile myoclonic epilepsy in Indian families. Acta Neurol. Scand. 2003;107:356–362. doi: 10.1034/j.1600-0404.2003.00085.x. PubMed DOI
Inghilleri M, et al. Ovarian hormones and cortical excitability. An rTMS study in humans. Clin. Neurophysiol. 2004;115:1063–1068. doi: 10.1016/j.clinph.2003.12.003. PubMed DOI
Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM. Effects of ovarian hormones on human cortical excitability. Ann. Neurol. 2002;51:599–603. doi: 10.1002/ana.10180. PubMed DOI
Sperling MR, Schilling CA, Glosser D, Tracy JI, Asadi-Pooya AA. Self-perception of seizure precipitants and their relation to anxiety level, depression, and health locus of control in epilepsy. Seizure. 2008;17:302–307. doi: 10.1016/j.seizure.2007.09.003. PubMed DOI
Bartolini E, et al. Abnormal response to photic stimulation in Juvenile Myoclonic Epilepsy: An EEG-fMRI study. Epilepsia. 2014;55:1038–1047. doi: 10.1111/epi.12634. PubMed DOI
Moeller F, et al. Representation and propagation of epileptic activity in absences and generalized photoparoxysmal responses. Hum. Brain Mapp. 2013;34:1896–1909. doi: 10.1002/hbm.22026. PubMed DOI PMC
Vollmar C, et al. Altered microstructural connectivity in juvenile myoclonic epilepsy: The missing link. Neurology. 2012;78:1555–1559. doi: 10.1212/WNL.0b013e3182563b44. PubMed DOI PMC
van Campen JS, Jansen FE, de Graan PN, Braun KP, Joels M. Early life stress in epilepsy: A seizure precipitant and risk factor for epileptogenesis. Epilepsy Behav. 2014;38:160–171. doi: 10.1016/j.yebeh.2013.09.029. PubMed DOI
Franklin TB, Saab BJ, Mansuy IM. Neural mechanisms of stress resilience and vulnerability. Neuron. 2012;75:747–761. doi: 10.1016/j.neuron.2012.08.016. PubMed DOI
Wu G, et al. Understanding resilience. Front. Behav. Neurosci. 2013;7:10. doi: 10.3389/fnbeh.2013.00010. PubMed DOI PMC
Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009;10:410–422. doi: 10.1038/nrn2648. PubMed DOI PMC
Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 1993;13:3839–3847. doi: 10.1523/JNEUROSCI.13-09-03839.1993. PubMed DOI PMC
van Campen JS, et al. Relation between stress-precipitated seizures and the stress response in childhood epilepsy. Brain. 2015;138:2234–2248. doi: 10.1093/brain/awv157. PubMed DOI
den Heijer JM, et al. The relation between cortisol and functional connectivity in people with and without stress-sensitive epilepsy. Epilepsia. 2018;59:179–189. doi: 10.1111/epi.13947. PubMed DOI
Leeman-Markowski BA, Schachter SC. Cognitive and behavioral interventions in epilepsy. Curr. Neurol. Neurosci. Rep. 2017;17:42. doi: 10.1007/s11910-017-0752-z. PubMed DOI PMC
Shakeshaft A, et al. Trait impulsivity in Juvenile Myoclonic Epilepsy. Ann. Clin. Transl. Neurol. 2021;8:138–152. doi: 10.1002/acn3.51255. PubMed DOI PMC
Tangwiriyasakul C, et al. Dynamic brain network states in human generalized spike-wave discharges. Brain. 2018;141:2981–2994. doi: 10.1093/brain/awy223. PubMed DOI PMC
Vollmar C, et al. Motor system hyperconnectivity in juvenile myoclonic epilepsy: A cognitive functional magnetic resonance imaging study. Brain. 2011;134:1710–1719. doi: 10.1093/brain/awr098. PubMed DOI PMC
Caeyenberghs K, et al. Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis. Neuroimage Clin. 2015;7:98–104. doi: 10.1016/j.nicl.2014.11.018. PubMed DOI PMC
Garcia-Ramos C, et al. Progressive dissociation of cortical and subcortical network development in children with new-onset juvenile myoclonic epilepsy. Epilepsia. 2018;59:2086–2095. doi: 10.1111/epi.14560. PubMed DOI PMC
Pal DK, et al. Complex inheritance and parent-of-origin effect in juvenile myoclonic epilepsy. Brain Dev. 2006;28:92–98. doi: 10.1016/j.braindev.2005.05.009. PubMed DOI PMC
Durner M, et al. Genome scan of idiopathic generalised epilepsy: Evidence for major susceptibility gene and modifying genes influencing the seizure type. Ann. Neurol. 2001;49:328–335. doi: 10.1002/ana.69. PubMed DOI
Crunelli V, et al. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain. 2020;143:2341–2368. doi: 10.1093/brain/awaa072. PubMed DOI PMC
Wang Y, Chen Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol. Ther. 2019;201:77–93. doi: 10.1016/j.pharmthera.2019.05.010. PubMed DOI
Kasteleijn-Nolst Trenité DGA, et al. Consensus on diagnosis and management of JME: From founder’s observations to current trends. Epilepsy Behav. 2013;28:S87–S90. doi: 10.1016/j.yebeh.2012.11.051. PubMed DOI
Harris PA, et al. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010. PubMed DOI PMC
Kasteleijn-Nolst Trenite DG, et al. Methodology of photic stimulation revisited: Updated European algorithm for visual stimulation in the EEG laboratory. Epilepsia. 2012;53:16–24. doi: 10.1111/j.1528-1167.2011.03319.x. PubMed DOI
IBM Corp. IBM SPSS Statistics for Macintosh, Version 25.0. (IBM Corp, 2017).
StataCorp. Stata Statistical Software: Release 16. (StataCorp LLC, 2019).
GraphPad Prism Version 9.3.0 for Mac. GraphPad, San Diego, California USA,. www.graphpad.com. (2021).